
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids (2015)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/fld.4009

OpenACC acceleration of an unstructured CFD solver based on a
reconstructed discontinuous Galerkin method

for compressible flows

Yidong Xia1,*,† , Jialin Lou1, Hong Luo1, Jack Edwards1 and Frank Mueller2

1Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
2Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA

SUMMARY

An OpenACC directive-based graphics processing unit (GPU) parallel scheme is presented for solving the
compressible Navier–Stokes equations on 3D hybrid unstructured grids with a third-order reconstructed
discontinuous Galerkin method. The developed scheme requires the minimum code intrusion and algorithm
alteration for upgrading a legacy solver with the GPU computing capability at very little extra effort in
programming, which leads to a unified and portable code development strategy. A face coloring algorithm is
adopted to eliminate the memory contention because of the threading of internal and boundary face integrals.
A number of flow problems are presented to verify the implementation of the developed scheme. Timing
measurements were obtained by running the resulting GPU code on one Nvidia Tesla K20c GPU card
(Nvidia Corporation, Santa Clara, CA, USA) and compared with those obtained by running the equivalent
Message Passing Interface (MPI) parallel CPU code on a compute node (consisting of two AMD Opteron
6128 eight-core CPUs (Advanced Micro Devices, Inc., Sunnyvale, CA, USA)). Speedup factors of up to
24! and 1:6! for the GPU code were achieved with respect to one and 16 CPU cores, respectively. The
numerical results indicate that this OpenACC-based parallel scheme is an effective and extensible approach
to port unstructured high-order CFD solvers to GPU computing. Copyright © 2015 John Wiley & Sons, Ltd.

Received 10 June 2014; Revised 16 December 2014; Accepted 3 January 2015

KEY WORDS: GPU computing; OpenACC; CUDA; discontinuous Galerkin; compressible flow;
Navier–Stokes equations

1. INTRODUCTION

The application of general-purpose graphics processing unit (GPGPU) [1] technology to the CFD
solvers has been popular in recent years [2–13]. GPGPU offers an exciting opportunity to signifi-
cantly accelerate the CFD solvers by offloading compute-intensive portions of the application to the
GPU, while the remainder of the computer program still runs on the CPU. From a user’s perspective,
the solvers simply run much faster.

Among the vendors of GPGPU hardware and software, Nvidia has been an exceptional pioneer
in promoting and leading the development of GPGPU technology for the past decade. To the best of
the authors’ knowledge, numerical methods in CFD solvers that have been attentively studied based
on Nvidia’s CUDA (Nvidia Corporation) technology include the finite difference methods, spectral
difference methods, finite volume methods (FVMs), discontinuous Galerkin methods (DGMs), Lat-
tice Boltzmann method, and more. For example, Elsen et al. [14] reported a 3D high-order finite

*Correspondence to: Yidong Xia, currently at Environment Science and Technology Directorate, Idaho National
Laboratory, Idaho Falls, ID 83415, USA.

†E-mail: yidong.xia@inl.gov

Copyright © 2015 John Wiley & Sons, Ltd.

Y. XIA ET AL.

difference method solver for large calculation on multiblock structured grids, Klöckner et al. [15]
developed a 3D unstructured high-order nodal DGM solver for the Maxwell’s equations, Corrigan et
al. [16] proposed a 3D FVM solver for compressible inviscid flows on unstructured tetrahedral grids,
and Zimmerman et al. [17] presented a spectral difference method solver for the Navier–Stokes
equations on unstructured hexahedral grids. Nevertheless, the development of CUDA capabilities
extended from an existing CFD solver is not a trivial job, because people have to define an explicit
layout of the threads on the GPU (numbers of blocks and numbers of threads) for each kernel func-
tion [18]. Such a project often requires tremendous hours in programming, as developers have to
rewrite all the core content of the source code. Moreover, for a production-level solver, people also
need to address both the short-term and long-term investment concerns like the cost and profit, as
well as platform portability. These factors can often set people back from investing on GPU comput-
ing for their well-established solution products. Even a research-oriented CFD solver is concerned,
people may be more inclined to maintain compatibility of their codes across multiple platforms,
instead of pursuing performance on one particular platform at the price of being unable to run their
codes on other mainstream platforms. Therefore, the development strategy of a CFD solver based
on one unique model like CUDA might be a risky long-term investment with unclear prospect of the
vendor’s own plan. Fortunately, Nvidia is not the sole player in this area. Two other models include
OpenCL [19], the currently dominant open GPGPU programming model (but dropped from further
discussion because it does not support the FORTRAN programming language) and OpenACC [20],
a new programming standard for parallel computing developed by Cray, CAPS, Nvidia and PGI.

The OpenACC standard is designed to simplify parallel programming of heterogeneous
CPU/GPU systems as well as to closely resemble the OpenMP standard: people simply need to
annotate their code to identify the areas that should be accelerated by wrapping with the OpenACC
directives and some runtime library routines, without the huge effort to change the original algo-
rithms as to accommodate the code to a specific GPU architecture and compiler. With the OpenACC
directives, people benefit not only from easy implementation but also from the freedom to compile
the very same code and conduct computations on either CPU or GPU from different vendors. How-
ever, compared with CUDA in terms of many desired technical features, the OpenACC standard
still lags behind because of vendors’ distribution plan (note that Nvidia is among the OpenACC’s
main supporters). Nevertheless, OpenACC is quickly maturing as an attractive, future GPU paral-
lel programming model for developing portable computer codes and offers a promising approach
to minimize the investment in legacy CFD solver by presenting an easy migration path to acceler-
ated computing. Support of OpenACC is available in the commercial compilers from PGI, Cray,
and CAPS. OpenUH is an Open64-based open source OpenACC compiler, developed by HPCTools
group from the University of Houston. In addition, the GCC (GNU Compiler Collection) project
team is also working toward supporting OpenACC in the GCC compilers.

