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Abstract—Meeting deadlines for data-intensive workflows on
HPC systems is challenging as jobs experience varying wait times
before resources become available. This impact is significant
in hybrid HPC+Cloud scheduling, which can lead to resource
idleness, deadline violations, and higher costs.

To address these issues, we propose scheduling data-intensive
workflows over a combined HPC+Cloud hybrid environment in
a deterministic manner by scavenging unused HPC resources.
We predict resource availability (RA) of HPC systems, and
exploit this prediction to dynamically split resource allocation
between HPC’s unused and Cloud’s on-demand resources to
complete a workflow by a given deadline. The deterministic
resource allocation allows for preloading input data for workflow
tasks, avoiding execution delays. Further, we develop an adaptive
scaling algorithm that effectively backs up the targeted HPC
allocation on Cloud facilities to avoid workflow execution delays
in the event of incorrect RA estimation. Experiments show
that our scheduling technique imposes minimal impact on HPC
production jobs, saves cost for >75% workflow runs, suggests
accurate budgets with a mean 7.11% to 14.75% cost estimation
error, and finishes a mean 98% to 99.4% of tasks before
deadlines.

Index Terms—High-Performance Computing, Convergence
Computing, Workflow Scheduling, Cloud Computing, Workflow
Management System, Resource Availability

I. INTRODUCTION

Workflows represent a wide array of applications in data
analysis, knowledge discovery, and complex simulations in
both Cloud and HPC environments [1]–[4]. Cloud workflows
often handle big data in science and commerce (including
many medical applications) while HPC workflows tend to
involve multi-science numerical problems spanning different
abstraction levels or are part of large device experiments, such
as high-intensity lasers [5], [6]. Many modern-day scientific
and big data workflows are also growing in scale, resource
requirement diversity, and complexity [7].

Many studies have focused on scheduling workflows on
the Cloud with deadline and cost constraints. However, data-
intensive workflow execution on the Cloud incurs significant
monetary cost. To avoid such a cost, users schedule work-
flows on HPC systems in multiple ways. Typically, Workflow
Management Systems (WMS) split workflows into tasks and
schedule them as individual jobs or through executors that al-
ready run as jobs while satisfying dependency constraints [8],
[9]. However, HPC jobs are delayed when resources are not
allocated immediately. Entire workflows can be scheduled as
a pilot job to reduce the wait times for individual tasks, but

the larger resource requirement delays execution startup. We
can avoid the startup delay for pilot jobs by scheduling the
pilot job on a reservation with a special privilege, which
needs to be approved by the system administrators and cannot
meet the deadline constraint. Further, pilot jobs may cause
resource wastage with over-allocation. Recent works [10],
[11] in converged computing indicate a growing interest in
utilizing on-demand Cloud resources to address the ever-
growing computation demand of HPC workflows.

Cloud Bursting (CB) is a technique primarily used by
private enterprises to scale up resources in the Cloud on de-
mand, in addition to their own permanent on-premises private
Cloud [12]. However, applying CB to workflow scheduling
is different from the traditional CB for Cloud workloads.
Traditional CB usually relies on future workload prediction to
allocate or scale additional resources (bursting) on the Cloud
for task offloading. However, this methodology has two draw-
backs. First, HPC system schedulers are complex and employ
advanced strategies such as backfilling for better resource
utilization. Predicting workloads only characterizes users’ job
submission behavior, not a system’s scheduling behavior. So
task offloading to the Cloud — based on workload behavior —
may not utilize HPC resources optimally as it cannot estimate
the RA on an HPC system from batches of jobs submitted
by users with inaccurately estimated job durations. CB is
dependent on workload behavior, such as spikes or drops in
user requests, to perform bursting, assuming dedicated and
on-demand local resources, which are not guaranteed on HPC
systems. Second, because of the dynamic generation of input
data for workflow tasks and on-the-fly offloading tasks to the
Cloud in CB, data needs to be migrated just before execution
begins. The lack of guidance (which and when) for offloading
tasks to the Cloud prohibits data from being preloaded before
execution begins.

We contribute a novel combination of HPC and Cloud in a
hybrid, orchestrated manner by splitting computations across
domains for a workflow to reduce delays resulting from on-
the-fly data movement. Specifically, we build an execution
schedule for a workflow in a HPC+Cloud environment by
predicting the unused HPC resources complemented by the
guaranteed on-demand Cloud resources to meet the deadline.
Concerted deterministic resource allocation and task assign-
ment allow better utilization of unused HPC resources and
preload the dynamically generated intermediate input data on



HPC and Cloud to avoid execution delays. Further, we use
deterministic resource allocation to compute Cloud cost by
considering the required Cloud resources, storage, and inter-
domain data transfer.

We developed an adaptive resource allocation/scaling
method to reserve resources both on Cloud and HPC before
executing a workflow per a schedule. This is accomplished by
requesting the determined number of resources on HPC and
Cloud on an hourly basis, with a runtime limit of one hour,
thereby allowing the HPC system scheduler to allocate limited
resources instantly, typically for as many single-node requests
as can be accommodated by the back-filling algorithm. These
underutilized resources may otherwise remain idle and are
hence considered free in our model. Without a bounded wait
time for HPC resource allocation, we back up the requested
HPC resources with an equivalent redundant allocation on
the Cloud to avoid execution delays. As the requested HPC
resources are allocated, the redundant backup Cloud instances
are reduced (de-allocated). This migration of computation
from the Cloud back to HPC allows us to limit cost for
Cloud resources to a predictable level while satisfying deadline
constraints.

In summary, we make the following contributions:
• We identify contemporary challenges of scheduling large-

scale workflows exclusively on HPC systems and analyze their
root causes.

• We propose and develop a novel solution for scheduling
large-scale workflows deterministically in that both cost and
deadline can have highly reliable guarantees that can be traded
off. This is accomplished by predicting RA of an HPC system,
which facilitates the determination of resource requirements
split between HPC and Cloud for different deadlines and
avoids execution delays due to on-the-fly data movement.

• We developed an elastic resource allocation/scaling algo-
rithm to scale up/down heterogeneous resources on HPC and
Cloud such that HPC resources are backed up by the Cloud
to guarantee deadlines while avoiding RA mispredictions.

