
FREEDM Software Controller Architecture for a Solid State
Transformer ∗

Balasubramanya Bhat
North Carolina State University

bbhat@ncsu.edu

Frank Mueller
North Carolina State University

mueller@cs.ncsu.edu

Abstract
The Future Renewable Electric Energy Delivery and Management
(FREEDM) project aims at providing an efficient electric power
grid integrating alternative generating sources and storage with
existing power systems to facilitate a green energy in a highly
distributed and scalable manner. One of the central aspectsof the
Reliable and Secure Communication (RSC) subthrust within the
FREEDM system is the framework that controls the Distributed
Renewable Energy Resource / Distributed Energy Storage Device
(DRER/DESD) loads at 120 V and the 12 KV distribution bus. The
hardware component that governs power along this bus is the Solid
State Transformer (SST) controller. The objective of this paper is
to introduce the computational design and describe the software
architecture of the SST controller board. This paper details the
status of the current software development and discusses future
work in this realm.

1. Introduction
In the FREEDM system, the SST Controller enables Intelligent En-
ergy Management (IEM) and Intelligent Fault Management (IFM)
functionality with the ability to control DRER/DESD loads (at 120
V) and the 12 KV distribution bus. The inputs to this system are 60
Hz analog power signals originating from power inverters, which
are first converted into digital form before being processedfurther.
The goal of our work is to develop a scalable and secure software
architecture that runs on the SST controller board under real-time
signal processing requirements with regard to its power signal con-
trol. The software design shall be portable to different hardware
platforms with wide software reuse.

2. System Architecture
Figure 1 depicts the principle components of the FREEDM sys-
tem and their interaction with each other. Our focus is on the
task of closed loop digital control within the SST subsystem.
The SST controller is realized on a TI compute platform (the TI
TMS320C6713), a relatively high-end embedded digital signal
processor (DSP) processor with a floating point unit. This DSP
comprises the heart of the control system. The controller board is
capable of communicating with the Distributed Grid Intelligence
(DGI) system of FREEDM using either USB 2.0 high speed or
10/100 Mbps Ethernet connections. The Valve Based Electronic
(VBE) board provides an interface that converts the signalsfrom
the electrical domain to a reliable fiber optic channel. Thisopti-
cal connection also isolates low voltage from high voltage control
components. The solid state relay board (SSRB) provides inter-

∗This work was supported in part by NSF grant EEC-0812121 and U.S.
Army Research Office (ARO) grant W911NF-08-1-0105 managed by
NCSU Secure Open Systems Initiative (SOSI).

faces to the solid state relays that form an integral part of power
electronic systems. The DGI system will ultimately host distributed
control algorithms and provide interfaces to the outside world.

Figure 1. System Architecture

3. Hardware Architecture of the SST Controller
Figure 2 shows how different components are interconnectedin
with the SST controller board. The TI TMS320C6713B DSP runs
at 150 MHz and constitutes the core platform for the power con-
troller software. Most other SST system components are connected
as peripherals to this DSP.

The customized board further hosts an Altera EP2C35 Cyclone
II FPGA device with 33 K logical elements. This FPGA chip is
deployed with a synthesized NIOS II soft core [1] and an extension
that provides the USB/Ethernet communication software andPWM
(Pulse Width Modulation) functionality.

4. Software Architecture
One of the main goals of the software architecture is to be able
to satisfy tight real-time requirements of power signal process-
ing. Also, it shall be portable to different platforms with minimal
amount of redesign. Figure 3 shows the overall software architec-
ture on the SST controller board.

4.1 DSP Software Architecture

The software components running on the DSP are:



Figure 2. Hardware Architecture of the SST Controller

Figure 3. Software Architecture of the SST Controller

• DSP Boot Software,

• Real-time Operating System,

• Periodic Task Scheduler,

• FPGA Communication Driver, and

• SST Controller Application.

DSP Boot Software:We developed a boot software that resides
at the reset vector in flash memory. When the SST controller board
is powered up, the TMS320C6713 processor starts running the
boot software from the flash. This software mainly performs the
following functions:

• initialize the processor,

• initialize the memory controller,

• perform basic memory test (SDRAM),

• validate the SST controller application binary in the flash using
CRC,

• copy the SST controller application from flash to SDRAM, and

• transfer the control to the SST controller application in the
SDRAM.