The objective of the effort discussed in the present work is to port an unstructured CFD solver
based on a third-order hierarchical Weighted Essentially Non-Oscillatory (WENO) reconstructed
DGM [21–24] to GPGPU with OpenACC, for the solution of the 3D compressible Navier–Stokes
equations on unstructured hybrid grids. By taking advantage of the OpenACC parallel program-
ming model, the presented scheme requires the minimum code intrusion and algorithm alteration
to upgrade a legacy CFD solver without much extra time of effort in programming, resulting in a
unified portable code for both CPU and GPU platforms. In addition, a coloring algorithm is used
to eliminate memory contention because of threading over the edge-based face loops. A number
of inviscid and viscous flow problems are presented to verify and assess the performance of the
resulting solver running on GPU.

The outline of the rest of this paper is organized as follows. In Section 2, the governing equations
are introduced. In Section 3, the reconstructed DGM is reviewed. In Section 4, the keynotes of
porting the underlying discontinuous Galerkin (DG) flow solver to GPU based on OpenACC are
discussed in detail. In Section 5, a series of inviscid and viscous flow test cases are presented.
Finally, the concluding remarks are given in Section 6.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

OpenACC IMPLEMENTATION OF AN UNSTRUCTURED CFD SOLVER

2. GOVERNING EQUATIONS

The Navier–Stokes equations governing the unsteady compressible viscous flows can be
expressed as

@U
@t
C @Fk.U/

@xk
D @Gk.U;rU/

@xk
(1)

where the summation convention has been used. The conservative variable vector U, advective flux
vector F, and viscous flux vector G are defined by

U D

0
@
!
!ui
!e

1
A Fj D

0
@

!uj
!uiuj C pıij
uj .!e C p/

1
A Gj D

0
@

0
"ij

ul"lj C qj

1
A (2)

Here, !, p, and e denote the density, pressure, and specific total energy of the fluid, respectively,
and ui is the velocity of the flow in the coordinate direction xi . The pressure can be computed from
the equation of state

p D .# " 1/!
!
e " 1

2
uiui

"
(3)

which is valid for perfect gas. The ratio of the specific heats # is assumed to be constant and equal
to 1.4. The viscous stress tensor "ij and heat flux vector qj are given by

"ij D $
!
@ui

@xj
C @uj

@xi

"
" 2
3
$
@uk
@xk

ıij qj D
1

" 1
$

Pr
@T

@xj
(4)

In the aforementioned equations, T is the temperature of the fluid, and Pr is the laminar Prandtl
number, which is taken as 0.7 for air. The term $ represents the molecular viscosity, which can be
determined through Sutherland’s law

$

$0
D
!
T

T0

" 3
2 T0 C S
T C S (5)

where $0 is the viscosity at the reference temperature T0 and S D 110K. In addition, the
Euler equations can be obtained if the effect of viscosity and thermal conduction are neglected in
Equation (1).

3. RECONSTRUCTED DISCONTINUOUS GALERKIN METHOD

Equation (1) can be discretized using a DG finite element formulation [23], which we assume that
the readers are familiar with. The HLLC (Harten-Lax-van Leer-Contact) inviscid flux scheme [25]
and Bassi–Rebay II viscous flux scheme [26] are used in the present DG method. The numerical
polynomial solutions are represented using a Taylor series expansion at the cell centroid and nor-
malized in order to improve the conditioning of the system matrix [27]. For example, the linear
polynomial P1 solutions of the underlying DG (P1) method used in the present work consist of
the cell-averaged values QU and their normalized first derivatives Ux D @U

@x

ˇ̌
ˇ
c
%x, Uy D @U

@y

ˇ̌
ˇ
c
%y,

U´ D @U
@´

ˇ̌
ˇ
c
%´ at the center of the cell:

UP1
h D QUB1 C UxB2 C UyB3 C U´B4 (6)

where the four basis functions are as follows:

B1 D 1 B2 D
x " xc
%x

B3 D
y " yc
%y

B4 D
´ " ´c
%´

(7)

where%x D 0:5.xmax"xmin/,%y D 0:5.ymax"ymin/, and%´ D 0:5.´max"´min/. The terms xmax,
ymax, ´max and xmin, ymin, ´min are the maximum and minimum vertex coordinates of the cell &e ,

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

Y. XIA ET AL.

respectively. This formulation has a number of attractive, distinct, and useful features. Firstly, the
cell-averaged variables and their derivatives are handily available in this formulation. This makes
the implementation of both in-cell and inter-cell reconstruction schemes straightforward and simple
[28–32]. Secondly, the Taylor basis is hierarchic, which greatly facilitates the implementation of
p-multigrid methods [33, 34] and p-refinement. Thirdly, the same basis functions are used for any
shapes of elements: tetrahedron, pyramid, prism, and hexahedron. This makes the implementation
of DG methods on arbitrary grids straightforward.

By taking advantage of the Taylor basis, a third-order hierarchical WENO reconstruction scheme
is recently developed to improve the performance of the underlying second-order DG (P1) method
[22]. The procedures can be briefly described in five steps: (i) a quadratic polynomial P2 solution
is first reconstructed using a least-squares approach from the underlying linear DG (P1) solution;
(ii) this intermediate P2 solution is then used to evaluate the viscous fluxes; (iii) the final second
derivatives are obtained through a WENO reconstruction P2, which are necessary to ensure the
linear stability of the least-squares reconstructed P2 solution for computing the Euler equations on
3D unstructured tetrahedral grids [21]; (iv) the first derivatives of the quadratic polynomial solution
are then reconstructed through a WENO reconstruction at P1 in order to eliminate the spurious
oscillations in the vicinity of shocks or discontinuities, thus ensuring the nonlinear stability of the
reconstructed DG method; and (v) the final P2 solution is used to evaluate the inviscid fluxes.

