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ABSTRACT

Quantum error correction (QEC) is essential for scalable quantum computing, yet decoding errors
via conventional algorithms result in limited accuracy (i.e., suppression of logical errors) and high
overheads, both of which can be alleviated by inference-based decoders. To date, such machine-
learning (ML) decoders lack two key properties crucial for practical fault tolerance: reliable un-
certainty quantification and robust generalization to previously unseen codes. To address this gap,
we propose QuBA, a Bayesian graph neural decoder that integrates attention to both dot-product
and multi-head, enabling expressive error-pattern recognition alongside calibrated uncertainty es-
timates. Building on QuBA, we further develop SAGU (Sequential Aggregate Generalization
under Uncertainty), a multi-code training framework with enhanced cross-domain robustness en-
abling decoding beyond the training set. Experiments on bivariate bicycle (BB) codes and their
coprime variants demonstrate that (i) both QuBA and SAGU consistently outperform the classical
baseline belief propagation (BP), achieving a reduction of on average one order of magnitude in
logical error rate (LER), and up to two orders of magnitude under confident-decision bounds on the
coprime BB code [[154, 6, 16]]; (ii) QuBA also surpasses state-of-the-art neural decoders, provid-
ing an advantage of roughly one order of magnitude (e.g., for the larger BB code [[756, 16, < 34]))
even when considering conservative (safe) decision bounds; (iii) SAGU achieves decoding perfor-
mance comparable to or even outperforming QuBA’s domain-specific training approach.

1 INTRODUCTION

Quantum error correction (QEC) (Calderbank & Shor, |1996) is an essential paradigm that enables quantum computa-
tion at negligible error rates over logical qubits (Kielpinski et al., 2002; |Ye et al.,[2023} He et al.; 2025). By encoding
a logical qubit into multiple physical qubits and measuring parity-check syndromes, QEC can diagnose and correct
logical errors (bit and phase flips) without destroying a complex quantum state (Calderbank & Shorl, [1996; [Knill &
Laflamme, [1997). Even though physical qubits are subject to noise (more frequent errors, currently around 10~°),
clever encoding into logical qubits reduces this error rate algorithmically via error correction to where it become neg-
ligible (up to 10~13) at the logical level. Quantum low-density parity-check (LDPC) codes are a broad class of codes
aimed at high error-correction performance combined with high encoding efficiency (Gottesman, |1997; Tillich &
Z¢émor, 2013)). Early quantum LDPC constructions included hypergraph product codes and hyperbolic codes, which
demonstrated that constant-rate quantum codes with growing distance are possible (Freedman et al., |2002; Zémor,
2009; |[Zeng & Pryadko, 2019; |Breuckmann & Terhal| 2016). More recent developments, such as balanced product
codes and quantum Tanner codes, have achieved even stronger asymptotic guarantees, with some families proving
to be good quantum codes, offering constant encoding rates and linear distance scaling (Breuckmann & Eberhardt,
2021} |[Leverrier & Zémor, [2022). These advances make quantum LDPC codes highly attractive for fault-tolerant
quantum computing, as they can dramatically reduce the physical qubit overhead compared to surface codes while
maintaining competitive thresholds. Among these, bivariate bicycle (BB) codes (Bravyi et al., 2024), published in
Nature, have attracted particular attention for their balance between practicality and asymptotic performance, which
generalize classical bicycle codes into two dimensions and achieve a threshold close to 0.8%, comparable to the
surface code, but with substantially higher encoding rates (Postema & Kokkelmans), [2025)).

Efficient decoding is critical for realizing the benefits of quantum codes with near-term quantum device technology.
In decoding via general Tanner graphs, iterative belief propagation (BP) decoding is widely used due to its moderate
computational complexity and high degree of parallelism (Kschischang et al., 2002} |Poulin & Chung}, [2008). How-
ever, the abundance of short cycles in Tanner graphs of quantum codes can severely degrade BP performance (Poulin
& Chung, |2008; [Kovalev & Pryadkol [2013)), and degeneracy (i.e., multiple distinct errors corresponding to the same
syndrome), can trap BP in symmetric belief states (Poulin, 2006; |Panteleev & Kalachev,2021). To address these lim-
itations, several variants have been proposed. Memory-based BP (MBP) introduces additional memory effects (Kuo
& Lail, 2022)), while SymBreak explicitly mitigates degeneracy (Yin et al.| 2024)). Other improvements include gen-
eralized BP (Old & Rispler, |2022), guided decimation (Yao et al., |2024)), sliding window decoding (Gong et al.|
2024b), automorphism-ensemble decoding (Koutsioumpas et al.l 2025), and speculative approaches (Wang et al.|



2025)). Post-processing techniques have also been developed, such as ordered statistics decoding (OSD) (Roftfe
et al.} 2020), which improves performance but at cubic computational cost and limited parallelism, as well as the
more recent localized statistics decoding (LSD) (Hillmann et al., 2025)), which offers a parallelizable alternative.
More recently, the QEC community has turned toward advanced machine learning-based decoders, ranging from
(recurrent or graph) neural networks (Nachmani et al.l |2018}; |Liu & Poulin, 2019; [Miao et al., [2022; |Lange et al.,
2025}, Baireuther et al.l 2017)) to transformer architectures (Wang et al.l 2023} [Choukroun & Wolf} 2024), achieving
state-of-the-art performance.

However, despite these advances, existing machine-learning decoders still face two critical limitations for practical
fault tolerance. First, they generally lack reliable uncertainty quantification (see Sec. [4.1] for the classification of
uncertainty in quantum decoding), making it difficult to assess confidence in decoding decisions or to design adap-
tive hybrid strategies. Second, their generalization ability across different quantum codes remains weak, as most
approaches are trained domain-specifically and fail to transfer to unseen codes or varying noise conditions without
any retraining. Motivated by these challenges, our contributions are summarized as follows:

* QuBA leverages Bayesian neural networks (BNNs) to represent predictive uncertainty, using Monte Carlo
dropout at inference time to provide calibrated confidence estimates that enable adaptive decision-making.
To better capture correlations in error syndromes, QuBA integrates dot-product and multi-head attentions
within a graph neural network (GNN) architecture, enhancing relational reasoning on Tanner graphs (see
Appendix for more detailed explanations and the connection between the attentions and quantum de-
coding).