One of the possible future changes is to completely bypass the boot
software and directly start running the SST controller application
from flash upon reset. The application can perform all the neces-
sary initializations, copy itself from flash to SDRAM and continue
running from the SDRAM. This avoids the need for a separate boot
application.

Real-time Operating System:The software architecture for
the main DSP software consists of aµC/OS II [2] real-time operat-
ing system (RTOS), a publicly available kernel, at the lowest layer.
We ported this RTOS to run natively on the TI TMS320C6713
processor of the SST Controller board. This kernel providesba-
sic task switching and synchronization primitives. TheµC/OS II
RTOS provides simple priority-based preemptive scheduling.

Periodic Task Scheduler:Most of the processing requirements
on the SST Controller board involve dealing with periodic tasks of
different periods. TheµC/OS II kernel supports only an aperiodic
task model. In order to efficiently support aperiodic tasks,we de-
veloped a rate monotone (RM) scheduler [3] on top on theµC/OS
II kernel. This layer is easily portable to any other RTOS or hard-
ware platform with support for aperiodic tasks. This RM scheduler
supports:

• periodic tasks, where all parameters of the periodic task model
(period / phase / execution time) can be specified;

• 1 µsec resolution for all timing parameters;

• strict execution time / deadline control for every periodictask;

• tracking of task CPU utilization and total system utilization;

• tracking of missed deadlines and execution times;

• providing a sleep() method with a 1µsec resolution to suspend
the task for arbitrary amount of time; and

• additional support for real-time security mechanisms.

The applications should use only the APIs provided by an RM
scheduler and shall not directly call the underlyingµC/OS II APIs.

FPGA Communication Driver: The FPGA communication
driver is responsible for exchanging information with the NIOS
II soft processor (configured within the FPGA) using the 16 bit
interface provided on the SST controller board. This is mainly used
for exchanging the information with the outside world over USB
connected to the FPGA chip. Communication with other parts of
the FPGA (for example, PWMs) bypasses this driver.

SST Controller Application: The SST controller application is
the main application software deployed on the SST controller board
that is responsible for controlling the solid state transformers. This
software will be deployed in future work.

4.2 FPGA Configuration

The EP2C35 Cyclone II FPGA is configured with an embedded
32-bit processor, the NIOS II soft processor provided by Altera
[1]. The SOPC (System On a Programmable Chip) builder tool
that depends on the Quartus II compiler provided by Altera for
code synthesis on its FPGA devices, is used to generate the system
that is deployed on this FPGA. A set of modules provides the DSP
interface, PWM generation, custom input/output (I/O) logic and the
digital-analog converter (DAC) interface, all of that are coded in the
Verilog hardware description language (VHDL). The block shown
as SOPC Builder Block is created by the SOPC builder tool that
hosts the NIOS II soft processor. Figure 4 depicts how the FPGA is
configured on the SST controller board.

One module implements the address decoder for the DSP EMIF
(External Memory Interface) lines. It accepts inputs from the EMIF



Figure 4. FPGA Configuration

address and control lines. Depending on the FPGA blocks being ad-
dressed, corresponding internal blocks (such as the PWM module)
are enabled for further functionality. At the same time, this mod-
ule also provides and interface with custom I/O logic so thatthe
DSP can read the digital information from the FPGA if required.
The PWM generator module accepts commands from the DSP in-
terface block and generates PWM signal waveforms on the FPGA
I/O pins leading to the VBE. The I/O logic block implements fast
acting custom digital I/O logic required for fault protection and di-
agnosis. The DAC interface is implemented in a customized fash-
ion. As this interface uses the SPI (Serial Peripheral Interface) pro-
tocol for communication, it can be moved into the SOPC builder
section. The SOPC builder block is generated by the SOPC builder
tool. Verilog code can thus be generated with a DSP interfaceblock
connected to an instance of this module.

SOPC Builder Block: Figure 5 shows the SOPC builder block
configuration in more detail. This configuration has a NIOS IIsoft
processor at the core running at 50MHz connected to the Altera
Avalon shared bus. It also has a 40KB on-chip memory connected
to the Avalon bus where the entire software code and data willbe
located. The ISP1362 interface logic provides connectivity to the
NXP ISP1362 USB peripheral controller chip. The JTAG UART
provides connectivity with the NIOS II IDE for debugging. There
are two on-chip PLLs both with input from a 25MHz clock con-
nected to one of the input pins of the FPGA. One of the PLLs pro-
duces a 50MHz clock signal that drives the NIOS II processor.The
other produces a 12MHz clock signal that drives the ISP1362 USB
chip.