Employing the aforementioned hierarchical WENO reconstruction, a system of ODEs in time can
be written in a semidiscrete form as

M P1dUP1

dt
D RP1.UP2/ (8)

where M is the mass matrix, R is the residual vector, and the unknowns to be solved in resulting
system of ODEs are still P1 polynomials. We denote this reconstructed DG scheme as rDG (P1P2)
in the rest of this paper.

4. OPENACC IMPLEMENTATION

The computation-intensive portion of the rDG (P1P2) method is a time marching loop that repeat-
edly computes the time derivatives of the conservative variable vector as shown in Equation (8).
In the present work, the conservative variable vector U (solution array) is updated using the mul-
tistage total variation diminishing Runge–Kutta explicit time stepping scheme [35, 36] (denoted as
TVDRK) in each time step. To activate the computing on GPU, all the required arrays need to be
initially allocated on the CPU memory and then copied to the GPU memory before the computa-
tion enters time marching. In fact, the data copy between the CPU and its attached GPU needs to be
minimized, as it is usually considered to be one of the major overheads in GPU computing. There-
fore, in the present code, the data copy of arrays is neither necessary nor allowed within the time
marching loop, except for the solution array that can be optionally copied back to the CPU memory
every Ndump time steps and written to hard disk for the restart and animation purposes. The work-
flow chart of time stepping is outlined in Figure 1, in which the <ACC> tag denotes an OpenACC
acceleration-enabled region and the <MPI> tag means that message passing interface (MPI) rou-
tine calls will be invoked in the case that multiple CPUs are used. Compared with the standard
DG method, two extra MPI routine calls are required for the rDG (P1P2) method in parallel mode,
because of the fact that the solution vector at the partition buffer elements also needs to be updated
after each reconstruction call.

The most expensive workload for computing the time derivatives of solutions includes these two
procedures: (i) the hierarchical WENO reconstruction that consists of the least-squares quadratic
reconstruction (involving both the element and the face loops) and the WENO curvature and gradi-
ent reconstructions (involving only the element loops) and (ii) accumulation of the residual vector
that consists of internal/boundary integral over the faces and volumetric integral over the elements.
In order to achieve a competent speedup, the OpenACC parallel construct directives need to be
properly inserted in the code for the compiler to generate the acceleration kernels. In fact, the way
to implement OpenACC is very similar to that of OpenMP. The example shown in Figure 2 demon-

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

OpenACC IMPLEMENTATION OF AN UNSTRUCTURED CFD SOLVER

Figure 1. Workflow for the main loop over the explicit time iterations. WENO, weighted essentially
nonoscillatory; ACC, accelerator; MPI, message passing interface; TVDRK, total variation diminishing

Runge–Kutta.

Figure 2. An example of loop over the elements. GPU, graphics processing unit.

strates the parallelization of a loop over the elements for collecting contribution to the residual
vector rhsel(1:Ndegr,1:Netot,1:Nelem), where Ndegr is the number of degree of the
approximation polynomial (equal to 1 for P0, 3 for P1, and 6 for P2 in 2D and equal to 1 for P0, 4
for P1, and 10 for P2 in 3D), Netot is the number of governing equations of the perfect gas (equal
to 4 in 2D and 5 in 3D), Nelem is the number of elements, and Ngpel is the number of quadra-
ture points over an element. For example, Ngpel is equal to 4 in DG (P1), 5 in rDG (P1P2), and
7 in DG (P2) for a tetrahedral element and equal to 8 for DG (P1) and rDG (P1P2) and 27 in DG
(P2) for a hexahedral element. Both the OpenMP and OpenACC parallel construct directives can be
applied to a readily vectorizable loop like the one in Figure 2, without the need to modify the origi-
nal code structure. However, because of the unstructured grid topology, the attempt to directly wrap
a loop over the dual edges for collecting contribution to the residual vector with either the OpenMP
or the OpenACC directives can lead to the so-called ‘race condition’, that is, multiple writes to the
same elemental residual vector, and thus result in incorrect values. Unlike in the structured CFD

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

Y. XIA ET AL.

solvers [37, 38], this kind of ‘race condition’ issue is typically associated to the threading of dual-
edge loops in unstructured CFD solvers for both the node-centered and the cell-centered schemes,
which is not strange at all to those who have the experience of developing parallel unstructured CFD
solvers based on OpenMP. In the present study, a summary of two ‘contention-free’ vectorization
strategies for threading the dual-edge loops is described and assessed as follows:

4.1. Element-based algorithm

In this scheme, the internal/boundary face integral is incorporated into a grand loop over the ele-
ments as proposed by Corrigan et al. [16] for the FVMs. So, as a result, all the workload-intensive
computations are wrapped in element-wise loops, which are perfect for threading. However, a sig-
nificant overhead associated to this algorithm is its redundant computation for the dual edges.
According to [16], the performance of the developed finite volume solver based on CUDA was only
advantageous for computation of single precision and became much worse in the case of double pre-
cision. Unfortunately, this algorithm does not meet our design goals mainly for two reasons. Firstly,
the DG methods require an inner loop over the quadrature points Ngpfa (equal to 3 in DG (P1), 4
in rDG (P1P2), and 7 in DG (P2) for a triangular face and equal to 4 in DG (P1) and rDG (P1P2)
and 9 in DG (P2) for a quadrilateral face) for computing the face integrals in dual-edge computa-
tion. For example, it accounts for at least 50% of the gross computing time as in the second-order
DG (P1) method. Note that Ngpfa could be a larger number in the case of higher-order DG meth-
ods, which could lead to a much more severe overhead if the workload of such computation is
doubled. Secondly, the implementation of this algorithm indicates a major rework in the code struc-
ture, which would not only require tremendous hours in programming but also completely ruin the
performance of the equivalent CPU code. Note that most of the modern unstructured CFD solvers
adopt an edge-based algorithm in dual-edge computations.