• We evaluated our method by developing a simulator for
HPC+Cloud hybrid execution. We first validate our simulator
by running a limited number of experiments in an HPC+Cloud
setting to assess its performance. We subsequently use the
validated simulation as the cost of Cloud execution in our
runs would be prohibitive for the experiments we conduct.
Our evaluation is based on factors such as meeting deadlines,
correct estimation of cost, cost savings, and impact on other
production jobs.

II. BACKGROUND

To investigate the challenges and opportunities in scheduling
large-scale workflows, we analyzed production jobs submitted
to the Lassen supercomputer [13].

Data Collection: Lassen, a Top500 [14] supercomputer
installed at Lawrence Livermore National Laboratory (LLNL),
comprises 795 compute nodes. Each node is equipped with an
IBM Power9 CPU and four NVIDIA V100 GPUs. The job
records from the IBM CSM database [15] provide detailed

(a) Wait time vs Job Size on Lassen (b) Wait time vs Job Run Time
Fig. 1: Challenges with Large Job Scheduling

information about the job lifecycle, resource utilization, per-
formance statistics, and other metrics. We used data from two
years and two months [16], which includes production jobs
submitted by real users and subject to the primary allocation
algorithm. The jobs are categorized based on the requested
number of nodes: small (1-7), medium (8-63), large (64-256),
and DAT (256+). Notably, Dedicated Access Time (DAT) jobs
are exempt from the primary allocation. Instead, DAT jobs
are submitted with special privileges and are scheduled at a
predetermined time.

To gain insights into the scheduling challenges, we exam-
ined the wait times for all job categories. Figure 1a illustrates
the distribution of wait times in minutes for jobs waiting to
run. We focused on jobs with wait times within three days
and excluded those outside this range (only 2.2%) to improve
visibility of the plots. The data reveals that DAT jobs have
the shortest wait times (quartiles Q1 and Q3: 0-34) due to
their privileged status. Small and medium jobs have wait
time quartiles (Q1 and Q3): 0-171 and 0-158, respectively.
In contrast, large jobs exhibit the longest wait times with
quartiles (Q1 and Q3): 0-411, primarily due to their increased
node requirements and scheduling under the primary allocation
algorithm. Next, we categorized the jobs as SHORT (<2
hours), MEDIUM (2-6 hours), LONG (> 6 hours) according
to their requested run-time limits and analyzed their wait times
as shown in Figure 1b. We observe that as the requested
time limit increases, the wait times also increase. SHORT and
MEDIUM jobs have lower wait times quartiles (Q1 and Q3),
i.e., 0-75 and 1-194 minutes, respectively, followed by LONG
jobs with quartiles (Q1 and Q3) of 22-359 minutes.

These findings suggest that large jobs submitted without
special privileges (non-DAT jobs) face significant wait times.
Large jobs, in terms of both run time limit and requested node
size, experience significantly higher wait times than other job
categories. Our scheduling technique considers each single
node with a one-hour time limit so that jobs can maximize
resource allocation on HPC while offloading required exe-
cution to the Cloud. Further, the communication overhead
between HPC and Cloud systems can cause significant delays
in application execution [17]. We address these challenges with
our predictive and adaptive execution framework as described
next.



III. SYSTEM DESIGN

A. Execution Model

In our execution model, the workflow tasks are processed
on the executors launched by a WMS or workflow scheduler.
Each executor runs on an allocated HPC or Cloud resource
and executes tasks sequentially from an assigned stage in the
workflow. Executors are limited to a one-hour time limit, as
jobs with a small runtime limit are more likely to be allocated
faster, as shown in Section II. Before running out of their
allocated hour, HPC executors checkpoint their task, where the
checkpoint size is assumed to be equal to the input data size. In
contrast, Cloud executors exit after completion of their current
task, even after the one-hour time limit expires. We maintain
two mutually exclusive queues per stage in the workflow: one
for HPC and one for the Cloud. The Cloud and HPC executors
pull a task for execution from its assigned stage’s respective
queue along with the required input data location. If the input
does not exist in the same domain (HPC or Cloud), it copies
the data before executing. An input data is kept alive on any
domain until all the tasks dependent on the data complete
execution. Shared filesystems on both HPC and the Cloud are
used to store the intermediate output files, whereas the final
output is stored on the HPC filesystem.

The WMS runs on a reserved node of the HPC system,
where we store runtime information such as task queues, re-
source allocation details, and the storage location of the task’s
outputs. This information facilitates resource allocation/de-
allocation and input data transfer between HPC and the Cloud.

Fig. 2: Overall System Design
B. Design

Figure 2 depicts an overview of the design and identifies
the different modules of our scheduling framework and their
relationship. Our framework consists of two phases, namely
workflow schedule construction (green) and workflow execu-
tion (blue). To build a workflow schedule, our system needs
the workflow’s execution profile and future RA prediction.
We assume that the execution profile is unknown to the user
before scheduling. Hence, our framework runs a small-scale
dynamic performance benchmark (DPB) for all the stages in

the workflow on the platforms resident on HPC and Cloud.
Next, we predict RA on the HPC system for a deadline using
our developed RA predictor (RAP) and feed it to the schedule
builder (WSB) along with the DPB. The WSB calculates
the additional Cloud resource requirements for each given
RA to complete the execution before a given deadline. We
also calculate the associated Cloud cost with each deadline
replayed to the user as information to assist in the tradeoff
between deadline and cost. Once the user selects an execution
schedule, execution begins. Our Adaptive Resource Scale
(ARS) allocates resources per the split between HPC and
Cloud in the schedule on an hourly basis.

Our framework is built using Parsl [8] and Flux [18]
for resource allocation and communication. The Parsl library
supports parallelization of Python and Bash functions with
multiple execution models across various platforms, such as
an HPC system, Cloud, and a local computer. We use Parsl
to launch task executors on both HPC and Cloud. Flux is
a workload and job management system that can be nested
within another system scheduler or itself at multiple levels
while providing various communication patterns among the
instances of Flux. Our scheduler and the task executors use
Flux capabilities to exchange scheduling information and
relevant notifications. Next, we describe various components
of our framework and their methodology in detail.

Resource Availability Predictor (RAP): The RAP is an
integral part of our scheduling technique. The RAP takes
the HPC system’s job history as input and applies Machine
Learning (ML) techniques to predict future RA. The output of
the RAP is a vector, X , where each element xi represents the
minimum number of unused/free nodes during the ith hour.
End-to-end training and the prediction procedure are described
in Section IV.