Figure 5. SOPC Builder Block

The FPGA is not directly connected to any non-volatile memory
except for the serial configuration device EPCS16. The EPCS16
chip is a 16Mbit serial device used to store the FPGA configuration

loaded onto the FPGA upon startup. We use a small portion of
the unused space within this chip to store our NIOS II software
as well. The Active Serial programming unit in the SOPC builder
block automatically loads this software from the EPCS16 chip onto
the FPGA on-chip memory. Once the program gets loaded in the
memory, it is ready to run.

DSP/FPGA communication: The FPGA is connected to the
DSP using the 16 bit EMIF interface. The block shown as FIFO
memory in the SOPC builder block (Figure 5) is used for commu-
nicating with the DSP. There will be two 128 byte FIFO memory
blocks, one used for input and one for output. The NIOS II proces-
sor puts the data that it wants to send in the output buffer that is read
in FIFO manner. Similarly the DSP puts its output data in the input
buffer of FPGA that is read by the NIOS II. Both DSP and NIOS
II periodically process read/write data from/to these input/output
buffers.

In the future, we plan to enhance the communication between
DSP and FPGA via DMA.

4.3 FPGA Software Architecture

As shown in Figure 4, a NIOS II soft core is synthesized on the
FPGA. Figure 3 depicts software running on this processor. The
µC/OS II real-time kernel is ported to run on the NIOS II soft core.
A peripheral controller driver for ISP1362 USB 2.0 device will
be running on this processor which provides access to the outside
world. This driver reads / writes data to be transmitted / received
from / to FIFO buffers, all of which are accessible by the DSP as
well. If required, we can host a light-weight TCP/IP stack capable
of communicating over 10/100 Mbps Ethernet using the DM9000A
chip. Altera provides a NIOS II IDE for developing the software on
the NIOS processor.

5. Current and Future Work
We have completed the following software development tasksfor
the SST controller board:

• We developed the DSP boot software that loads the application
program from flash to SDRAM.

• The µC/OS II real-time kernel is ported onto both DSP and
NIOS II soft processors.

• We implemented a rate monotone (RM) scheduler on top of the
µC/OS II real-time kernel to schedule periodic tasks.

• We implemented a FGPA communication driver on the DSP as
one periodic task.

• We configured the FPGA for deployment of the NIOS II soft
core.

• We implemented a peripheral controller driver for ISP1362
USB 2.0 device on the FPGA NIOS II Processor that is con-
figurable to support the required bandwidth. This has less than
a 20KB footprint withoutµC/OS II as the total memory avail-
able is 40KB.

• We also developed a Windows driver for communicating with
the SST controller board supporting duplex communication
between the SST controller and a PC.

• We have further developed a socket server on a PC that provides
network connectivity to the SST controller board over USB 2.0.

Future work:

• We need to provide SDRAM connectivity with FPGA as the
current 40KB limit of the on-chip memory is a constraint for
software development on the NIOS II processor.



• We have developed an EDF kernel that can reduce the context
switch time for periodic tasks by removing unnecessary context
stores and restores. We may consider replacing the RM sched-
uler with this one.

• We plan to deploy a SST controller application for power con-
trol.

6. Conclusion
This paper introduces the SST controller and explains its role
within the FREEDM system. It details the hardware architecture
of this controller board and describes the overall design ofthe
controller software deployed on this board. The DSP software con-
sists of a custom rate monotone scheduler built on top ofµC/OS
II RTOS. The FPGA configuration and the design of the software
(soft core and extensions) developed on this FPGA are further mo-
tivated and detailed. The SST controller has a USB 2.0 connection
that is utilized for communicating with the external DGI system.
Finally, the paper also gives an overview of the progress of the
current software development and forthcoming future work on this
board.

References
[1] Altera. Nios ii processor: The world’s most versatile embedded

processor.

[2] J. Labrosse.Microc/OS-II. R & D Books, 1998.

[3] C. Liu and J. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment.J. of the Association for Computing
Machinery, 20(1):46–61, Jan. 1973.