4.2. Edge-based algorithm

In the edge-based algorithm, a coloring scheme consisting of face renumbering and grouping can be
used to eliminate the ‘race condition’. The advantage of using this scheme is that it does not require
any change to the original code structures. The coloring scheme is designed to divide all of the faces
into a number of groups by ensuring that any two faces that belong to a common element never fall
into the same group, so that the face loop in each group can be threaded free of ‘race condition’.
Figure 3 shows an example where an extra do-construct that trips over those groups sequentially is
nested on top of the original internal face loop. Therefore, the inner do-construct that trips over the
internal faces can be threaded without ‘race condition’. In fact, this type of algorithm is widely used
for threaded computing in unstructured CFD solvers. Details of the implementation can be found in
an abundance of literature, for example, [39]. According to our study, the number of groups for a
grid is usually between 6 and 8 according to a wide range of test cases, indicating only a few minor
overheads in repeatedly launching and terminating the OpenACC acceleration kernels for the loop
over the face groups. This kind of overheads is typically associated to GPU computing but not the
case for threaded computing on CPU. Nevertheless, a remarkable feature in this design approach
lies in the fact that it allows the legacy CPU code to be recovered when the OpenACC directives are
dismissed in the preprocessing stage of compilation. Therefore, the use of this edge-based coloring
algorithm has resulted in a unified source code for both the CPU and GPU computing.

To sum up from the foregoing discussion, the edge-based algorithm is considered to suit well in
the present work for its simplicity, as it can be quickly implemented without any major change in
the legacy code. Overall, it is applied in the internal/boundary face integrals when computing the
residuals, as well as in the other procedures that contain the loop over faces like the least-squares
quadratic reconstruction and the prediction of allowable local time-step size for each element.

5. NUMERICAL EXAMPLES

The source code is written in Fortran 90 (International Business Machines Corporation) and com-
piled by the PGI Accelerator (The Portland Group, Inc., Lake Oswego, OR, USA) with OpenACCC

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

OpenACC IMPLEMENTATION OF AN UNSTRUCTURED CFD SOLVER

Figure 3. An example of loop over the edges. GPU, graphics processing unit.

OpenMPI development suite. An Nvidia Tesla K20c GPU card (Nvidia Corporation) (2496 stream
processors, 5-GB memory, and 200 GB/s bandwidth) is used to verify and assess the performance
of the resulting GPU code. This GPU card is attached to a CPU compute node, consisting of two
AMD Opteron 6128 eight-core processors (Advanced Micro Devices, Inc.). The minimum compi-
lation flags required for generating the double-precision, optimized, and Nvidia’s GPU-supported
executables are as follows:

"r8 " O3 " acc " ta D nvidia; time; cc20

To evaluate the speedup, we compare the unit time Tunit measured by running the GPU code on
the K20c with that measured by running the equivalent CPU code on the compute node. Tunit is
defined as

Tunit D
Trun

Nstage ! Nstep ! Nelem ! 10
6 (microseconds) (9)

where Trun refers to the wall clock time measured only for completing the entire time marching
loop with a given number of time steps Nstep, excluding the start-up procedures, initial/end data
translation, and solution file dumping. Note that Nstage D 3 because of the use of three-stage
total variation diminishing Runge–Kutta3 for time stepping. In addition, the well-known TauBench

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

Y. XIA ET AL.

was run with one process (-np), 250,000 DOFs per process (-n), and 10 pseudosteps (-s)

mpirun " np1:=TauBench " n250000 " s10

three times to obtain an average wall clock time Ttau D 36s, along with 0.439580 GFLOPS. The
work unit is then defined as Trun=Ttau, which is a widely accepted performance indicator for unstruc-
tured grids on CPU [40]. Note that there has not been a commonly accepted GPU benchmark testing
for unstructured CFD solvers. Therefore, although speedup factors based on specific hardware mod-
els are not particularly preferable in a strict sense, yet it is not uncommon that they are used in
literature, for example, [10].

5.1. Inviscid subsonic flow past a sphere

In this test case, an inviscid subsonic flow past a sphere at a free stream Mach number ofM1 D 0:5
is considered. Computation is conducted on a sequence of three successively refined tetrahedral
grids as displayed in Figure 4(a)–4(c). The cell size is halved between two consecutive grids. Note
that only a quarter of the configuration is modeled because of the symmetry of the problem. The

X

Y

Z

(a)

X

Y

Z

(b)

X

Y

Z

(c)

X

Y

Z

(d)

X

Y

Z

(e)

X

Y

Z

(f)

X

Y

Z

(g)

X

Y

Z

(h)

X

Y

Z

(i)

Figure 4. Subsonic flow past a sphere at M1 D 0:5: (a)–(c) the three successively refined tetrahedral grids
used in the verification test, (d)–(f) computed Mach number contours obtained by DG (P1), and (g)–(i)

computed Mach number contours obtained by rDG (P1P2).

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

OpenACC IMPLEMENTATION OF AN UNSTRUCTURED CFD SOLVER

computation is started with a uniform flow field and terminated at a sufficiently large total number of
time steps to obtain a steady-state solution, as shown in Figure 4(d)–4(i). The following L2 norm of
the entropy production is used as the error measurement for the steady-state inviscid flow problems:

k"kL2.!/ D
sZ

!

"2 d& D

vuutNelemX
iD1

Z
!i

"2 d& (10)

where the entropy production " is defined as

" D S " S1
S1

D p

p1

!
!1
!