Dynamic Performance Benchmark (DPB): To estimate
the resource allocation split between HPC and Cloud for a
workflow, the WSB needs to know the comparative perfor-
mance of each stage on multiple platforms of HPC and Cloud.
The DPB provides the required performance model along with
a stage’s input/output size. It is constructed by dynamically
running and recording the performance benchmark for all
stages of the workflow on all platforms (including HPC and
Cloud) before completion of either one hour of runtime or
5% of total tasks. Since HPC nodes may not be immediately
available, we continue building the pending HPC benchmarks.
However, we assume a default five-minute execution time for
the missing benchmarks in the DPB for the initial schedule
construction and cost estimation. Once HPC nodes are al-
located and their performance benchmarks are constructed,
they are integrated into the DPB. We then update workflow
schedules dynamically as discussed later. Since building such
a multi-faceted DPB is expensive, we execute these runs on
HPC platform resources [19] listed in Table I. We assume that
these are part of the Cloud along with associated costs.

Cloud Cost Model (CCM): The CCM represents the hourly
cost of using on-demand platforms from a Cloud provider. We
use multiple platforms, as shown in Table I to build the multi-



faceted DPB. Each platform has an associated per-hour cost for
running workloads on it. Usually, GPU platforms have higher
per-hour reservation costs compared to CPU-only platforms.
The CCM is static and does not change over time as we use
on-demand Cloud resources.

TABLE I: Cloud Cost Model
HPC

Platform
AWS

Platform
Cost

($/hr) Compute
Epyc Rome c5a.4xlarge 0.616 CPU

Intel Skylake c4.4xlarge 0.796 CPU
Intel Broadwell c5n.4xlarge 0.864 CPU

Nvidia RTX 2060 Super g4ad.4xlarge 0.867 GPU
Nvidia RTX 4060 ti16g g3.4xlarge 1.14 GPU
Nvidia RTX 4060 ti8g g5.xlarge 1.006 GPU

Building Workflow Schedule: Given the RA, CCM, and
DPB, the WSB utilizes the following steps to build a schedule
to meet the required deadline with a targeted task size. The
output schedule contains hourly information about how many
resources are required to run the executors on HPC and Cloud
to meet the deadline.

In our execution model, each stage is executed as a bag-
of-tasks with input data dependency between stages. This
results in a pipeline execution as seen in Fig. 3, where a
stage’s execution is comprised of slots from start to end.
Stages with parents face a delay in execution start because
of dependencies, e.g., stage j in Fig. 3. We apply depth-first
search to find such delays to decide the start time for each
stage. Further, there are infeasible slots of parent stages whose
output tasks cannot be processed by their children due to a
lack of available slots before the deadline, as shown for stage
i. We remove such infeasible slots to determine the end times
of each stage and the deadlines.

Fig. 3: Pipelined execution of the stages in workflow
After deducing the start and end times, the next stage of

schedule building is to allocate resources with constraints in
Eq. 1 and Eq. 2. Eq. 1 states that the sum of hourly throughput,
TP (p)i, for each stage, p, in the workflow is greater than or
equal to the task size to ensure all tasks are executed before the
deadline D. This is complemented by Eq. 2, which ensure that
two stages p and q with data dependency have almost equal
hourly throughput so that the task pipeline of the workflow
never remains empty to avoid resource idleness.

∀p ∈ W,

D∑
i=1

TP (p)i ≥ N (1)

∀p ∈ W, ∀q ∈ Parent(p), TP (p)i ≈ TP (q)i

for i ∈ {1, . . . , D}
(2)

To build the schedule for the entire workflow, we start with
the stage with the highest Cloud cost per Eq. (3) to reduce

allocation cost by preferring HPC resources. Cloud cost is
derived from the sum of storage, data transfer cost, and the
minimum execution cost on all the selected Cloud platforms,
given by set R for stage p per Eq. 3.

storage cost(p) + xfer cost(p) + min
∀r∈R

exec cost(p) (3)
We start with the allocation of HPC throughput (number of

slots available times number of nodes available) on an hourly
basis in proportion to nodes in the predicted RA. Let TPHPC

i

be the HPC throughput during the ith hour and TPHPC

be the total throughput available for the costliest stage. We
calculate the hourly throughput target on HPC using Eq. 4,
where T is the total number of tasks. If we cannot execute all
T tasks solely on HPC, then tasks need to be offloaded to the
Cloud. In that case, we distribute the Cloud throughput (i.e.,
the remaining tasks beyond the HPC target) among the hours
where the allocated HPC throughput is under-allocated due to
a lack of HPC resource availability. This is driven by our aim
to have a balanced throughput during the execution. We skip
the details of the Cloud target distribution for brevity. After the
HPC and Cloud throughput targets are decided, the required
amount of resources on HPC and Cloud can be calculated
by dividing the throughput target TPHPC

i by the number
of available execution slots during the hour. Specifically, for
Cloud, we choose the most cost-efficient resource from the
DPB.

TargetHPC
i = min(T × TPHPC

i ÷ TPHPC , TPHPC
i ) (4)

Next, we allocate the targets for the other stages by travers-
ing from the costliest stage and applying the conditions shown
in Figure 4. Here, we calculate the throughput targets at the
slot level for the immediate parents and children. In scenario
A, a parent stage’s execution slot is longer than that of its child.
The tasks produced by a parent’s slot should be processed next
in the child’s slots, which start executing during the parent’s
following slot (color-coded). In scenario B, the parent stage’s
execution slot is smaller than the child’s. In this case, the
child’s slots should process all the tasks produced by the
parent’s slots that start during the child’s previous slot.

Fig. 4: Execution slots and Throughput allocation

We calculate the hourly throughput by accumulating the
throughput from the slots. Based on the hourly targets, we
calculate the required allocation from HPC, if available, and
Cloud. The final step is to combine HPC and Cloud allocations
to form the workflow schedule. This method produces one
schedule given the start time and deadline for a workflow.