* Beyond QuBA, and inspired by the Diversify-Aggregate-Repeat Training (DART) paradigm (Jain et al.|
2023)), we design SAGU (Sequential Aggregate Generalization under Uncertainty), a cross-domain training
framework that consists of three phases (see Sec. [5) designed to strengthen generalization across heteroge-
neous quantum codes, by exploiting the complementary strengths of diverse code architectures and training
data distributions in the quantum decoding setting.

* Together, QuBA and SAGU deliver not only improved decoding accuracy (i.e., suppression of logical er-
rors) but also uncertainty awareness and strong cross-domain robustness. Experimental results across both
standard and coprime BB codes illustrate the superiority of the proposed methods. For instance, QuBA
achieves an improvement of nearly rwo orders of magnitude over BP for the coprime BB code [[154, 6, 16]].
Compared to the state-of-the-art neural decoder Astra, QuBA maintains almost one order of magnitude
advantage on standard BB codes, even under safe decision bounds.

2 RELATED WORK

Recent research on machine learning (ML)-based decoders has pushed the boundaries of classical and quantum
decoding. Broadly, neural decoders can be grouped into two categories: model-based and model-free approaches.

Model-based decoding: Model-based approaches explicitly incorporate the Tanner graph structure of quantum
LDPC codes into the neural architecture. Two main directions have emerged. The first integrates belief propagation
(BP) with neural design by unfolding iterative BP updates into a differentiable architecture, allowing the update rules
to be optimized through data-driven training (Nachmani et al., 2016} 2018 Nachmani & Wolf} | 2021). This line of
work was extended to QEC with neural BP decoders, which adapt message-passing rules to handle degeneracy in
quantum LDPC codes (Liu & Poulin, 2019). A second direction leverages message-passing mechanisms in graph
neural networks (GNNs), directly embedding Tanner graph connectivity into learned aggregation and update func-
tions. Recent works demonstrated the effectiveness of GNN-based decoders for both classical and quantum LDPC
codes, with notable progress on quantum LDPC decoding at scale (Gong et al., [2024a; Ninkovic et al.,|2024; Maan
& Paler, [2025). By combining structural priors with trainable neural layers, model-based decoders achieve high
performance while retaining scalability and interpretability.

Model-free decoding: In contrast, model-free methods treat decoding as a purely data-driven task, without em-
bedding explicit BP or Tanner graph mechanics. Early works employed neural networks trained directly on error-
syndrome pairs to map syndromes to corrections, demonstrating the feasibility of purely supervised decoders under
circuit-level noise (Baireuther et al., 2018)). Subsequent advances introduced attention-based architectures such
as self-attention and Transformers, which are capable of capturing global correlations in syndrome data and have
shown strong decoding performance across classical and quantum codes (Raviv et al.l |2020; |(Choukroun & Wollf]
2022; [Wang et al.| [2023; |Cohen et al., 2025). Building on this line of work, a recurrent Transformer decoder was
recently applied to bivariate bicycle codes, where a multi-stage training protocol enabled effective decoding under
circuit-level noise (Blue et al.| [2025). In parallel, GNNs have also been explored in fully data-driven settings, where
decoding is formulated as a graph-classification problem and the network directly predicts the most likely logical
error class (Lange et al.,[2025)).

Our approach: Our proposed method, QuBA, belongs to the model-based category, as it builds on GNN mes-
sage passing while augmenting it with Bayesian attention mechanisms. Unlike prior model-based decoders, QuBA



provides explicit predictive uncertainty estimates and integrates attention to capture heterogeneous syndrome-qubit
interactions. Together with the sequential training strategy SAGU, our framework achieves both stronger error sup-
pression and broader cross-domain generalization than existing model-based or model-free approaches.

3 BACKGROUND

Quantum decoding: In the stabilizer formalism (Gottesmanl |1997), a [[n, k, d]] quantum code, encoding & logical
qubits into n physical qubits with a code distance d (i.e., the minimum number of physical qubit errors that can cause
an undetectable logical error), is defined by a stabilizer group S = (S, ..., S,_) of commuting Pauli operators.
The code space is the joint +1 eigenspace of all S;. An error F anticommutes with a subset of stabilizers, producing
a binary syndrome vector

&:{Q ES, = 5., j=1,...,n—k. (1)

1, ES; =-S;F,
The quantum decoding problem is to find a correction E.,, such that
EconE €S, 2

i.e., Ecory differs from E by a stabilizer and thus restores the code state up to a global phase. Given a syndrome s, a
maximum-likelihood decoder selects

E = arg nax P(E|s), 3)

where P, is the n-qubit Pauli group. Graph-based quantum decoders realize Eq.[3]as belief propagation (BP) on the
Tanner graph, where variable and check nodes exchange probabilistic information.

Graph neural networks: GNNs (Scarselli et al.l [2008; Wu et al., [2020; Liu et al., 2022) extend deep learn-
ing to graph-structured data by iteratively exchanging and aggregating information between neighboring nodes. In
message-passing neural network (MPNN) (Gilmer et al.l |2017), the hidden state of each node v at iteration t is
updated as

m{) = Oyene® (B, 00, ), BIFD = 60 (b, m(?), 0

where ¢)®) is the message function, ¢(*) is the node update function, e,,, encodes edge features, and (] denotes a
permutation-invariant aggregation (e.g., sum, mean, or max). This iterative scheme allows information to propagate
over multi-hop neighborhoods, enabling the network to capture both local and global structural patterns.