""
" 1 (11)

Note that the entropy production, where the entropy is defined as S D .p=!/" , is a very good
criterion to measure the accuracy of the numerical solutions, because the flow under consideration
is isentropic. The discretization errors are presented in Table I. As one can see, DG (P1) and rDG
(P1P2) both achieved a formal order of accuracy of convergence, being 2.00 and 3.01, respectively,
convincingly demonstrating the benefits of using the rDG method over its underlying baseline DG
method. In addition, a handmade diff program with a user-defined absolute error tolerance of
1:0 ! 10!12 indicates that the GPU code and the CPU code produced the identical solution on each
grid. Next, a strong scaling test is carried out for rDG (P1P2) on a sequence of four successively
refined tetrahedral grids, as shown in Table II. The total number of time steps is set to be 100 for
all of these four grids. As one has observed, the OpenACC GPU code does not gain advantage over
the 16 CPU processors for a small-scale problem like 2426 elements. With adequate grid size like
124,706 and 966,497 elements, the advantage of GPU is then fully demonstrated, as speedup factors
of up to 22:6! and 1:49! have been achieved by comparing with the CPU code running on one and
16 CPU processors, respectively. Finally, variations of the TauBench work unit versus DOFs are
shown in Figure 5, providing a relatively subjective indicator to compare with for any other explicit
third-order DG solvers.

5.2. Viscous subsonic flow past a sphere

In this test case, we consider a viscous subsonic flow past a sphere at a free-stream Mach number of
M1 D 0:5 and a low Reynolds number of Re1 D 118 based on the diameter of the sphere. Firstly,
computation is conducted on a coarse grid consisting of 119,390 tetrahedral elements as shown in
Figure 6(a), in order to verify the implementation of OpenACC parallel scheme. Note that only half

Table I. Discretization errors and convergence rates obtained
on the three successively refined tetrahedral grids for inviscid

subsonic flow past a sphere at M1 D 0:5.

Nelem L2-norm (P1) O.h2/ L2-norm (P1P2) O.h3/

535 "0.1732EC01 — "0.196EC01 —
2426 "0.2302EC01 1.90 "0.284EC01 2.92
16,467 "0.2933EC01 2.09 "0.377EC01 3.09

Table II. Timing measurements obtained by reconstructed discontinuous Galerkin
(P1P2) for subsonic flow past a sphere at M1 D 0:5.

Tunit (microseconds) Speedup

Nelem One GPU One CPU 16 CPUs Versus one CPU Versus 16 CPUs

2426 6.7 58.9 4.9 8.8! 0.73!
16,467 3.6 60.9 4.2 17.0! 1.18!
124,706 3.1 60.9 4.3 19.6! 1.40!
966,497 2.9 66.3 4.3 22.6! 1.49!

GPU, graphics processing unit.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

Y. XIA ET AL.

Figure 5. Plot of the TauBench work unit versus DOFs (20 in each tetrahedron for reconstructed discontin-
uous Galerkin (P1P2)) for computing inviscid subsonic flow past a sphere at M1 D 0:5. GPU, graphics

processing unit.

(a) (b)

Figure 6. Viscous flow past a sphere at M1 D 0:5 and Re1 D 118: (a) the tetrahedral grid in the
verification test and (b) the computed streamtraces on the symmetry plane.

of the configuration is modeled because of the symmetry of the problem. The no-slip, adiabatic
boundary conditions are prescribed to the solid wall. Figure 6(b) displays the computed steady-
state velocity streamtraces on the symmetry plane obtained by rDG (P1P2). As one can observe, the
two trailing vortices are visually identical and symmetric to the center line. A diff check with an
absolute error tolerance of 1:0! 10!12 indicates that the GPU code and the CPU code produced the
identical solution data. Secondly, a strong scaling test is conducted with the timing measurements
presented in Table III. Speedup factors of up to 18.5 are obtained w.r.t. one CPU processor and 1.48
w.r.t. the 16 processors. It is interesting to find that the speedup factors obtained for the Navier–
Stokes equations are lower than those for the Euler equations in the previous case, although the
computational intensity in this case is obviously higher. In fact, the major latency is due to the code
structure that the viscous and inviscid flux calculations are divided into two separate procedures,
because the WENO reconstructed quadratic polynomials are only needed for computing the inviscid
residuals, as shown in Figure 1. Therefore, the overheads in acceleration kernels within the r.h.s.
computation are doubled. Indeed, the code could render higher efficiency if we chose to cluster
the least-squares reconstruction and WENO reconstruction at the head of the r.h.s. process and

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

OpenACC IMPLEMENTATION OF AN UNSTRUCTURED CFD SOLVER

Table III. Timing measurements obtained by reconstructed discontinuous Galerkin
(P1P2) for a viscous subsonic flow past a sphere at M1 D 0:5 and Re1 D 118.

Tunit (microseconds) Speedup

Nelem One GPU One CPU 16 CPUs Versus one CPU Versus 16 CPUs

200,416 4.9 86.6 6.8 17:8! 1:41!
925,925 4.6 85.7 6.9 18:5! 1:48!

GPU, graphics processing unit.

Figure 7. Plot of the TauBench work unit versus DOFs (20 in each tetrahedron reconstructed discontinuous
Galerkin (P1P2)) for a viscous subsonic flow past a sphere at M1 D 0:5 and Re1 D 118. GPU, graphics

processing unit.

merge the viscous and inviscid flux calculations into one face integral and one volumetric integral.
However, study shows that the solution accuracy would be affected if we did so. Finally, variations
of the TauBench work unit versus DOFs obtained by running 100 three-stage time steps are shown
in Figure 7, which can be compared with for any other explicit third-order DG solvers for computing
the 3D Navier–Stokes equations on tetrahedral grids.