Cost Estimation: After constructing a schedule, we esti-
mate the cost of workflow execution by considering Cloud
resource reservations in the schedule, deriving the Cloud
filesystem operations, and data transfers between HPC and
Cloud. Since HPC execution utilizes only otherwise unused
single nodes via backfilling, its cost is considered free. The



Cloud resource reservation cost is the sum of hourly costs of
allocation for all stages in the workflow over the schedule,
given the CCM. Further, we compute the amount of data read
and written for the Cloud filesystem due to task execution.
To estimate the data transfers and the associated filesystem
operations, we compute the difference in Cloud throughput
and HPC throughput between a stage and its parents. This
gives us the direction and amount of data movement per stage.
These calculations are done on an hourly basis and aggregated
to be fed into the CCM model to get a dollar cost quote. The
resource reservation and filesystem costs are modeled based
on Amazon EC2 platforms and Amazon’s EFS, respectively.
We only account for Cloud to HPC data movement cost since
data movement into the AWS cloud is free.

C. Data Preloading Strategy
Our splitting of workflow between HPC and Cloud may

result in delayed execution of tasks when large input data
does not reside in the same domain. This results in delayed
workflow execution and increased cost because of resource
idleness. As a mitigation, we built an adaptive preloading
strategy to place input data near the targeted computation. To
this end, we create the task-to-domain mapping as soon as
a task spawns a stage in the workflow. The task-to-domain
mapping indicates whether a task executes on Cloud or HPC.
We rely on the domain’s task load, i.e., task queue size/number
of executors, for a stage to determine the mapping. If the
load is less than 1, we map the task to the corresponding
domain. To break ties, we prioritize Cloud to reduce resource
idleness cost and data movement latency, both contributing
to execution time savings. After the mapping, we copy the
relevant input data to Cloud or HPC asynchronously without
affecting computation. To facilitate this, we maintain two
separate task queues, each for HPC and Cloud per stage in
the workflow. Although the task-to-domain mapping dictates
task enqueuing, our strategy is not strict with respect to the
mapping. Idle resources can still execute tasks from the other
domain’s queue when that domain’s load exceeds 1.

D. Adaptive Resource Scaler (ARS)
The second phase of workflow execution relies on the ARS

to make adaptive and elastic resource requests for both HPC
and Cloud per the workflow schedule selected by the user.
The scaling mechanism of ARS executes at two different
configurable intervals: long and short.

ARS at long intervals: ARS requests for resources on
HPC and Cloud with a reservation time limit that is equal
to this longer ARS interval based on the schedule constructed
using the RA prediction. When a misprediction occurs, e.g.,
when over-estimating the available HPC resources, we may
miss the deadline due to a lack of resources. Further, an
imbalance in resource allocation for workflow stages can lead
to resource wastage. When HPC resources are requested, there
is no guarantee that they are allocated immediately, unlike
Cloud resources with modeled availability at a ≈ two-minute
delay [20]. HPC resources are released automatically, whereas
Cloud resources require manual termination.

ARS at short intervals: To avoid computation shortage
from RA misprediction and delayed HPC allocation, we re-
quest additional Cloud allocations on top of the scheduled
ones. These excess Cloud allocations mirror the scheduled
HPC allocations at the longer intervals in the schedule. This
allows us to begin the execution of the stages without waiting
for HPC resource requests to be met and allocated. This also
addresses the issue of mispredictions that overestimate the
available HPC resources. After scheduled requests are made at
longer intervals, ARS executes at short intervals (five minutes
by default) to continuously check if HPC resource requests
are allocated. As the requested HPC allocations are granted,
an equivalent amount of additional Cloud resources is released
as they are no longer needed during the remainder of the
long interval. This incurs additional up-front Cloud reservation
costs for backing up the HPC allocations in a schedule, yet
only for a short time if HPC resources are granted; any
remaining Cloud resources contribute to workflow allocation.
This up-front Cloud cost is subject to evaluation in our study.

Rebalancing Resource Allocation: We also adapt our
allocation strategy at long intervals by rebalancing the resource
allocation based on the deficit (if any) on achieved throughput
in the past. We keep track of the targeted throughput and
the achieved throughput on an hourly basis and over-allocate
Cloud resources as required.

IV. RESOURCE AVAILABILITY PREDICTOR (RAP)
The RAP is the key component that enables elastic workflow

scheduling on HPC systems. By predicting resource availabil-
ity, RAP constructs a schedule for a given workflow, provid-
ing informed decision-making capabilities regarding resource
allocation and estimating the cost of execution. We describe
the end-to-end build procedure of RAP on the Lassen HPC
system, using data collected in Section II.

A. Feature Data Set
HPC systems typically distinguish between two primary job

classes for scheduling: wait and run. When a job is submitted,
it first enters the wait queue. Once deemed ready to run, the
scheduler removes the job from the wait queue, enqueues
it in the run queue, and starts executing it. The wait queue
tracks a job’s requested number of nodes, submission time, and
requested hours of runtime. Similarly, the run queue tracks a
job’s allocated number of nodes, execution start time, and time
left to completion. The information in the run queue indicates
the current number of nodes running and those expected to be
released soon. Conversely, the wait queue reveals the current
and future demand for nodes. By combining data from both
queues, we can predict resource availability on an HPC system.

We record states of the run and wait queues instead of their
complete snapshots, as this was sufficient in our experiments
to make predictions. The captured state of the run queue
represents the number of busy nodes expected to be available
in the future. We use a one-dimensional vector data structure
to represent this information up to 64 hours, with a maximum
limit based on the fact that this is the maximum number of
hours of any job requested in the data logs collected from



the CSM database (likely also the upper bound per system
configuration). The state of the wait queue represents the
number of requested nodes for different hours of runtime.
Given a maximum of 64 hours, we represent the state of the
wait queue as a one-dimensional vector of length 64.

Example: Consider three jobs waiting in the Wait queue
with a descriptor of (jobid, no. of nodes requested, no. of
hours requested):
(job4, 3, 1), (job5, 5, 5), (job6, 10,

2).
Given these jobs, the wait queue state will be

[3,10,0,0,5]. Similarly, consider three jobs in the
run queue with a description (jobid, no. of nodes requested,
no. of hours remaining):
(job1, 3, 2), (job2, 5, 1), (job3, 10,

5).
Given these jobs, the run queue state will be

[5,8,8,8,18] with vector size 64.
The job submission and scheduling on Lassen is managed

by IBM’s LSF [21] workload manager. LSF employs multiple
scheduling policies, such as FCFS, Fair Scheduling, Back-
fill, SLA, and preemption, to efficiently accommodate users’
resource requests. The Lassen supercomputer employs fair
share-based scheduling that requires user information and their
past usage. Since user information is unavailable, we assume
that FCFS (primary) + Backfill (secondary) scheduling policies
are applied to the jobs submitted. We simulate the production
jobs history on our HPC simulator (see Section V-A) and
collect the feature data representing the temporal state of the
wait and run queues. We also use the day of the week and the
hour of the day as feature variables during ML training and
prediction. Finally, we apply sampling to the collected feature
data set with 30 and 60-minute frequencies.