Fig.[T]illustrates the relationship between BP and neural message-passing networks on the Tanner graph. For decod-
ing, the Tanner graph of a quantum LDPC code naturally provides the input graph, where variable nodes correspond
to physical qubits, check nodes correspond to syndrome bits, and edges encode qubit-stabilizer incidence. The
GNN learns to pass and transform messages in a way that approximates maximum-likelihood decoding, potentially
overcoming the limitations of hand-designed BP schedules in loopy graphs, which result in oscillations or bias ac-
cumulation (Raveendran & Vasic, |2020; |Chytas et al., 2024)).
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Figure 1: Relationship between belief propagation (BP) and message passing in graph neural networks (GNNs). (a).
A parity-check matrix. (b). The Tanner graph constructed from the parity-check matrix, showing the connections
between check nodes and variable nodes (physical qubits). BP operates by exchanging information between check
and variable nodes (from check nodes to variable nodes, and vice versa) over 7' iterations. (¢). A message-passing
neural network (MPNN) on the Tanner graph. At each iteration, message passing proceeds in two steps. In the
aggregation step, every node v computes messages for its neighbors u € A (v) by applying a learnable message
function M (-). All incoming messages are aggregated at the receiving node using a permutation-invariant operator
such as element-wise summation. In the update step, the hidden state of node v is updated by an update function U ()
that combines the previous state with the aggregated messages. After 1" such iterations, the hidden representation of
each node reflects information from its 7-hop neighborhood.



4 QUBA: A QUANTUM BAYESIAN ATTENTION DECODER

4.1 UNCERTAINTY REPRESENTATION

In QEC, both the physical error process and the decoding model introduce uncertainty. Physical uncertainty arises
from the stochastic nature of the Pauli noise channel, which produces different physical error patterns even under
identical circuit operations. Model uncertainty stems from limited training data, code degeneracy, and imperfect
generalization to unseen syndromes. Accurately representing both types of uncertainty is essential. It allows the
decoder to output well-calibrated confidence estimates, improves robustness to distribution shifts (e.g., changes in
error rate), and supports downstream decision-making such as hybrid decoding with ordered statistics decoding
(OSD).

To enable uncertainty-aware decoding, we adopt a Bayesian neural network (BNN) formulation for our GNN-based
decoder. Unlike conventional deep neural networks (DNNs) that learn a single point estimate for each parameter, in
a BNN every model parameter 6 € O is treated as a random variable rather than a fixed value. A prior distribution
p(0), chosen as a standard Gaussian A/ (0, 1), encodes our initial belief about these parameters before observing any
data. Given a training dataset D = {(s;, e;)}}*,, where s; denotes the measured stabilizer syndrome and e; is the
corresponding physical error pattern on data qubits, the posterior distribution over parameters is obtained via Bayes’

theorem: N
p(D | 0)p(d i1 ple;|s;,0)p(0
o0 D)~ P21 000 _ TIL pler] 50,0)p(6) -
p(D) p(D)
For a new measured syndrome s*, the predictive distribution over the corresponding physical error pattern e* is
obtained by marginalizing over the posterior as

p(e* | s, D) = /9 p(e” | s*,6) p(6 | D) do, ®)

and the prediction of such a marginal distribution incorporates both data and model uncertainties (Abdar et al., 2021).

In practice, however, the exact posterior p(6 | D) in Eq. [3|is intractable for gradient-based optimization, since it
requires integration over the entire parameter space ©. To make learning feasible, we approximate the posterior with
a factorized Gaussian variational distribution q¢(9) (Graves,, 2011} Blundell et al., [2015} |Louizos & Welling, 2016),
parameterized by variational parameters ¢. This approximation is optimized by minimizing the Kullback—Leibler
(KL) divergence

. . 4(0)
min KL(gs(8) || p(0 | D)) = mln/ qe(0) log ———— d#. @)
@ ¢ ¢ Joco ¢ p(0 | D)
Under the Gaussian assumption in each BNN layer, this KL term has the closed-form expression
1[0 ”
KL:§Z U—%+U—%—1—1og;g , (8)
J

where (145, ajz) are the variational parameters of g4(#) and 012) is the prior variance. The total KL regularizer is
summed over all Bayesian layers in the decoder, ensuring posterior distributions remain close to the prior.

Monte Carlo prediction: At inference, we perform M independent Monte Carlo forward passes. During each pass
m, the decoder evaluates the same syndrome s while drawing fresh layerwise weight samples from g, (6) at each
internal iteration (i.e., weights are resampled within the forward). This produces predictions ™), whose empirical
mean and variance are

1 M 1 M 5
ﬂ:MmZ:lé(m)’ &2:Mm221(é(m)_ﬂ) i )

A 95% confidence interval for each predicted error probability is then approximated by CI%9 = j + 24. This
MC-based prediction procedure captures epistemic uncertainty through weight sampling and predictive variability
from the decoder’s output distribution, both of which are crucial for robust and reliable QEC decoding.

4.2 DECODER DESIGN

Our decoder is a graph neural network that integrates (i) edge-aware multi-head attention and (ii) LSTM-based
recurrent state updates with Bayesian parameterization for uncertainty quantification.

Node initialization: Each node ¢ begins from a shared learnable embedding
h = e, e R, (10)

where dj, is the hidden dimension. This provides a uniform initialization for iterative message passing.



Edge-aware multi-head attention: At iteration ¢, hidden states are projected into queries and keys using Bayesian
linear layers with BatchNorm

Q; = BN (WQhE” + bQ) , K, =BN (Wthf) + bK) : 11

where W, Wi € Rén > (Hdw) The vectors are reshaped into H heads of dimension dpeaq.

For each edge (i —j) and head h, the scaled dot-product attention score is

(h) 1.(h)
S(h):LeakyReLU«qi .k ))

i . ’

12)

where 7 is a learnable temperature. To stabilize training, scores are shifted by the maximum value at each destination
and normalized with a scatter-based softmax
() (h)
() eXP(Sij — MaAXye N (4) Suj )
;=

. (13)
S uenty) EXP(sty — maxyen soy)

Message network: Values are produced by a deep Bayesian MLP operating on concatenated source and destination
states

vij = MsgNet (b, B{"]) € R, (14)
)

with per-head values v;;~ € R, and messages are then scaled by attention weights
oM™

i Vij s My = Concatym!". 15)

(h) _
m;;" = ij

Aggregation: Finally, the messages are aggregated by summation over incoming edges

M; = Z m;;. (16)
iEN())

LSTM-based recurrent update: Each node update concatenates aggregated messages with static node inputs x;

2 = [Mj,x;]. (17
The Long Short-Term Memory (LSTM) cell then updates the hidden and cell states
(t+1) @+1) _ ® m® @
B, el — LsTv (2, (0", ), (18)

where h"'™" denotes the hidden state of node 7 at iteration £+ 1 (short-term representation), while c§t+1) denotes
the corresponding cell state (long-term representation), which preserves long-range dependencies across multiple
syndrome updates.

A residual connection with dropout stabilizes the dynamics

h§t+1) = Dropout (h}™) + h;-t). (19)

Final output: At each iteration, hidden states are mapped to class logits via a Bayesian linear output layer

y$" = Wouh(? + boy. 20)

Overall, this design enables the decoder to (i) adaptively weight syndrome-qubit interactions through attention (for
more details, see Appendix [A.T)), (ii) propagate parameter uncertainty through Bayesian layers, and (iii) maintain
long-range temporal consistency with recurrent memory in quantum decoding. Together, these mechanisms provide
robustness to degeneracy and improved generalization on large Tanner graphs with circular dependencies.

4.3 LosSS FUNCTION

In QEC, let e € {0, 1}" denote the true error in binary symplectic form, corresponding to a Pauli error operator
E;. Any Pauli operator £5 = FE1.S; that differs from F; by a stabilizer .S; acts identically on all code states.
Consequently, the decoder is only required to produce a correction € such that the total error ey, = € + € (mod 2)
belongs to the stabilizer group generated by the rows of the parity-check matrix H.



Error loss: To verify that ey lies in the stabilizer group, one checks that it commutes with all stabilizers (Liu &
Poulin, 2019):

H*Mew; =0 (mod 2), (1)

where H~ generates the symplectic orthogonal complement of H, and M is the symplectic form. Since the discrete
parity check parity(z) = = mod 2 is non-differentiable, it is usually replaced by a smooth surrogate

f(z) = |sin(5)], (22)

which enables gradient-based optimization while preserving stabilizer consistency. This motivates the cross-
entropy—based error loss Lcg o (Liu & Poulin, [2019).

Syndrome loss: In QuBA, the forward pass does not explicitly enforce the relation § = Hé. To ensure consistency
between predicted and measured syndromes, we introduce a syndrome cross-entropy loss Lcg s, which penalizes
mismatches at the syndrome level.

Overall objective: The final training objective averages task losses across 1" decoding iterations while incorporat-
ing the KL regularizer from the BNN formulation in Eq. 8] yielding:

1

L£0) = 73 (Lihn + L8k + 38k, ) + BT KL(as(0) (6| D)), (23)

t=1

where E%R is a differentiable logical error rate loss that incorporates the stabilizer-group consistency check. The
KL divergence term regularizes the variational posterior toward its prior, with 3(7) annealed during training to
progressively introduce Bayesian regularization.

In summary, this composite loss encourages the decoder to generate corrections that are not only statistically accurate
but also logically valid under the stabilizer formalism, while explicitly modeling epistemic uncertainty through
Bayesian parameterization.

5 SAGU: GENERALIZABLE TRAINING

We extend Diversify-Aggregate-Repeat Training (DART) (Jain et al.,[2023) to the setting of Bayesian graph decoding
under domain shift across quantum codes. We refer to this variant as SAGU (Sequential Aggregate Generalization
under Uncertainty), which focuses on uncertainty-aware generalization across heterogeneous code families. In con-
trast to the original DART, which focuses on domain specialization, our goal is to integrate different code construc-
tions together with diverse data properties in quantum decoding, including structural effects such as trapping sets in
the Tanner graphs of different codes, to enhance robustness and generalization.

Within our SAGU framework, training is organized into three phases: Warm-up, Diversify-Aggregate, and Consoli-
dation. Each model is trained on distinct datasets in the corresponding phase, while the training and validation sets

are of equal size in every phase, i.e., |Dyarm| = |Deons| = Zﬁ/lzl |Dk|, where Dyarm and Deops denote the training
or validation sets used in the warm-up and consolidation phases, respectively, and Dy, indicates the training or vali-
dation set for the k-th model in the diversify-aggregate phase. Note that the three phases use the same loss objective
defined in Eq.[23] We refer to the trained models (i.e., the decoders for specific QEC codes) in the three phases as the
starting domain, the diversity domain, and the aggregation domain. Collectively, these three domains are referred to
as in-domain, while models outside of them are considered out-of-domain. More specifically, the details and roles
of each phase are described in the following paragraphs, and the three-phase training procedure is summarized in

Alg.[T]

Warm-up: We first optimize a single decoder fy, serving as the starting domain, on Dy, for E,, epochs using
AdamW with a phase-specific StepLR schedule. This stage yields parameters 6., that capture general decod-
ing structure and serve as the initialization and the starting point for all domain-specific models. Typically, the
starting point is a small QEC code, i.e., one with a smaller code distance that can correct fewer errors. Diversify-
Aggregate: We instantiate M diversity domain decoders { fy, },16\4:1 with the trained model in the previous phase
0y, + Ostart. For each epoch 7 € [E,,, Fy,), every model is trained independently on its domain Dy, with its own
optimizer and StepLR. After every A epochs (or at 7= F,,,—1, ), parameters are synchronized by a weighted average

0= Zkle wy, O, with ), w,=1, where the weights bias aggregation toward harder domains (larger dj,). This bal-
ances domain-specific specialization with cross-domain sharing of structural knowledge, including patterns arising
from different code structures and quantum degeneracy. Consolidation: The final centralized 6 initializes a single
aggregation domain decoder. We fine-tune it for the remaining epochs [E,,, Fiot) on the target dataset (same size
as warm-up) with a reduced learning rate and StepLR, selecting checkpoints by validating logical-error metrics and
applying early stopping when the total logical error rate (LER) fails to improve within a patience window or when
LERy,: completely converges (i.e., reaches zero).




Algorithm 1: Sequential Aggregate Generalization under Uncertainty-SAGU

Input: The training/validation data across all phases: Dyarm, Dconss and Dy, for k = 1,..., M; aggregation
weights w € RM with Y, wy,=1; epoch budgets E.,, E,, (E,<E,,), and E; aggregation interval \;
AdamW optimizers and per-phase StepLR schedulers.

Output: Final parameters 67,4, on the aggregation domain.

// Warm-up Phase
Initialize the starting domain decoder fy
forr=0,...,FE, —1do

| Train fs,,,,, for one epoch on Dyyqrm; step the warm-up StepLR.

Set 6y < Ostore forallk € {1,..., M}.

// Diversify-Aggregate Phase
Instantiate the diversity domain decoders { fy, }, each with its own optimizer and StepLR;
forr=FE,,...,E, —1do
fork=1,...,M do
| Train fg, for one epoch on Dy; step domain StepLR.

if (7+1-F,,) mod A =0 or 7 = E,,—1 then

g <— Ziw:l Wp Gk

fork=1,...,M do

L 0 < 0

start?

// Consolidation Phase
Initialize the aggregation domain fy Finas O Deons, load 6;
forr=FE,,...,E,—1do
L Train fp,,,,, for one epoch on target data with reduced LR; step StepLR.
Evaluate LER and save if improved; early stop if LER shows no improvement within patience or if
LERy = 0.

return O;pq1.

6 EXPERIMENTS

6.1 SETUP

In line with prior literature, we benchmark two classical decoding methods (namely BP (Poulin & Chung} [2008) and
BP-OSD (Roffe et al.,|2020)) as well as a state-of-the-art neural decoder, Astra (Maan & Paler,[2025)), on both BB and
coprime BB codes under the depolarizing error model, where each Pauli operator (X, Y, or Z) flips with probability
1/3 (see Appendixfor the assumptions on errors). We then compare these baselines with our proposed decoders,
QuBA and SAGU, evaluating performance both with and without OSD post-processing. The specific constructions
of BB codes and coprime BB codes are provided in Appendix [A.3] The training data and hyperparameters (selected
via grid search) are reported in Appendix [A.4] and the settings and details for model comparisons are summarized in

Appendix [A.5]

6.2 RESULT ANALYSIS

Decoding results for different BB codes (see subcaption) are presented in Fig. [2] for varying physical error rates
(PER, on the x-axis) ideally resulting in lower logical error rates (LER, on the y-axis) over the set of frameworks
discussed before (see legend). Results for coprime BB codes are given in Appendix Appendix [A.7] provides
a comparison and discussion of a pair of BB codes and coprime BB codes of approximately equal scale. Fig.[3]
evaluates the generalization ability of SAGU across different BB code families for the same parameters.

6.2.1 BB CODES

Opverall trends: Across consecutive BB codes (from smaller to larger), the LER for across all schemes (but particu-
larly for our QuBA/QuBA-OSD) exhibit clear order-of-magnitude shifts at fixed PER p (see Fig.2). E.g., [[90, 8, 10]]
maintains a LER above 1072, while [[144, 12, 12]] drops below 102, representing a reduction of one order. A simi-
lar shift is observed from [[288, 12, 18]] to [[756, 16, < 34]]. Particularly striking is the transition from [[144, 12, 12]]
to [[288, 12, 18]], where the LER decreases by nearly two orders, from the 10~2 regime to the 10~* regime. Fur-
thermore, from [[90, 8, 10]] to [[756, 16, < 34]], both our QuBA and QuBA-OSD consistently push more LER values
below the break-even line (LE R = p). This indicates that the proposed method effectively exploits the advantage of
larger code distances, correcting more physical errors and thereby lowering LER across regimes.
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Figure 2: Logical error rate (LER) vs. physical error rate (p) for BB codes. Lines become vertical when all errors
are corrected (LER=0).

Comparison with BP and BP-OSD: Across all BB codes, QuBA consistently outperforms BP, with advantages up
to two orders of magnitude. E.g., at p = 0.06, QuBA achieves 0.00140 £ 0.00122 on [[756, 16, < 34]], compared
to BP’s 0.031. Under high-confidence decisions (uncertainty lower bound), the gain increases to three orders of
magnitude. Even with OSD post-processing, QuBA outperforms BP-OSD on smaller codes such as [[90, 8, 10]] and
[[144,12, 12]]. For larger codes like [[288, 12, 18]] and [[756, 16, < 34]], QuBA still surpasses BP-OSD at most PER
values, except at p = 0.06 where BP-OSD saturates to zero. For instance, on [[288,12,18]] at p = 0.10, QuBA
achieves 0.08430 £ 0.00914, nearly an order lower than BP-OSD’s 0.163. These results highlight that QuBA’s
robustness derives primarily from its model architecture rather than reliance on heavy post-processing.

Comparison with Astra: Against Astra, QuBA demonstrates similar or even larger advantages. Across all tested
codes, QuBA outperforms Astra, often by one to two orders of magnitude. E.g., at p = 0.06 on [[756, 16, < 34]],
QuBA achieves 0.00140 % 0.00122, compared to Astra’s 0.07, a difference of nearly two orders. Under confidence-
based evaluation, this gap widens to three orders, even surpassing Astra-OSD (0.001). With OSD, QuBA establishes
superiority over all baselines. For instance, on [[756, 16, < 34]] at p = 0.08, QuBA-OSD fully converges with no
uncertainty (0.00000 £ 0.00000), compared to Astra-OSD’s 0.003, achieving an improvement of three orders.

Summary: Overall, QuBA demonstrates systematic improvements over BP and Astra across all BB codes, with
or without OSD. Its advantages range from one to three orders of magnitude depending on PER and evaluation
setting. With OSD, QuBA sets the strongest benchmarks, often achieving complete convergence. Importantly, even
without OSD, QuBA remains competitive against post-processing-enhanced baselines, underscoring the strength of
its attention design.

6.2.2 SAGU: DOMAIN GENERALIZATION

Opverall trends: Across different domains, the LER for the our generalized SAGU method shows pronounced vari-
ation as the code size increases under the same PER. Fig. [3| shows that in the starting domain [[72, 12, 6]], the LER
remains above 1071, As the code size increases to the diversity domain [[144, 12, 12]], the LER falls below 101
For the aggregation domain [[288, 12, 18]], the LER further decreases to about 1072, and for the out-of-domain case
[[756, 16, < 34]], it drops as low as 10~5. This progression reflects nearly four orders of magnitude of improvement
in error suppression. Moreover, the break-even line (LER = p) shifts rightward as the code size increases, reflect-
ing the expected improvement in error suppression with larger codes. Importantly, SAGU mirrors the advantage of
domain-specific training methods such as QuBA in pushing the break-even PER higher, demonstrating its ability to
generalize effectively across domains.

Comparison with BP and BP-OSD: SAGU consistently outperforms both BP and BP-OSD across the in-domain
codes [[72,12,6]], [[144, 12,12]], and [[288, 12, 18]], with improvements reaching up to one order of magnitude.



For instance, on [[288,12,18]] at p = 0.08, BP-OSD attains an LER of 0.023, while SAGU achieves 0.01533 +
0.00320. Confidence-based evaluation further amplifies this advantage, and even under conservative estimates (upper
confidence bounds), SAGU maintains its lead, underscoring model reliability. With OSD post-processing, SAGU
surpasses all competitors, including BP-OSD and QuBA-OSD, across all codes. For the larger codes [[288, 12, 18]]
and [[756, 16, < 34]], SAGU-OSD achieves improvements of up to two orders of magnitude at p = 0.08.

Comparison with QuBA: As discussed in previous sections, QuBA already outperforms BP with and without
OSD. Here, we focus on the additional benefits of cross-domain training with SAGU relative to the domain-specific
QuBA. At p = 0.08, SAGU consistently improves upon QuBA by about 0.02-0.03 in LER on [[72,12, 6]] and
[[144,12, 12]], both with and without OSD, within the confidence bounds. On [[288, 12, 18]], SAGU achieves nearly
0.04 improvement over QuBA, and when enhanced with OSD, SAGU-OSD gains a full order of magnitude advantage
over QuBA-OSD (0.00423 + 0.00177 vs. 0.01480 + 0.00233). On the out-of-domain code [[756, 16, < 34]], SAGU
performs only marginally worse than QuBA, with differences confined to the fourth decimal place, while SAGU-
OSD and QuBA-OSD show nearly identical performance.

Summary: SAGU consistently outperforms BP and BP-OSD across all in-domain codes, and with OSD post-
processing, it surpasses both QuBA-OSD and BP-OSD on nearly all benchmarks. On larger codes, SAGU achieves
improvements of up to two orders of magnitude in LER, and even under conservative confidence bounds it maintains
a clear advantage. Compared to the domain-specific QuBA, SAGU achieves modest but consistent gains on smaller
and intermediate codes, and maintains competitive performance for the out-of-domain case. Overall, these results
highlight SAGU’s strong cross-domain generalization, reliability, and scalability for decoding quantum LDPC codes.
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Figure 3: Performance comparison of SAGU and other decoding methods across all domains, with and without
OSD, on BB codes. (a): starting domain [[72, 12, 6]]; (b): diversity domain [[144, 12, 12]]; (c): aggregation domain
[[288,12, 18]]; and (d): out-of-domain [[756, 16, < 34]].

7 CONCLUSIONS

We presented QuBA, a Bayesian graph neural network decoder that combines edge-aware attention with recurrent
memory, enabling both uncertainty-aware predictions and effective multi-round reasoning. Building on this architec-
ture, we introduced SAGU, a sequential training paradigm that promotes generalization across quantum LDPC codes
and noise regimes. Our experiments on BB and coprime BB codes demonstrate that QuBA consistently outperforms
classical decoders (BP, BP-OSD) and state-of-the-art neural approaches (Astra), achieving on average nearly one or-
der of magnitude improvement in LER, with gains reaching up to two orders of magnitude under confident-decision
bounds. Notably, these advantages hold even in the absence of OSD post-processing, highlighting QuBA’s robust-
ness. Moreover, SAGU generalizes successfully across domains, maintaining high performance on codes previously
unseen during training. These results highlight the promise of Bayesian-attention GNNs for scalable quantum de-
coding. Despite these advantages, our approaches still have limitations, which are discussed in Appendix [A8]
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A APPENDIX

A.1 ATTENTION MECHANISMS

Attention mechanisms (Vaswani et al.|, [2017; [VelickoviC et al. 2017) were originally developed in the context of
sequence modeling to enable neural networks to dynamically focus on the most relevant parts of their input. In the
general form, attention computes a weighted combination of input features, where the weights are determined by
a learned compatibility function between a query vector and a set of key vectors. This allows the model to capture
long-range dependencies and context-specific relationships, in contrast to fixed, uniform aggregation rules such as
those used in standard message-passing networks. In GNNs, attention enables each node to adaptively modulate the
influence of its neighbors, making the aggregation operation content-dependent rather than purely structural.

Multi-head attention: A single attention head models one notion of similarity or relevance between elements,
which may be insufficient to capture diverse structural patterns in the data. Multi-head attention addresses this by
performing / independent attention computations (Vaswani et al., 2017 |Velickovic et al., 2017)

MHA(Q, K, V) = Concat(O1,...,0,) WO, (24)
0; = Attention(QWY, KWX VW), (25)

where WiQ7 WX WY are head-specific projection matrices and W is the output projection. Different heads
can specialize in different aspects of the input space (e.g., local neighborhoods, long-range dependencies, or rare
structural motifs) leading to a richer learned representation.
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Scaled dot-product attention: Given a set of queries Q, keys K, and values V—typically obtained via learned
linear projections of node or edge embeddings—the scaled dot-product attention (Vaswani et al., 2017) computes

. QK'

Attention(Q, K, V) = softmax( ) V, (26)
Vg

where dj, is the key dimension. The scaling factor v/dy, prevents the dot products from growing too large in magni-

tude, which could otherwise push the softmax function into saturated regimes and impede gradient-based learning.

This formulation allows each query to produce a context-dependent weighting over all values.

Relevance to quantum decoding: In QEC, the Tanner graph representing the code often contains many short
cycles and heterogeneous connectivity patterns due to the underlying stabilizer structure (Gottesman, [1997). Not
all syndrome-data qubit connections carry equal importance. Some checks may be highly informative about likely
error configurations, while others may be weakly correlated or redundant due to degeneracy. Incorporating attention
into a GNN decoder allows the network to learn these importance patterns directly from data. Scaled dot-product
attention enables variable and check nodes to selectively emphasize or suppress messages from particular neighbors
based on their learned relevance, while multi-head attention allows simultaneous modeling of multiple correlation
patterns, e.g., one head focusing on local trapping sets (Raveendran & Vasicl [2020), another on long-range stabilizer
dependencies. This adaptive message weighting can mitigate the correlation build-up seen in uniform BP schedules
and improve decoding accuracy on complex quantum Tanner graphs.

A.2 ERROR ASSUMPTIONS

In the literature, two types of error decoding methods are commonly considered, namely uncorrelated decoding and
correlated decoding. The former decodes only the X and Z error channels. However, it cannot directly decode
correlated Y errors, which leads the decoder to suboptimal performance.

In more realistic settings, our decoder QuBA employs a correlated decoding strategy. Specifically, we use a I-bit hot
encoding scheme to represent each error type. For consistency across different methods, we decompose the Y error
into its Pauli components, Y = X Z, and treat it as a simultaneous occurrence of X and Z errors.

A.3 QUANTUM CODES

In this section, we introduce some quantum codes used in this paper.

Bivariate bicycle (BB) codes: BB codes (Bravyi et al.,[2024) are Calderbank-Shor-Steane (CSS) quantum LDPC
codes defined on a two-dimensional torus with quasi-cyclic structure and bounded stabilizer weight. Let Sy, and S,
be the ¢, x £, and ¢, x ¢, cyclic shift matrices. Define the commuting 2D shift operators

r = S, ®1I, y = I, ® Sy, Ty = yx,

which generate translations along the two torus directions. Choose two polynomials p(z,y) and ¢g(z,y) over Fy
(each monomial specifies a shifted copy), and set

A = pz,y), B = qx,y).
The X- and Z-type parity-check matrices of the BB code of length n = 2(,.¢,, are

Hx = [A|B], Hz = [B"|AT].

Because = and y commute, A and B commute in the group algebra, which implies HxH) = ABT 4+ BAT =0
(mod 2). Each stabilizer is a cyclic shift of the base patterns defined by p and ¢, the row/column weight equals the
number of monomials in the corresponding polynomial, and the Tanner graph is quasi-cyclic with block size £,¢,,.
BB codes achieve finite rate and distance scaling ©(1/n) while preserving 2D locality.

Co-prime BB codes: Co-prime BB (Wang & Mueller;, 2024) codes are a subclass of BB codes where the torus
dimensions ¢, and /,, are coprime. In this case, the 2D shift group Z,, x Zy, is cyclic of order /,¢,, allowing the
bivariate polynomials to be mapped to univariate polynomials over a single (¢, )-cycle. This enables an algebraic
prediction of the number of logical qubits without exhaustive search.

With ged (4, ¢,) = 1, one can define a univariate shift 7' of length £,¢, such that X = T*% and Y = T*%. The
generators p(X,Y) and ¢(X,Y’) become univariate polynomials p/(T), ¢'(T) in Fo[T]/(T*+*v — 1). The stabilizer
matrices retain the same block form

Hx = [p(T)|¢(T)], Hz=[d(T)|r(T)],

but the dimension k can be computed directly from

ng (p/(T)a q/(T)v szfy - 1) .
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A.4 TRAINING DETAILS

This section summarizes the datasets and training hyperparameters used across all models.

Data: Each model (including those trained on BB codes, coprime BB codes, and within the SAGU framework) was
trained using paired error-syndrome data generated across a range of physical error rates p. Errors were represented
using a /-bit hot encoding scheme for X, Y, and Z errors on data qubits. The values of p were sampled uniformly
from the interval [0, pax], Where pmax is chosen close to the theoretical noise threshold of the QEC code.

Hyperparameters: We first report the set of hyperparameters that are shared across all model variants. Model-
specific hyperparameters are then detailed separately. Tab. [l| summarizes the training configurations for BB and
coprime BB codes, while Tab. 2 provides the hyperparameters for training the SAGU model. Common hyperparam-
eters: All models are trained using PyTorch’s distributed data parallel (DDP) framework on a workstation equipped
with three A5000 Ada GPUs. Each node is initialized with nyodeinputs = 4 input features, and the final Bayesian
output layer produces predictions of size nnodeoupus = 4. The number of attention heads is set to 4. Dropout
rates are fixed at 0.1 for both the message network (MsgNet) and the LSTM. The maximum physical error rate is
Pmax = 0.15, and the test error rate is fixed at peyy = 0.05. An AdamW optimizer is employed, with weight decay
10~* and learning rates specified separately in the corresponding tables for each model. The batch size is set to
16. The loss function, described in Eq. [23] incorporates KL annealing over 10 epochs with a final scaling factor of
10~°. Training is performed using automatic mixed precision (AMP), and gradient clipping is applied with threshold
llgl]| < 1.0. Early stopping is triggered when the total logical error rate (LERy) reaches zero, or if no improvement
in LER is observed over 20 consecutive epochs.

Code | Niters | Mnode | Medge | MsgNet size | Trainsize | Testsize | LR
BB codes

[[90, 8, 10]] 40 64 32 256 50,000 3,000 5x 1072

[[144,12,12]] 50 32 32 256 80,000 4,000 | 5x 1074

[[288, 12, 18]] 65 64 32 128 100,000 5,000 5x 104

[[756,16, < 34]]] 50 64 32 128 50,000 3,000 5x 1074

Coprime BB codes
[[30,4, 6]] 40 32 32 256 30,000 1,000 5x 1071
[[154, 6, 16]] 60 64 32 128 100,000 5,000 5x 1074
Table 1: Hyperparameters for BB and Coprime BB codes during training.
Phase BB code Niters | Mnode | Medge | MsgNet size | Train size [ Test size LR

Warm-up 72,12,6 35 64 32 128 24,000 1,200 [5x10~%
90, 8,10 40 64 32 128 6,000 300 5x 1077
Diversify-Aggregate | [[144,12,12]] | 50 64 32 128 8,000 400 5x10~4
288,12, 18 65 64 32 128 10,000 500 5x1074
Consolidation 288,12, 18 50 64 32 128 24,000 1,200 [1x107 7%

Table 2: Hyperparameters across the training phases in the SAGU schedule. The total training budget is Fio = 90
epochs, with a warm-up F,, = 20 and a mid-phase E,, = 50. Aggregation occurs every A = 10 epochs using
weighted averaging (weights [0.1,0.2,0.7]). A StepLR scheduler is used with warm-up step |2/3FE,, |, domain step
|2/3(E;,—FEy)], final step = 10, and v = 0.5.

A.5 COMPARATIVE DETAILS

In this section, more comparative settings and details of the experiments are provided.

For a fair comparison, Astra and QuBA were trained using identical hyperparameters and the same training and test
datasets. Comparisons with BP were performed on the same test sets. To balance computational depth, we allowed
twice as many message-passing iterations in the learned models (Astra, QuBA, and SAGU) as in BP, since BP
performs bidirectional message updates, while the learned models employ unidirectional message passing, i.e., from
syndrome nodes to variable nodes. Finally, in experiments with OSD post-processing (applied independently to both
X - and Z-decoders), all methods used the same configuration given by schedule = serial, bp.method =ms,
ms_scaling_factor =0.725, and osd_method = 0sd0. Furthermore, we assess SAGU under a domain-shift
protocol with four BB domains (starting, diversity and aggregation domains), and an out-of-domain evaluation. We
compare our approach against the baseline methods BP and BP-OSD. To evaluate the performance gains of SAGU
over the QuBA code-specific training, each domain code is trained using the hyperparameters listed in Tab. 2] with
fixed training and testing dataset sizes of 24,000 and 1,200, respectively, for all codes. For the out-of-domain BB
code [[756, 16, < 34]], the hyperparameters are identical to those of the consolidation phase, except that the learning
rate is set to 5 x 10~* instead of 1 x 1074,
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A.6 RESULTS ON COPRIME BB CODES

Similar to standard BB codes, coprime BB codes exhibit a clear trend of decreasing LER as the code size increases.
From Fig. the LER reduces from 107! for the smaller code [[30, 4, 6]] down to nearly 10~ for the larger code
[[154,6,16]]. Correspondingly, the PERs lying below the break-even line (LER = p) increase with code size,
confirming that larger coprime codes, like their standard BB counterparts, provide stronger error suppression.

Comparison with classical baselines: Across both coprime codes, QuBA consistently outperforms classical BP
and BP-OSD. For the larger code [[154, 6, 16]], QuBA maintains approximately an order of magnitude advantage
at p = 0.06 compared to both BP and BP-OSD. Comparison with Astra: QuBA also consistently surpasses Astra
across both codes, maintaining at least an order of magnitude improvement. When evaluated under confidence
bounds (i.e., conservative decision-making), this advantage becomes even more pronounced. Moreover, QuBA
outperforms Astra-OSD as well. Specifically, for [[154, 6, 16]], the margin widens to nearly two orders of magnitude
under confidence-bound evaluation. Effect of OSD: With OSD post-processing, QuBA-OSD achieves the strongest
performance among all tested decoders, exceeding BP-OSD and Astra-OSD by roughly one order of magnitude
across both codes. For the larger coprime code [[154, 6, 16]], QuBA-OSD converges fully at p = 0.06, reaching
0.00000 = 0.00000, thus demonstrating its robustness and reliability.

Overall, QuBA and QuBA-OSD exhibit consistent improvements for coprime BB codes, mirroring the trends ob-
served in standard BB codes. These results underscore both the scalability of QuBA and its ability to maintain
reliable error suppression across different code constructions.
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Figure 4: Logical error rate (LER) vs. physical error rate (p) for coprime BB codes.
A.7 BB vs. CoPRIME BB CODES

It is instructive to compare standard BB codes with their coprime counterparts at similar distances and comparable
block lengths, as this sheds light on whether or not the algebraic simplifications inherent in coprime constructions
(see Appendix[A.3) influence decoder performance.

Comparison at intermediate sizes: For BB [[144,12, 12]] and coprime BB [[154, 6, 16]], the decoding results without
OSD are remarkably similar. E.g., at p = 0.06, BP yields LERs of 0.049 and 0.051, respectively. QuBA shows nearly
identical performance as well with 1.17 x 1073 4 9.1 x 10~ for the BB code versus 2.20 x 1072 £ 1.5 x 1073
for the coprime BB code. Even when accounting for confidence intervals and conservative decision bounds, the
two codes yield comparable results. Effect of OSD: With OSD post-processing, all methods again exhibit very
similar performance. For BB [[144, 12, 12]], BP-OSD, Astra-OSD, and QuBA-OSD all converge to zero at p = 0.06.
For the coprime BB code [[154, 6, 16]], the corresponding results are 0.013 (BP-OSD), 0.009 (Astra-OSD), and
1.0 x 107* £ 6.0 x 10~* (QuBA-OSD). Under confidence-bound evaluation, QuBA-OSD also converges to zero.

Overall, the BB code exhibits marginally stronger performance, though differences across decoding methods remain
small. These findings confirm that coprime BB codes preserve the favorable decoding behavior of standard BB
codes while offering structural advantages such as algebraic simplification. Both families achieve nearly identical
results, suggesting that general-purpose models such as SAGU can generalize to coprime BB codes as effectively as
to standard BB codes.

A.8 LIMITATIONS

Our work has two main limitations.

Runtime overhead. To capture predictive uncertainty, QuBA employs Bayesian linear layers, which introduce ad-
ditional computational cost relative to non-Bayesian decoders. In the deterministic setting, inference requires only
a single forward pass. By contrast, uncertainty estimation with BNNs necessitates M/ Monte Carlo forward passes.
Each forward comprises nj.rs message-passing iterations, and within each iteration multiple BayesianLinear mod-
ules resample their weights. Consequently, the total number of stochastic weight draws scales as M X njers X L,
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where L denotes the number of BayesianLinear modules invoked per iteration. This results in a runtime complexity
approximately M times greater than deterministic inference, with additional cost from repeated resampling within
each forward. Such overhead makes the current implementation impractical for real-time decoding with contempo-
rary classical hardware, but future hardware advantages may mitigate this aspect. Ongoing work aims to develop
lightweight decoder variants that preserve uncertainty awareness while substantially reducing computational de-
mands.

Circuit-level error models. In this work, we adopt the depolarizing error model, where errors occur only on phys-
ical qubits, effectively assuming that circuit-level faults can be absorbed into qubit-level depolarization. However,
realistic quantum devices are subject to full circuit-level error processes, including syndrome measurement errors,
gate errors, and reset errors, which require more sophisticated circuit-level graphical representations beyond Tanner
graphs. Extending QuBA and SAGU to handle such circuit-level noise models remains an important avenue for
future work.
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