5.3. Quasi-2D lid-driven square cavity

A quasi-2D lid-driven square cavity laminar flow at a series of Reynolds numbers of Re D 100,
1000, and 10,000 is considered in this test case. The cavity dimensions are 1 unit in the x and y
directions and 0.1 unit in the ´ direction. Computation is first conducted on a coarse hexahedral grid,
which consists of 32!32!2 grid points as shown in Figure 8(a), in an attempt to (i) verify the imple-
mentation of OpenACC for hexahedral elements and (ii) demonstrate the advantage of rDG (P1P2),
as the classical reference data by Ghia et al. [41] can be used to assess the accuracy of the com-
puted velocity profiles. The grid points are clustered near the walls in the x and y directions, and the
grid spacing is geometrically stretched away from the wall with the minimum value hmin D 0:005
(equivalent to yC D 3:535). On the bottom and side walls, the no-slip, adiabatic boundary condi-
tions are prescribed. Along the top ‘lid’, the no-slip, adiabatic boundary conditions along with a lid
velocity vb D .0:2; 0; 0/ are prescribed. The computed steady-state velocity streamtraces obtained
by rDG (P1P2) are displayed in Figure 8(b)–8(d), demonstrating its ability to accurately resolve all
the major vortices on this coarse grid. Figures 9–11 display the profiles of the normalized velocity
components u=uB and v=uB obtained by DG(P1) and rDG (P1P2) that are plotted along the y and
x center lines, respectively. The profiles by a second-order compressible FVM based on a WENO
reconstruction [42], namely rDG (P0P1), is also presented. Overall, rDG (P1P2) has demonstrated
superior accuracy over the other two methods provided with such sparse grid resolution, especially
in the case of high Reynolds numbers. A diff check with an absolute error tolerance of 1:0!10!12

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

Y. XIA ET AL.

(a) (b)

(c) (d)

Figure 8. A quasi-2D lid-driven square cavity flow at vB D .0:2; 0; 0/ and a series of Re: (a) 32 ! 32 grid,
(b) Re D 100, (c) Re D 1000, and (d) Re D 10; 000

.

Figure 9. Profiles of the normalized velocity components u=uB and v=uB on a sparse hexahedral grid
(32 ! 32 ! 2 grid points) for a quasi-2D lid-driven square cavity at vB D .0:2; 0; 0/ and Re D 100. rDG,

reconstructed discontinuous Galerkin; DG, discontinuous Galerkin.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

OpenACC IMPLEMENTATION OF AN UNSTRUCTURED CFD SOLVER

Figure 10. Profiles of the normalized velocity components u=uB and v=uB on a sparse hexahedral grid
(32 ! 32 ! 2 grid points) for a quasi-2D lid-driven square cavity at vB D .0:2; 0; 0/ and Re D 1000. rDG,

reconstructed discontinuous Galerkin; DG, discontinuous Galerkin.

Figure 11. Profiles of the normalized velocity components u=uB and v=uB on a sparse hexahedral grid
(32!32!2 grid points) for a quasi-2D lid-driven square cavity at vB D .0:2; 0; 0/ and Re D 10; 000. rDG,

reconstructed discontinuous Galerkin; DG, discontinuous Galerkin.

indicates that the GPU code and the CPU code produced the identical solution data. Secondly, a
strong scaling test is designed and conducted by running 100 three-stage time steps on two hexahe-
dral grids, which contain 500,000 and 1,000,000 elements, respectively. The timing measurements
are presented in Table IV. Speedup factors of up to 19.0 and 1.50 were achieved by comparing the
unit running time obtained on the K20c GPU with those by the one and 16 CPU processors. In
addition, variations of the TauBench work unit versus DOFs are presented in Figure 12. Overall, we
can see that the developed OpenACC GPU code renders consistent performance on different types
of elements.

5.4. Transonic flow over a Boeing 747 aircraft

In the final test case, a transonic flow past a complete Boeing 747 aircraft (Boeing Commercial Air-
planes, Renton, WA, USA) at a free-stream Mach number of M1 D 0:85 and an angle of attack of

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

Y. XIA ET AL.

Table IV. Timing measurements obtained by reconstructed discontinuous Galerkin
(P1P2) for a quasi-2D lid-driven square cavity at vB D .0:2; 0; 0/ and Re D 10; 000.

Tunit (microseconds) Speedup

Nelem One GPU One CPU 16 CPUs Versus one CPU Versus 16 CPUs

500,000 5.9 109.7 8.7 18:7! 1:48!
1,000,000 5.8 109.6 8.7 19:0! 1:50!

Figure 12. Plot of the TauBench work unit versus DOFs (20 in each hexahedron for reconstructed discon-
tinuous Galerkin (P1P2) with Taylor basis) for a quasi-2D lid-driven square cavity at vB D .0:2; 0; 0/ and

Re D 10; 000. GPU, graphics processing unit.

(a) (b)

Figure 13. Transonic flow over a Boeing 747 aircraft at M1 D 0:85 and ˛ D 2ı: (a) surface unstructured
triangular meshes and (b) Mach number contours obtained by reconstructed discontinuous Galerkin (P1P2).

GPU, graphics processing unit.