B. Training and Results
To predict RA, we apply both time series and regression-

based ML techniques to train our prediction models. Specifi-
cally, for time series-based ML, we use the Recurrent Neural
Network (RNN)-based Long Short-Term Memory (LSTM)
method [22]. With LSTM, an input sample is comprised of
the history (input steps) of states within the run and wait
queues, including the day of the week and the hour of the day.
The output indicates RA for up to 24 hours (output steps).
Further, we use different combinations in a tuple consisting
of (resample frequency, training loss function, and optimizer)
during training as shown in Table II.

TABLE II: LSTM Training Parameters
Parameter Values
Input Steps [6, 12, 18, 24]

Output Steps [6, 12, 18, 24]
Resample Frequency [30, 60] (minutes)

Loss Function [MAPE, RMSE, RMSLE, HUBER]
Optimizer [SGD, ADAM]

We also trained ensembles of Decision Trees (DT) using
Gradient Boosting via the XGBOOST library [23]. XGBOOST
parallelizes Gradient Boosting to train ensembles of DTs to
improve performance while scaling. To train the DTs, we

first transform the time series input samples into regression
data. We do this by considering a snapshot of the run and
wait queue states as an input sample and RA as an output
sample (up to 24 hours). For DTs, we use combinations of
output steps, resample frequencies, and loss functions (without
MAPE) from Table II as training parameters.

To verify the prediction accuracy and compare the ML
models, we use Mean Absolute Error (MAE) as a metric
during validation. We consult Lassen’s records of jobs from
September 18, 2018, at 12 PM to November 18, 2020, at
11 AM. We use the records until May 18, 2020, 12 AM
(18 months) for training of the models. The records from
May 18, 2020, 12 AM until October 18, 2020, at 12 AM
(5 months) are used for testing, resulting in an 80%/20%
split between training and testing data. We observed that the
MAE for LSTM (73.49-92.20) is higher than for DT (51.61-
75.07) with the Huber loss function and a 60-minute resample
frequency. Consequently, we choose DTs trained with Huber
as the RA predictor for simulation/validation of our scheduling
technique. We re-train the DTs by concatenating the training
and testing data to improve accuracy. We reserve the unseen
records from October 18, 2020, at 12 AM until November 18,
2020, at 11 AM (1 month) for simulation in Section V.

V. EVALUATION

A. HPC+CLOUD Simulator
To evaluate our solution, we developed a simulation frame-

work utilizing Python-based SimPy [24], a process-based
discrete event simulation library. Given the prohibitive cost
of conducting extensive experiments on commercial Cloud
resources, we opted for simulation as an alternative. In this
framework, we simulate an HPC system with wait and run
queue managed by the FCFS+Backfill scheduling policy. Fur-
ther, the task executors (both HPC and Cloud) are simulated
using SimPy event generator functions, which pull tasks from
the task queue and simulate the times of (a) execution derived
from the DPB, (b) reading input files, and (c) writing output
files. The scheduling algorithm on our simulator creates re-
source requests to the HPC scheduler for HPC executors and
directly creates Cloud executors to simulate the execution of
a workflow.

AWS Cloud Validation: We validated our simulator by
running the OAI Analysis workflow (see Section V) with our
Flux+Parsl scheduling framework on an 80-node HPC cluster
and AWS cloud. We ran the workflow with static resource
allocations on the HPC cluster and AWS cloud with input
data preloading support (see Section III-B). We utilized GPUs
on the HPC system (NVIDIA RTX 2060 Super) and CPUs on
AWS EC2 (c4.large and c4.xlarge). We fed the traces from the
execution to our simulator to run the workflow. Fig. 5a shows
the execution times (y-axis) of the workflow on the HPC-AWS
Cloud hybrid platform and our simulator for task sizes ranging
between 50 and 150 (x-axis), with annotations indicating the
percentage difference between the two. The results show that
our HPC+Cloud simulator resembles the workflow execution
on the HPC-AWS cloud system with good accuracy.



(a) AWS Cloud Validation (b) OAI Analysis Workflow
Fig. 5: Validation and OAI Analysis Workflow

B. Results
Experiments are conducted to simulate the HPC+Cloud

hybrid execution of two real-world scientific workflows, OAI
analysis and RNASEQ, on Lassen backed up by Amazon AWS
cloud. We evaluate multiple scheduling algorithms, including
ours:

• Pred+Adap: Our new scheduling technique.
• Bicer: [25] This technique dynamically allocates re-

sources on the public Cloud and HPC by considering
unprocessed tasks, data transfer latency, and available
HPC nodes. Bicer [25] developed two algorithms to
complete bag-of-task applications either within a given
deadline or a budget constraint. We implemented the
algorithm for a given deadline. Bicer requests HPC nodes
with runtime limit equal to the remaining of the deadline.

• Parsl-HPC: [8] We also compare it to an HPC-only
solution based on Parsl’s execution model. In this tech-
nique, we request a node for one hour runtime limit and
assign the node, when allocated, to an incomplete stage
following a topologically sorted order.

OAI Analysis: The Osteoarthritis Initiative (OAI) collected
large-scale imaging data to investigate knee osteoarthritis. We
build on developed analysis workflows [5], [6] for the analysis
of 3D magnetic resonance images (MRIs) of the knee, which
include imaging data such as segmentation, thickness measure-
ment, atlas-registration, and 3D to 2D mapping of thickness
maps, all based on the knee MRIs. An input image needs to be
processed by all the stages in the workflow, creating a task per
stage. Fig. 5b shows the DAG (Direct Acyclic Graph) of the
workflow along with the data dependencies among its nodes,
and different stages require either CPU or GPU resources for
computation. The blue stages run on CPUs while green ones
execute on GPUs.

RNASEQ: RNASEQ is an RNA sequence analysis
pipeline [26]. We use data from the bladder cancer cells study
as input [27]. The workflow contains a total of 12 stages, each
of which is executed on a CPU. RNASEQ is larger compared
to OAI in terms of the number of stages and input/output data
size.

Both workflows need significant data transfer, with some
stages needing input data of size 240 MB and 14.5GB for
OAI Analysis and RNASEQ, respectively. The data preloading
technique and dynamic task assignment work together to
minimize the impact of data transfer delays.

To simulate workflow execution, we first collected the
execution traces on different platforms (see Table I). On each

(a) OAI Analysis (b) RNASEQ
Fig. 6: Task Completion Rate

platform, we process 200 images for OAI Analysis and 100
images for RNASEQ, and record the execution times of tasks
per stage. We use this execution time distribution to resemble
task execution during simulation. Further, we build multiple
test cases with different combinations of the number of tasks,
deadlines, and workflow execution start time (see Table III).
For HPC system simulation, we used job records from October
18, 2020, at 12 AM till November 18, 2020, at 11 AM (one
month). Since our analysis is based on the distribution of
results data, we primarily use quartiles (Q1,Q3) to describe
the quantitative results unless mentioned otherwise.

TABLE III: Test Cases
Workflow Input Sizes Deadlines (hour) #testcases

OAI Analysis 12,000-96,000 6, 12, 18, 24 1,000
RANSEQ 1,000-8,000 6, 12, 18, 24 1,000

Observation 1: Our scheduling technique’s ability to accu-
rately predict RA and make adaptive resource allocation via
backing up HPC allocation on Cloud achieves a high task
completion rate for a given deadline.

To assess the efficiency of our scheduling technique, we
compared the task completion rates of workflow runs. Fig. 6
depicts boxplots of completion rates in percentage of total
number of tasks (y-axis) for all workflow runs over the
different scheduling techniques for the stages (x-axis) in the
workflow. We observe that our scheduling strategy Pred+Adap
achieves the highest completion rate of (97.79%,99.99%) and
(94.44%,99.99%) for OAI and RNASEQ, respectively. Our
RA prediction-based scheduling strategy not only estimates the
HPC+Cloud resource requirement via RA prediction, but also
handles uncertain delays in resource allocation for HPC with
temporary redundant resources on Cloud, which results in a
high rate of task completion for the entire workflow, with a few
outliers. Parsl-HPC’s scheduling strategy has the lowest com-
pletion rate (0%,100%) and (0%,0%) for OAI and RNASEQ,
respectively, due to a lack of HPC resource availability.
Further, Bicer’s scheduling strategy also exhibits a lower
completion rate of (72.1%,93.6%) and (36.01%, 77.77%) for
OAI and RNASEQ, respectively. As Bicer requests longer
HPC jobs and lacks the knowledge of the uncertainty of HPC
allocation, it results in lower HPC throughput than required.
Further, we avoid resource idleness with our data preloading
and resource allocation rebalancing strategies.

To better understand the importance of resource allocation
strategy driven by RA prediction, we analyzed the tasks
processed by HPC, Cloud, and Backup HPC allocation. Fig. 7
shows the average percentage of total tasks (y-axis) com-



(a) OAI Analysis (b) RNASEQ
Fig. 7: Percentage of tasks completed by resources

pleted by different resource groups in the applied scheduling
techniques for all the stages (x-axis) of a workflow. Bicer’s
model can allocate the required HPC resources to execute the
tasks for the initial stages of both workflows, OAI Analysis
(first) and RNASEQ (first three). However, for the later stages,
Bicer’s model cannot obtain the necessary HPC resources,
which leads to lower throughput by Cloud resources due to
idleness. The incorrect assumption made by Bicer’s model
that the required resources are always available means it
cannot allocate enough HPC resources for all the stages in
the workflow. Our Pred+Adap model’s ability to predict RA
yields better HPC resource allocation and adapts well with
backup HPC resources.

Observation 2: Estimating RA accurately and backing up
HPC resource requirements via Cloud reservations minimizes
the impact on the schedule of HPC production jobs.

To measure the impact of our RA prediction-based hybrid
scheduling on production jobs (jobs other than our backfilled
workflow), we assess the change in wait times of the pro-
duction jobs that were submitted by other users on Lassen
during the execution of our workflow. Fig. 8 shows the delays
in hours (y-axis) experienced before starting production jobs
over different job groups (x-axis) over all 1000 workflow runs
for all the scheduling strategies. A positive value means a
production job was delayed because of resource usage by our
workflow. Conversely, a negative value indicates an earlier start
of a production job.

We observe that our scheduling technique Pred+Adap im-
poses small delays of (0, 0.12) hours in most cases on
production jobs across all job groups. However, Bicer affects
the production HPC jobs by causing a larger delay of (.23,
0.99) hours for all jobs, as it does not limit the number of HPC
resources due to a lack of RA prediction. Parsl-HPC’s delay
impact on production jobs is a little higher than Pred+Adap
with (.08, 0.40) hours. This impact is lower than that of Bicer
as we request an HPC resource only after the previous request
is complete, resulting in shorter wait queues. In contrast,
Bicer’s requests for resources with maximum runtime limit
(up to the deadline), while we benefit from our one-hour
runtime limit for both Pred+Adap and Parsl-HPC. We also
observe that the delay in start times increases with the node
size of production jobs for all the scheduling techniques. This
is because larger jobs like DAT and LARGE are more sensitive
to the FCFS + backfilling HPC scheduling strategy.

(a) OAI Analysis (b) RNASEQ
Fig. 8: Delay of Production Jobs

(a) Over Deadline (b) Over Tasks Size
Fig. 9: Difference between Predicted and Actual Costs

Observation 3: We provide cost predictions of workflow
execution in the HPC+Cloud hybrid environment with a mean
underestimation of 14.75% and 7.11% for OAI and RNASEQ,
respectively.

To measure the accuracy of our cost estimator, we measured
the percentage difference between predicted and actual costs
relative to (divided by) actual cost for all workflow runs. A
positive value indicates cost underestimation. In contrast, a
negative value indicates cost overestimation. Fig. 9 shows
the distribution of cost error in percentage (y-axis) for all
workflow runs. Fig. 9a provides the cost estimation error with
respect to the workflow deadline. Fig. 9b depicts results for
the underestimated cost relative to input size. We removed 45
outliers out of 2000 data points for better visibility of the data.

Our cost predictor results in errors that most commonly
lie between (-7.95%, 38.47%). However, we observe a cost
estimation error of (-6.69%, 44.21%) for RNASEQ compared
to OAI’s (-8.22%, 30.38%). Cost underestimation primarily
happens because we do not account for the backup HPC
resource allocations on the Cloud. In contrast, cost overes-
timation is primarily due to overestimating the Cloud alloca-
tion cost that results from an incomplete DPB. For a larger
workflow, its DPB construction may remain incomplete for
the stages with a longer execution start. As we assume a five-
minute default execution time for the missing stages (mostly
with less than 5 minutes of execution times) in DPB, we may
end up overestimating the cost.

Fig. 9a shows that the cost estimation error (y-axis) dis-
tribution for the OAI Analysis workflow remains steady as
the deadlines become longer (x-axis). However, for RNASEQ,
cost overestimation grows with the deadline. Larger HPC
usage due to longer deadlines can also result in cost overes-
timation when the DPB for the HPC resources is incomplete
and Cloud allocation cost is overestimated, as it happens for
RNASEQ. Fig. 9b indicates that cost estimation error (y-axis)
decreases as input task size increases (x-axis). This is due to



(a) OAI Analysis (b) RNASEQ
Fig. 10: Cost Savings

the cost of backup HPC resources that we do not include in
our predicted cost. For smaller input task sizes, the predicted
dollar cost is so small that it is often close to the cost of
backing up HPC resources on the Cloud (i.e., approaching
100%), which can be further amplified by data movement cost
during execution.

Observation 4: Pred+Adap’s scheduling approach in an
HPC+Cloud hybrid environment yields significant cost sav-
ings.

To assess the dollar-cost benefits of our proposed scheduling
technique, we compared the cost of executing a workflow
run completely on the Cloud against our Pred+Adap but
exclude Parsl-HPC since it executes only on HPC. Fig. 10
shows the distribution of cost savings in dollars (y-axis) for
all workflow runs for different deadlines. A positive value
suggests a lower cost for a scheduling technique compared to
Cloud-only scheduling; conversely, a negative value implies
a higher cost. As can be seen, Pred+Adap yields better cost
savings with a mean savings of 23.96% and 28.59% for OAI
and NASEQ, respectively, compared to Bicer’s 16.82% and
26.5% for OAI and RNASEQ, respectively. The higher savings
for Pred+Adap culminate from better usage of HPC resources
than Bicer. Our scheduling technique predicts RA to better
understand how much Cloud resources will be required and
also addresses the uncertainty in HPC resource allocation with
backup resources on Cloud. Further, we observe that savings
increase with longer deadlines as a larger number of unused
HPC nodes (void of dollar cost) is allocated. Overall, from
Observations 4 and 5, we deduce that the higher RA of HPC
can yield better cost savings, but can also result in a higher
cost overestimation error.

Observation 5: Accurate RA prediction leads to lower cost
of backing up HPC resources via the Cloud.

We back up requested HPC resources via Cloud reservations
(see Section III-B) to avoid RA mispredictions, which may
delay workflow execution. To measure the accuracy of our RA
prediction, we calculated the reservation cost of the additional
Cloud resources due to backing up delayed HPC resources.
Fig. 11 shows this backup cost (y-axis) as a percentage of
the total Cloud cost. Fig. 11a depicts this cost for different
deadlines (x-axis) while Fig. 11b plots the cost over different
input task sizes (x-axis). We observe that the additional backup
cost is only ≈0-4% and ≈0-14% for 75% of the workflow
runs for OAI and RNASEQ, respectively. The overall average
additional backup cost is ≈10.5%. This suggests that our HPC
resource requests are immediately satisfied thanks to accurate

(a) Backup Cost in % over Deadline
Length

(b) Backup Cost in % over Tasks Sizes

Fig. 11: Cost of Backing up HPC in the Cloud

RA predictions and the lower runtime limit of one hour, which
contributes to a better utilization of the backfilling capacity for
the HPC scheduler. Considering this accuracy, combined with
the minimal impact our scavenging method has on production
HPC jobs, our RAP predictor and adaptive scheduler can be
deemed highly effective in executing large-scale workflows in
an HPC+Cloud hybrid manner without perturbing normal HPC
operations.

We further observe that larger deadlines lead to small
increases in backup cost (see Fig. 11a). This is due to increased
HPC resource usage with longer execution times. The results
further indicate that backup cost decreases as the input size
grows (Fig. 11b). This is due to the increment in Cloud
resource requirements as task sizes become larger, leading to
a lower HPC-to-Cloud resource usage ratio.

Observation 6: The importance of techniques such as
data preloading, backing up HPC, and rebalancing resource
allocation increases as workflow size grows.

Although our scheduling approach is primarily based on RA
prediction, it is supported by multiple techniques, including
data preloading, backing up of HPC resources, and rebalancing
of resource allocation. We performed an ablation study to mea-
sure the impact of these techniques on our model. Specifically,
we compare the task completion rates (Q1, Q3) for our full
model against models without one of these techniques. The
results, as shown in Table V, show that all the techniques
have a significant performance impact, improving the task
completion rate to meet deadlines. More importantly, the
impact of these techniques grows as the workflow size (both
node and data) grows, with lower completion rates of (85.17%,
99.28%), (84.11%, 97.3%) and (91.32%, 99.9%) without data
preloading, rebalancing and backup HPC, respectively, for
RNASEQ compared to (93.27%, 99.97%), (89.11%, 97.15%)
and (97.18%, 99.99%) for the OAI Analysis workflow. Further,
data preloading and resource rebalancing techniques are more
impactful than the backup HPC technique for both workflows.

Observation 7: Backup resources on Cloud for HPC allo-
cations have minimal impact on task processing.

To measure the impact of backup resources on the workflow
scheduling, we analyze their average reservation time and the
number of tasks processed by them. A backup resource for
HPC has an average reservation time of 0.4 hours (1 hour time
limit) and contributes only to 2.7% of total tasks on average
for OAI Analysis. For RNASEQ, the reservation time is 0.5
hours and the processing contribution is 3.26%. This suggests
that our RA prediction is effective in minimizing the impact



TABLE IV: Hybrid Scheduling Comparison

Contributions Model
Scheduling

Strategy Predictor
Deadline

Constraint
Cost

Reduction
Cost

Estimation

Our Work HPC+Cloud
scavenge unused

HPC nodes
HPC Resource

Availability ✓ ✓ ✓
[25], [28] HPC/Private+Public Cloud offload to Cloud N/A ✓ ✗ ✗

[12] Private+Public Cloud offload to Cloud future workload ✗ ✓ ✗
[29] Local Cluster+Cloud optimized placement N/A ✗ ✓ ✗
[30] HPC+Cloud optimized placement N/A ✗ ✓ ✗

TABLE V: Task completion rates (Q1, Q3) without Data
Preloading, Rebalancing and Backup HPC

Model OAI Analysis RNASEQ
Full Model (97.79%, 99.99%) (94.44%, 99.99%)

w/o Data Preloading (93.27%, 99.97%) (85.17%, 99.28%)
w/o Rebalancing (89.11%, 97.15%) (84.11%, 97.3%)

w/o Backup (97.18%, 99.99%) (91.32%, 99.9%)

on HPC production jobs while providing a higher rate of task
completion.

Observation 8: Our dynamic approach to building perfor-
mance benchmarks with the DPB is economical and avoids a
bloated budget.

Instead of relying on expensive benchmarks, we built the
DPB with a cumulative target of only 5% of total task size
or 1 hour of run time, whichever finishes earlier, for all the
platforms. The cost and duration of building the DPB are
included in the final cost and the set deadline, respectively.
The average cost of the DPB is only 3.24% and 3.13% for
OAI and RNASEQ, respectively. The (Q1, Q3) values are
(.26%, 1.48%) and (0.25%, 1.45%) for OAI and RNASEQ,
respectively.

VI. RELATED WORK
Workflow Management Systems (WMS), such as Pega-

sus [31], Nextflow [9], Parsl, and Snakemake [32], provide
support for scaling and scheduling workflows across HPC and
Cloud Environments. While they perform several scheduling
optimizations, such as task clustering and data-aware schedul-
ing, the decision to offload tasks from HPC to Cloud is left
to the user’s discretion. WMSs do not provide insights or
heuristics for informed decision-making regarding scheduling
and scaling based on factors such as RA, deadline, and cost.

Several techniques have been developed to schedule work-
flows in an HPC+Cloud or private-public Cloud hybrid envi-
ronment to meet deadlines. Aneka [28] and Bicer et al. [25]
employ a dynamic approach where resources are scaled
up/down at run time by periodically calculating available
resources from the local cluster, the pending tasks, data
coordination overhead and the required additional resources
from Cloud. However, their assumption of on-demand HPC
resources seems unrealistic as it often results in delayed
allocation and insufficient computational capacity, leading to
idle Cloud resources and lower completion rates. In contrast,
our technique mitigates the resource availability issue through
RA prediction and backing up of HPC resources on Cloud
with temporary (until HPC requests are met) redundancy
ensuring the necessary computational capacity is maintained
on both HPC and Cloud platforms. Another difference is that
both Aneka and Bicer overallocate resources to compensate

for data movement overhead, whereas our technique applies
data preloading to avoid such overhead, thus not allocating
additional Cloud resources.

Guo et al. [12] primarily performs CB on private Cloud
by offloading requests to public Cloud while predicting when
the private Cloud is overloaded using a workload forecaster.
Further, it optimizes the cost of offloading by selecting applica-
tions with lower Cloud costs and primarily focuses on resource
scaling under high workloads without a deadline constraint for
workflows. Their work does not focus on complex workflows
and relies on workload behavior to scale up/down public Cloud
resources on demand. Gupta et al. [30] utilizes HPC jobs’
performance metrics and resource requirements for optimal job
placement on HPC and Cloud. Assuncao et al. [29] evaluated
the cost of using additional Cloud resources to supplement the
lack of resources on a local cluster. They evaluated multiple
job placement strategies based on various performance metrics
such as job wait times, deadline violations, and the cost
of Cloud. These studies primarily focus on optimizing the
local cluster scheduler by determining the optimal placement
(local or cloud) for all jobs on an HPC system. They do
not account for workflows with complex data dependencies
or data movement costs. Additionally, they lack mechanisms
for estimating future resource availability and rely on users
to estimate the required resources. In comparison, our work
focuses on large-scale workflows to split them across HPC and
Cloud while taking advantage of unused resources on HPC.

Existing studies either do not consider deadline constraints,
assume that resources are available on demand, which is not
true in HPC, or do not consider data dependencies between
jobs. Therefore, none of them is directly applicable to solve
the deterministic scheduling problem. Deterministic schedul-
ing of large-scale workflows with deadline requirements has
the following requirements: estimation of required resources,
estimation of resource availability, considering data overhead
in case of Cloud offloading, and estimation of cost of execu-
tion. Our work satisfies all of them. Table IV compares our
work with other models and illustrates the uniqueness of our
approach.

VII. CONCLUSION

We identified the challenges of scheduling large-scale work-
flows with deadlines on HPC systems instead of solely uti-
lizing costly Cloud systems. A lack of knowledge about
future RA and complex data dependencies in workflows limits
the ability of WMS/users to make informed decisions on
scheduling workflows with respect to cost and deadline. To
mitigate these challenges, we developed a novel scheduling



framework to orchestrate large-scale workflow execution in an
HPC+Cloud hybrid environment guided by the user’s choice
of a schedule. To this end, we developed RAP and WSB
to generate multiple schedules of workflow execution, which
helps users make informed decisions utilizing factors such as
cost and deadline. Further, our adaptive scheduler addresses
issues such as misprediction of RA and delayed HPC resource
allocation by temporarily backing up HPC resources on the
Cloud. We use simulations to assess our techniques, as actual
execution on Cloud resources would incur prohibitively high
costs for our study. The evaluations show that our scheduling
framework yields a mean 98%-99.4% rate of task completion,
and with a mean 7.11% to 14.75% cost estimation error
of the final cost of execution in comparison to a mean of
74.77% to 93.98% and 45.35% to 51.1% task completion
rates by Cloud bursting and HPC-only solutions, respectively.
Furthermore, our framework saves cost for more than 75%
of diverse workflow runs. Combining minimal impacts on
production jobs and minimal backup cost of HPC resources on
the Cloud, our HPC+Cloud co-scheduling methodology shows
good accuracy of our RAP model while keeping cost at bay
and considering deadlines.
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