˛ D 2ı is presented in order to assess the performance of the OpenACC GPU code for computing
complex geometries. The Boeing 747 configuration includes the fuselage, wing, horizontal and ver-
tical tails, under‘wing pylons, and flow-through engine nacelle. Computation is first conducted on a
tetrahedral grid containing 253,577 elements, as shown in Figure 13(a). Note that only the half-span
airplane is modeled because of the symmetry of the problem. The computed steady-state Mach num-
ber contours obtained by rDG (P1P2) are illustrated in Figure 13(b). One can observe that the shock
waves on the upper surface of the wing are well captured, confirming the accuracy, robustness, and
efficiency of our method for computing complicated flows of practical importance. A diff check
with the absolute error tolerance of 1:0 ! 10!12 indicates that the GPU code produced the identical
solution data to those by the equivalent CPU code. Secondly, a scaling test for the K20c GPU card
is conducted by running 100 three-stage time steps, with the timing measurements obtained by rDG

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

OpenACC IMPLEMENTATION OF AN UNSTRUCTURED CFD SOLVER

Table V. Timing measurements obtained by reconstructed discontinuous Galerkin
(P1P2) for inviscid transonic flow over a Boeing 747 aircraft at M1 D 0:85 and

˛ D 2ı.

Tunit (microseconds) Speedup

Nelem One GPU One CPU 16 CPUs Versus one CPU Versus 16 CPUs

253,577 3.8 81.3 5.5 21:2! 1:43!
1,025,170 3.5 83.1 5.5 24:5! 1:57!

GPU, graphics processing unit.

(P1P2) presented in Table V. Speedup factors of up to 24:5! and 1:57! have been achieved for
the GPU code by comparing with the CPU code running on one and full 16 processors of the CPU
compute node, respectively. Above all, the highest speedup factors observed in this test case are
similar to those in the first test case, indicating the consistent and stable performance of the resulting
OpenACC GPU code for computing various flow conditions and geometric configurations.

6. CONCLUSION AND OUTLOOK

In this study, an OpenACC directive-based parallel scheme has been presented for the GPU com-
puting of an unstructured CFD solver based on a third-order WENO reconstructed DGM. Indeed,
compared with the more mature and dominating techniques like CUDA, the current OpenACC spec-
ification and compilers have not yet been well defined and optimized although active development
and improvement are underway. Therefore, it is not surprising that a fine-tuned CUDA code could
usually outperform the equivalent OpenACC code as of today. Nevertheless, as we have stressed,
the biggest benefits by adopting OpenACC for our CFD solvers are still evident: it requires the min-
imum code intrusion and algorithm alteration to upgrade a legacy unstructured CFD solver with the
GPU computing capability without much extra effort in programming, thus could save tremendous
work hours in code development and maintenance. Numerical experiments on a number of flow
problems have been conducted to verify the implementation of the developed scheme. The results
of timing measurements indicate that this OpenACC-based parallel scheme is able to significantly
accelerate the solving for the equivalent legacy CPU code. A following paper is being prepared
with a focus on the development, implementation, and assessment of multi-GPU parallelism for the
reconstructed DGM.

ACKNOWLEDGEMENTS

The authors would also like to acknowledge the support for this work provided by the Basic Research
Initiative program of The Air Force Office of Scientific Research. Dr. F. Fariba and Dr. D. Smith served as
the technical monitors.

REFERENCES

1. Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn AE, Purcell TJ. A survey of general-purpose
computation on graphics hardware. Computer Graphics Forum, Vol. 26, Wiley Online Library, 2007; 80–113.

2. Brandvik T, Pullan G. Acceleration of a two-dimensional Euler flow solver using commodity graphics hardware.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2007;
221(12):1745–1748.

3. Brandvik T, Pullan G. Acceleration of a 3d Euler solver using commodity graphics hardware. 46th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, Nevada, USA, 2008; 2008–607.

4. Goddeke D, Buijssen SH, Wobker H, Turek S. GPU acceleration of an unmodified parallel finite element Navier-
Stokes solver. International Conference on High Performance Computing & Simulation, 2009. HPCS’09, IEEE,
Leipzig, Germany, 2009; 12–21.

5. Cohen J, Molemaker MJ. A fast double precision CFD code using CUDA. 21st International Conference on Parallel
Computational Fluid Dynamics: Recent Advances and Future Directions, Moffett Field, California, USA, 2009;
414–429.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

Y. XIA ET AL.

6. Phillips EH, Zhang Y, Davis RL, Owens JD. Rapid aerodynamic performance prediction on a cluster of graphics
processing units. Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and
Aerospace Exposition, 2009; 2009–565.

7. Thibault JC, Senocak I. CUDA implementation of a Navier-Stokes solver on multi-GPU desktop platforms for
incompressible flows. Proceedings of the 47th AIAA Aerospace Sciences Meeting including The Horizons Forum and
Aerospace Exposition, Orlando, Florida, USA, 2009; 2009–758.

8. Jacobsen DA, Thibault JC, Senocak I. An MPI-CUDA implementation for massively parallel incompressible flow
computations on multi-GPU clusters. 48th AIAA Aerospace Sciences Meeting and Exhibit including The New Horizon
Forum and Aerospace and Exposition, Vol. 16, 2010–522.

9. Michéa D, Komatitsch D. Accelerating a three-dimensional finite-difference wave propagation code using GPU
graphics cards. Geophysical Journal International 2010; 182(1):389–402.

10. Corrigan A, Camelli F, Löhner R, Mut F. Porting of an edge-based CFD solver to GPUs. 48th AIAA Aerospace
Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, USA, 2010–523.

11. Jespersen DC. Acceleration of a CFD code with a GPU. Scientific Programming 2010; 18(3):193–201.
12. Asouti VG, Trompoukis XS, Kampolis IC, Giannakoglou KC. Unsteady CFD computations using vertex-centered

finite volumes for unstructured grids on graphics processing units. International Journal for Numerical Methods in
Fluids 2011; 67(2):232–246.

13. Corrigan A, Camelli F, Löhner R, Mut F. Semi-automatic porting of a large-scale fortran CFD code to GPUs.
International Journal for Numerical Methods in Fluids 2012; 69(2):314–331.

14. Elsen E, LeGresley P, Darve E. Large calculation of the flow over a hypersonic vehicle using a GPU. Journal of
Computational Physics 2008; 227(24):10148–10161.

15. Klöckner A, Warburton T, Bridge J, Hesthaven JS. Nodal discontinuous Galerkin methods on graphics processors.
Journal of Computational Physics 2009; 228(21):7863–7882.

16. Corrigan A, Camelli F, Löhner R, Wallin J. Running unstructured grid-based CFD solvers on modern graphics
hardware. International Journal for Numerical Methods in Fluids 2011; 66(2):221–229.

17. Zimmerman B, Wang Z, Visbal M. High-order spectral difference: verification and acceleration using GPU
computing. 21st AIAA Computational Fluid Dynamics Conference, San Diego, California, USA, 2013; 2013–2491.

18. Jin H, Kellogg M, Mehrotra P. Using compiler directives for accelerating CFD applications on GPUs. In OpenMP in
a Heterogeneous World. Springer: Berlin, Germany, 2012; 154–168.

19. Stone JE, Gohara D, Shi G. OpenCL: a parallel programming standard for heterogeneous computing systems.
Computing in Science & Engineering 2010; 12(3):66.

20. Wienke S, Springer P, Terboven C, Mey D. OpenACC first experiences with real-world applications. In Euro-Par
2012 Parallel Processing. Springer: Berlin, Germany, 2012; 859–870.

21. Luo H, Xia Y, Li S, Nourgaliev R. A Hermite WENO reconstruction-based discontinuous Galerkin method for the
Euler equations on tetrahedral grids. Journal of Computational Physics 2012; 231(16):5489–5503.

22. Luo H, Xia Y, Spiegel S, Nourgaliev R, Jiang Z. A reconstructed discontinuous Galerkin method based on a hierar-
chical WENO reconstruction for compressible flows on tetrahedral grids. Journal of Computational Physics 2013;
236:477–492.

23. Xia Y, Luo H, Frisbey M, Nourgaliev R. A set of parallel, implicit methods for a reconstructed discontinuous Galerkin
method for compressible flows on 3D hybrid grids. Computers & Fluids 2014; 98:134–151.

24. Xia Y, Luo H, Nourgaliev R. An implicit Hermite WENO reconstruction-based discontinuous Galerkin method on
tetrahedral grids. Computers & Fluids 2014; 96:406–421.

25. Batten P, Leschziner MA, Goldberg UC. Average-state Jacobians and implicit methods for compressible viscous and
turbulent flows. Journal of Computational Physics 1997; 137(1):38–78.

26. Bassi F, Rebay S. Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and #-! turbulence
model equations. Computers & Fluids 2005; 34(4–5):507–540.

27. Luo H, Baum JD, Löhner R. A discontinuous Galerkin method using Taylor basis for compressible flows on arbitrary
grids. Journal of Computational Physics 2008; 227(20):8875–8893.

28. Luo H, Luo L, Nourgaliev R, Mousseau V, Dinh N. A reconstructed discontinuous Galerkin method for the
compressible Navier-Stokes equations on arbitrary grids. Journal of Computational Physics 2010; 229(19):
6961–6978.

29. Luo H, Luo L, Ali A, Nourgaliev R, Cai C. A parallel, reconstructed discontinuous Galerkin method for the
compressible flows on arbitrary grids. Communication in Computational Physics 2011; 9(2):363–389.

30. Luo H, Luo L, Nourgaliev R. A reconstructed discontinuous Galerkin method for the Euler equations on arbitrary
grids. Communications in Computational Physics 2012; 12(5):1495–1519.

31. Zhang LP, Liu W, He LX, Deng XG, Zhang HX. A class of hybrid DG/FV methods for conservation laws II: two
dimensional cases. Journal of Computational Physics 2012; 231(4):1104–1120.

32. Luo H, Xia Y, Nourgaliev R. A class of reconstructed discontinuous Galerkin methods in computational fluid
dynamics. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and
Engineering (M&C2011), Brazil, 2011; 1–17.

33. Luo H, Baum JD, Löhner R. A fast, p-multigrid discontinuous Galerkin method for compressible flows at all speeds.
AIAA Paper 2006; 110:2006.

34. Luo H, Baum JD, Löhner R. A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured
grids. Journal of Computational Physics 2006; 211(2):767–783.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

OpenACC IMPLEMENTATION OF AN UNSTRUCTURED CFD SOLVER

35. Cockburn B, Hou S, Shu CW. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for
conservation laws IV: the multidimensional case. Journal of Mathematical Physics 1990; 55:545–581.

36. Cockburn B, Shu CW. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional
system. Journal of Computational Physics 1998; 141:199–224.

37. Pickering BP, Jackson CW, Scogland TR, Feng W, Roy CJ. Directive-based GPU programming for computational
fluid dynamics. 52nd AIAA Aerospace Sciences Meeting AIAA Paper, National Harbor, Maryland, USA, 2014;
2014–1131.

38. Luo L, Edwards JR, Luo H, Mueller F. Performance assessment of a multi-block incompressible Navier-Stokes
solver using directive-based GPU programming in a cluster environment. 52nd AIAA Aerospace Sciences Meeting
AIAA Paper, National Harbor,Maryland, USA, 2014; 2014–1130.

39. Löhner R. Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods.
John Wiley & Sons: Hoboken, New Jersey, USA, 2008.

40. Wang Z, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh
H. High-order CFD methods: current status and perspective. International Journal for Numerical Methods in Fluids
2013; 72(8):811–845.

41. Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a
multigrid method. Journal of Computational Physics 1982; 48(3):387–411.

42. Xia Y, Liu X, Luo H. A finite volume method based on a WENO reconstruction for compressible flows on hybrid
grids. 52nd AIAA Aerospace Sciences Meeting AIAA Paper, National Harbor, Maryland, USA, 2014; 2014–0939.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld

