Hybrid MPI/OpenMP Programming on the Tilera
Manycore Architecture

Vishwanathan Chandru and Frank Mueller
North Carolina State University, Raleigh, NC

Abstract—This work assesses the viability of different pro-
gramming models for large-scale manycores using an MPI-like
abstraction, the vendor’s OpenMP, and a combination (hybrid) of
both. Experiments with Tilera’s TilePro64 demonstrate that MPI
and OpenMP both scale while the hybrid model performs inferior
to the others. Further, network-on-chip contention significantly
affects performance and its variance, especially if the number of
utilized cores is high. These findings provide an early insight on
trends for single die/chip solutions with large numbers of cores,
which will become mainstream in HPC in the coming years. Prior
work lacks such a study on large manycores with an efficient
native on-chip message passing on shared memory on the same
hardware platform.

I. INTRODUCTION

Mainstream HPC systems commonly consist of multiple
nodes that communicate via a high-speed interconnect. Two
methods of parallelization are generally supported:

1) shared memory parallelization and
2) distributed memory parallelization.

Shared memory parallelism uses OpenMP [1] or the un-
derlying POSIX threads to utilize cores of a node. Paral-
lelism across nodes is coordinated via messages passing, e.g.,
MPI [2], and synchronization following the SPMD (Single Pro-
gram, Multiple Data) model of execution. The MPI paradigm
can also be used to utilize each core within a node without
sharing memory. Both parallelization approaches can also be
combined, i.e., leveraging the shared memory infrastructure
within a node and high speed inter-node interconnects for
MPI across nodes. The challenge for large-scale multicores
lies in reducing contention when cores exchange data over
NoC interconnects, such as rings and meshes.

The objective of this work is to assess the capabilities
and limitations of the MPI, OpenMP, and hybrid program-
ming paradigms for a large manycore with the hypothesis
that excessive NoC traffic, e.g., due to MESI-style coherence
protocols, may eventually render shared memory ineffective
at scale while separate address space for MPI prevent such
limitations. We perform this assessment on a Tilera manycore
platform [3] with 64 cores on a single die that natively supports
shared memory and message passing, which few (if any) other
architecture provide at this scale of cores. This is important
as manufacturers are switching to mesh NoCs as the core
count increase, e.g., for the forthcoming Intel Phi Knights
Landing. The assessment is performed using an extension of
the NoCMsg library [4], an MPI-like abstraction over the Tilera
NoC, which is a prototypical implementation to assess to limits
of message passing with nearly the same API and semantics as
MPI. This abstraction treats the Tilera manycore architecture

as a distributed memory system. It relies solely on low latency
software-defined message passing via the NoC instead of
architecture-defined shared memory for data communication.
Weak scaling [5] and strong scaling [6] experiments are con-
ducted on various benchmarks under multiple configurations.
Results show that, depending on the hardware configuration
used, some programming model(s) can outperform the others
but there is no definitive conclusion that one model is always
best, i.e., vendors should support multiple ones. Prior work
lacks such a study for up to 56 cores with an efficient native on-
chip message passing on shared memory on the same hardware
platform (see Section VI).

II. BACKGROUND

Network-on-chip (NoC) manycore architectures like
Tilera [7], Intel Xeon Phi [8] or others [9], [10], [11], [12],
[13], [14] provide computing power via large numbers of cores
that utilize 2D on-chip interconnects (mesh- or ring-based)
instead of traditional bus-based architectures. Efficiency of
such architectures is constrained by network contention and
memory contention. Tilera’s NoC is a switching network where
data is split into packets routed across the 2D mesh network
with X/Y dimension ordered routing. A core generally interacts
with the network via switches using input and output queues.
Switches at the intersection of the NoC mesh with multiple
input and output queues are then configured to connect cores
via a wormhole route for a message request, i.e., links are
dynamically reserved along a mesh path, packets are sent, and
links are released after sending the last packet.

The Tilera architecture has six mesh networks: (1) IDN (I/O
dynamic network) and (2) UDN (User Dynamic Network) are
two architecturally-defined networks for routing data among
I/O controllers and tiles. (3) MDN (Memory Dynamic Net-
work) is a network for memory data. (4) CDN (Coherence
Dynamic network) is used for cache coherence traffic. (5) TDN
(Tile Dynamic Network) usage is similar to MDN but it serves
requests for tile-to-tile transfers. (6) The STN (static network)
is used for data transfer between tiles with fixed routings. Of
these networks, only UDN and STN are accessible to users
via APIs. The NoCMsg MPI abstraction [4] is based on IPC
(Interprocess communication) using UDN, per-core L2 caches,
and a global soft L3 cache (composed of multiple L2 caches)
that maintains cache coherence via a shared memory protocol
with modified/exclusive/shared/invalid (MESI) states.

Tilera implements a non-uniform memory architecture
(NUMA) and a non-uniform cache architecture (NUCA). Four
memory controllers are placed within the mesh NoC such that
cores experience different latencies when accessing memory
creating a NUMA abstraction. L2 cache references can further

be resolved by a local L2 cache or by the L2 cache of a
remote core, which creates a NUCA abstraction. There are
three ways to “home” data in the Tilera architecture: Local
homing, remote homing, and hash-for-home. In local homing,
the entire page (64 kB or 16 MB) is homed on a tile accessing
the specific memory and any miss is redirected to the memory
controller. This is the default setting for the stack of processes
and threads. In remote homing, the entire page is homed on
a distant tile. In this case, if the miss occurs at the L2 cache,
the data is provided by the remote tile where it is homed. If a
data access misses at the remote L2 cache as well, the request
goes to memory. In hash-for-home, the entire page is hashed
across a set of tiles at cache line granularity.

III. MESSAGE PASSING DESIGN AND IMPLEMENTATION

Tilera supports shared memory natively via a coherence
layer and through OpenMP flags during compilation. Hence,
this section focuses on the design of an efficient messaging
layer, NoCMsg [4], for the Tilera platform. Notice that our
design is to applicable mesh-based multicores with native
messaging support in general as we have demonstrated by
porting our work [15] to the Intel SCC [10].

MPI-like messaging passing over the NoC can be supported
by UDN since it has extremely low latency and can be
realized at the user level (without operating system overheads).
There are two ways to design an MPI-like abstraction using
UDN: interrupt based and polling based. iLib [16] is a library
that provides basic APIs for data streaming and messaging.
Point-to-point communication is supported by iLib and closely
resembles MPI semantics but it only supports broadcast and
barrier collectives. It is interrupt based and relies on virtual
channels and complex packet encoding. OperaMPI [17] is
built around iLib using primitives to support more complicated
collectives like all-to-all, scatter-gather etc.

Our NoCMsg library [4], on the other hand, is polling
based. It is designed around asynchronous work loops to pro-
vide flow controlled and non-flow controlled communication.
At the core are two work loops:

1) trysend: keeps polling the send queues to check for
any pending send;

2) tryrecv: keeps polling and checking on input queues
to see if there are any known or unknown receives
pending.

These two queues are used for providing flow controlled com-
munication. For non-flow controlled communication, APIs are
provided with optional synchronization. These are primarily
used to implement collectives.

Fig. 1 and Fig. 2 show the overall design of NoCMsg and
OperaMPI, respectively. Due to the polling-based approach,
NoCMsg has lower overheads than OperaMPI as the latter
utilizes interrupts and more complex protocol messages [4].

The current implementation of NoCMsg supports basic
MPI functionality but needed to be augmented for the hybrid
model of execution for codes used in the evaluation. We
added support for the following features: 1) DOUBLE_INT;
2) MINLOC and MAXLOC reductions; 3) 64 byte unsigned
int (uint64); 4) byte datatype; 5) sendreceive functionality;

Point-to-point

APls Collectives

Bcast
MNon-Flow

HitehiLeees control APls

UDN

Fig. 1. NoCMsg API design

OperaMPI| APls

iLib Library

UDN

Fig. 2. OperaMPI API design

6) MPI_Get_count; and 7) MPI_Test. Reductions were ex-
tended to cover the new data types as well as MINLOC and
MAXLOC.

IV. EVALUATION
A. Hardware Platform

We utilized the Tilera TILEPro-64, a single die/chip with
64 tiles/cores, each with a clock speed of 700 MHz with
floating point emulation in software. Each core has 16+8 kB
private L1 I+D cache(s), a 64 kB private L2 cache and a soft L3
cache of 5 MB, which is created by combining the L2 caches of
all tiles. The board has 4 memory controllers, each supporting
2 GB of DDR2 memory. The virtual L3 cache is directory
based, where each page is hashed across a specific set of cores.
The benchmarks and the NoCMsg library are compiled using
the Tilera 3.03 MDE tool chain with the optimization level O3
and the fopenmp flag.

B. Benchmarks and L3 Cache Residency

Two major criteria were considered for selecting a bench-
mark: 1. Flexibility in terms of process and thread configura-
tion to assess weak and strong scaling for different number of
threads; and 2. the per-thread input should fit within the LLC
(Last Level Cache) of each tile to bring data via cold misses
into the LLC, but no other DRAM accesses will occur from
there on. This ensures that we will measure the effect of the
NoC (and its contention) on scalability instead of bandwidth
limitations on DRAM. We also set the core affinity of OpenMP
threads and MPI tasks.

The aim of this work is to analyze the three program-
ming models with respect to the communication overhead.
We perform weak scaling in all models (OpenMP, MPI, and
hybrid) with inputs per MPI task/thread constrained to the
local L2 cache size. This exposes the overheads due to the
NoC and minimizes latencies due to memory, which would
otherwise dominate and skew the assessment. In the case of
weak scaling, the workload is varied proportionately to the
number of cores to keep the load per core constant, which
ideally should result in constant execution time. Using weak
scaling, we can determine how well a problem can scale when
increasing the number of cores, which is the objective of this
work.

We experiment with 8 to 56 cores. For OpenMP, this
translates into 1 MPI task (in case of CoMD) or no MPI
task (in case of NAS Multi-zone benchmarks) and varying
number of threads. For MPI (NoCMsg) only, we vary the
number of MPI tasks and fix the number to threads per MPI
task to 1. For the hybrid case (NoCMsg + OpenMP), we use
two configurations: 1) We fix the number for MPI tasks to 8
(required to be a power of 2) and vary the number of threads
per task as depicted in Fig. 3. This layout excludes the bottom
row of 8 cores, some of which are set aside for operating
system services by Tilera for a total of 56 user tasks that can
be assigned to cores. The layout results in low contention as
threads in each circled subset, which represents an MPI task,
only share memory with threads within its subset. 2) We fix
the number of MPI tasks to 16 and vary the number of threads
from 1 to 3 (using rows 0/1, 2/3, and 4/5 of Fig. 3).

To assess the impact of hash-for-home data distribution
at L3 level, experiments are conducted with and without
hashing. As discussed in Section II, hash-for-home hashes
the page at cache line granularity and distributes it across
the configured set of tiles/cores in an effort to reduce load
imbalance (primarily by using MDN). This has the potential
to significantly increase performance due to load distribution
and increased LLC cache size, but causes jitter: Even for data
that fits into L2 cache, there is a remote access (and thus
variable hop count). The resulting contention only gets worse
as we increase the number of threads. Even though MDN
has twice the bandwidth of UDN [4], we can often get better
performance with UDN (NoCMsg only) or with UDN+MDN
(hybrid model), as discussed in [4].

Task 0 Affinity Mask
T f —

B R

2

B T
; 19 !
P L
Task 3 Affinity Mask
T T i it

- ! =

fiar {128 i 20 [130

: i |

I
£ & 5 B

Task 5 Affinity Mask _

P43 (a4 45 | 146

T

Task 6 Affinity Mask
T T

P51 L1 52

Fig. 3. CPU Affinity used for Hybrid execution (8 MPI tasks)
CoMD is a proxy benchmark for the computations in a
typical molecular dynamics application. It is used because it
is not constrained in terms of process and thread configuration,
and it was possible to reduce the per thread memory footprint
to less than 64 kB, which is the LLC cache size per core/tile
of the Tilera architecture. It also supports weak scaling. After
analyzing the benchmark code and data distribution among

threads and MPI tasks, we found that at 108 atoms per thread,
the memory footprint is approximately 9.28 kB per thread.

NAS Multi-Zone benchmarks, derived from the original
NPB Suite, divide their 3D mesh input into multiple meshes
or zones. Each zone is solved independently. After each
iteration/time step, boundary values are exchanged between
zones. In case of the MPI or OpenMP model, each MPI
task/thread is assigned zones but in case of the hybrid model,
each process is assigned zones and parallelization within a
zone is realized via OpenMP. This approach creates a loose
coupling among zones. We utilize the inputs in Figures 4 and
5 for SP-MZ and LU-MZ, respectively, first for weak scaling
and then the 49-core configuration for strong scaling. For weak
scaling, the number of points per thread remains constant,
which ensures a constant computation overhead per core, no
matter how many cores are chosen.

cores | Direction # Zones | Points per Points per
direction thread

8 X 4 4 224
y 4 4
z 1 7

16 X 4 4 224
y 8 4
z 1 7

24 X 6 4 224
y 8 4
z 1 7

32 X 8 4 224
y 8 4
z 1 7

40 X 8 4 224
y 10 4
z 1 7

48 X 8 4 224
y 12 4
z 1 7

56 X 8 4 224
y 14 4
z 1 7

Fig. 4. SP-MZ Input Specifications

cores Direction # Zones Points per Points per
direction thread

8 X 4 5 350
y 4 5
z 1 7

16 X 4 5 350
y 8 5
z 1 7

24 X 6 5 350
y 8 5
z 1 7

32 X 8 5 350
y 8 5
z 1 7

40 X 8 5 350
y 10 5
z 1 7

48 X 8 5 350
y 12 5
z 1 7

56 X 8 5 350
y 14 5
z 1 7

Fig. 5. LU-MZ Input Specifications

4.8
-+~ Hybrid (8 tasks , without hashing)

-®- Hybrid (8 tasks, with hashing)

4.3 -8+ Hybrid (16 tasks, without hashing)

—& -Hybrid (16 tasks, with hashing)

3.8
=% -MPI (with hashing)

OpenMP (with hashing)

33
~e—0penMP (without hashing)

—& -MPI (without hashing)

2.8

TIME (IN SECONDS)

23

18

13

0.8

32 40 48 56
CORES

Fig. 6. Runtimes LU-MZ Weak Scaling

-4 Hybrid (8 tasks , without hashing)
a5 -®- Hybrid (8 tasks, with hashing)
-&- Hybrid (16 tasks, without hashing)
s —x~Hybrid (16 tasks, with hashing)
as =% - MPI (with hashing)
= ’ -e-0penMP (without hashing) e
g 3 OpenMP{with hashing) /ﬁ———" _____ -
g —& - MPI (without hashing) el -
Y25 et
E _e--mmmm T e
E) - I "
= eCTeTT e
___.:;:Z:" Vpna ._;.-.--_‘"'—"" -4
. e e T -
.=zt T —— = T
1 .22 v —— -—‘iz. — el - —k |
0.5
0
8 16 24 32 40 48 56
CORES
Fig. 7. Runtimes SP-MZ Weak Scaling

V. EXPERIMENTS AND RESULTS

The evaluation assesses the performance of benchmarks
using communication via UDN vs. shared memory via the
memory interconnects versus a combination of both. We utilize
3 benchmarks, two from the NAS Multi-zone benchmark
suite (SP-MZ and LU-MZ) and CoMD. Other NAS-MZ and
hybrid codes (CHPMG-FV, Lulesh, CoSP2) do not let us
freely vary the number of MPI tasks and threads due to
dimensional/algorithmic constraints. All experiments report
averages over 15 runs.

Latency due to the NoC plays a significant role in the per-
formance of an application. To analyze the effect of latency, we
conduct weak scaling experiments with and without hashing.
When we execute the benchmarks without hashing, access is
restricted to the local cache, thus minimizing NoC contention
and the associated latency. When the pages are hashed across
the L2 caches of cores, accesses become remote, increasing the
traffic on the NoC and access latencies. Fig. 6, Fig. 7 and Fig. 8
show the average execution times of the three benchmarks in

three different programming models, each with hashing turned
on and off.

We observe that pure MPI and OpenMP scale well with
and without hashing for the NAS MZ benchmarks. Consider
LU-MZ (Fig. 6): MPI without hashing consistently performs
best followed by OpenMP (where hashing makes little dif-
ference) and MPI with hashing. The hybrid configurations
do not perform as well (irrespective of hashing). For SP-MZ
in Fig. 7, hashing provides a slight advantage for OpenMP
while MPI performs best without hashing. Notice that OpenMP
outperforms MPI for fewer number of cores but is at par at
56 cores. Again, the hybrid configurations do not perform as
well (irrespective of hashing).

CoMD with OpenMP always shows inferior performance
compared to MPI and Hybrid irrespective of hashing. This is
due the fact that CoMD does not take advantage of the NUMA
abstraction in pure OpenMP execution. The operating system
policy is to perform an allocation on first touch of a page. Since
inputs are initialized before the parallel section, dynamically

216

—~o—0penMP (without hashing)
196

OpenMP (with hashing)
176

—% -MPI (with hashing)
156

-m- Hybrid (8 tasks, with hashing)
136

—& -Hybrid (16 tasks, with hashing)

116

-+- Hybrid (8 tasks , without hashing)
96

—& - MPI (without hashing)

76
--s- Hybrid (16 tasks, without hashing) /
56

/

. /

32 —x

.30 <

& :

a

g Nl

S28 -
D

& N

z a P

o -

=

-

¥R

I \
\
N

%

N

N
N

N
=)

Fig. 8. Runtimes CoMD Weak Scaling

allocated private pages are homed local to core 0 (which is
where the process is bound to) — instead of the core that is
later accessing the page in the parallel section. This leads to
high latency and contention due to multiple tiles requesting
data from the same home tile and could only be circumvented
by refactoring the benchmark source code. For pure MPI, the
first touch policy allows places the data at the local core, thus
improving performance. Hybrid with more MPI tasks (e.g.,
16) also results in better locality to the memory controller for
allocations. The NAS benchmarks perform dynamic allocation
and initialization after thread creation (in the parallel section),
which allocates data locally under first touch. This shows that
it is imperative to initialize data inside the parallel section to
obtain good locality under OpenMP on NUMA systems.

We further observe that CoMD hybrid (with 16 tasks)
without hashing outperforms all other methods while other
hybrid configurations with fewer tasks (irrespective of hashing)
perform worse, as does MPI with hashing. This is due to
synchronization overhead, which increases with the number
of threads entering/exiting OpenMP sections.

16 MPI tasks hybrid always performs better than the 8
MPI tasks hybrid. In case of CoMD, this is primarily due
to a lower threads-per-task ratio, which means fewer threads
per home cache, i.e., better locality at the home cache and
lower NoC contention. We observe that the runtime closely
follows the MPI runtime. From 32 cores (16 MPI tasks and
2 threads per task) to 48 cores, the average execution time
goes down slightly compared to the corresponding MPI task
configurations. On analyzing the internal timers, we found that

286

=X -MPI
236 <
—A- Hybrid (8 MPI tasks, 7 Threads) N
/
186 :
/
/
136 =
/
86 ,/
/
2/ L
34 |
3 | 2
2 32 7’
8 ’
rd
2
")L L4
z30 : ~7
= K . s,
Z 2 o === et ===
=X
26 =
P
24 Z
X
22
20
NONE RO STATIC ALLBUTSTACK ALL

HASHING CONFIGURATION

Fig. 9. Runtimes CoMD Hashing 56 cores

the force calculation cost goes up as we increase the number
of threads from 1 to 2 but when increasing to 3 threads,
the force calculation cost (which mainly utilizes MDN) goes
down slightly. An analysis of internal timers of LU-MZ and
SP-MZ showed that UDN communication is jittery but the
computation cost (directly depending on shared memory) goes
down. One reason is that the number of zones per process
for 16 MPI tasks is less than that for 8 MPI tasks. Another
reason is that the maximum number of threads per process
in 16 MPI tasks is 3, which is less than half of that for
8 MPI tasks. As OpenMP parallelization is done per zone,
thread synchronization overheads are much higher for 8 MPI
tasks. Given the larger number of zones per process in case
of 8 MPI tasks, efficiency of parallelization reduces as more
threads operate within the same zone compared to zones being
assigned to threads for pure OpenMP. This potentially results
in loss of locality, which further increases the NoC contention.
Thus, we observe better performance for 16 MPI tasks.

When we enable hashing, the performance dynamics
change due to increased NoC contention. Hashing can be
configured in five different ways [18]:

1) none: nothing is hashed;

2) ro: only the text section and read-only data is hashed;

3) static: text, data and bss sections are hashed;

4) allbutstack: except stack, which is locally cached,
everything is hashed;

5) all: everything is hashed.

We utilize allbutstack for our comparative experiments. As
we increase the number of cores used, the additional NoC

8.8

-4~ Hybrid (8 tasks , without hashing)
-®- Hybrid (8 tasks, with hashing)
7.8
--m+ Hybrid (16 tasks, without hashing)
o -4 -Hybrid (16 tasks, with hashing)
=% - MPI (with hashing)
Bss OpenMP (with hashing)
g —e—0penMP (without hashing)
b . -
2 48 —& - MPI (without hashing)
=
2
338
28
1.8
0.8
8 16 24 32 48
CORES
Fig. 10. Runtimes LU-MZ Strong Scaling
7
-4~ Hybrid (8 tasks , without hashing)
-m- Hybrid (8 tasks, with hashing)
6 --e- Hybrid (16 tasks, without hashing)
N —4 -Hybrid (16 tasks, with hashing)
%\:\ = -MPI (with hashing)
AR OpenMP (with hashing)
> N e —e—0penMP (without hashing)
z \ \\:\ —& - MPI (without hashing)
2 N
S a4
w
wv
2
]
g 3
2
1
0
8 16 24 32 48
CORES

Fig. 11.

contention results in a slight performance deterioration for MPI
and Hybrid-8 for both LU Fig. 6 and SP Fig. 7. OpenMP still
benefits from hashing, even with larger number of cores. For
CoMD, hashing improves the performance of pure OpenMP,
but OpenMP in general does not perform well due to lack of
allocation locality, as discussed. The MPI version of CoMD
in Fig. 8 suffers significantly under hashing as the number of
cores increases due to NoC contention.

Due to NoC contention, the variance in execution time
without hashing is higher than with hashing and increases as
we increase the number of cores. Generally, the configurations
performing worse also result in much higher variance in
execution time across all benchmarks.

We designed an experiment to understand the impact of
different types of hashing. We ran on 56 cores with pure MPI
and hybrid varying the types of hashing. Fig. 9 shows CoMD

Runtimes SP-MZ Strong Scaling

results (others omitted but are similar). From allbutstack to all,
we observe a significant decline in performance for pure MPI
and a slight one for hybrid, even though CoMD allocates its
key data structures dynamically. This shows that stack hashing
is the reason for the poor performance of pure MPI compared
to hybrid for hashing. (Notice that the upper half of the results
is on a coarser scale than the lower, which allows us to fit the
results but causes a “step” at 34seconds).

We also conducted strong scaling experiments. For LU-MZ
and SP-MZ for the 48 core input (i.e., 96 zones and number
of points per zone as per Fig. 5 and 4, respectively). For
CoMD, the strong scaling input is fixed at 4896 atoms per
test configuration. The input specifications of strong scaling
exceed the L2 cache capacity for all core counts less than
48, but when hashing is enabled the input fits within the soft
L3 cache (created by combining the L2 caches of all tiles).

136

—e—0penMP (without hashing)
OpenMP (with hashing)
=% MPI (with hashing)

96

-m- Hybrid (8 tasks, with hashing)
=& Hybrid (16 tasks, with hashing)
-o- Hybrid (8 tasks , without hashing)

76

—&« MPI (without hashing)
--&+Hybrid (16 tasks, without hashing)

TIME (SECONDS)

56 v

36

— .

16

32 40 48
CORES

Fig. 12. Runtimes CoMD Strong Scaling

Fig. 10, 11, and 12 show the average runtimes of LU-MZ, SP-
MZ and CoMD over various processor counts, respectively.
(Some configurations are omitted due to input constraints.)

The average execution time is on par with the expected
decrease in runtime as we increase parallelism (OpenMP,
MPI or Hybrid). But in some cases the performance starts to
deteriorate due to increased NoC contention, which counters
the potential improvement, e.g., for CoMD under OpenMP
in Fig. 12. For up to 32 cores, performance improves for
all configurations, but after that performance deteriorates for
OpenMP while the other configurations continue to experience
performance benefits, albeit at a lower slope after 16 and then
again 32 cores.

We also observed that jitter (SD) is high for hashed exe-
cutions compared to non-hashed execution for CoMD but less
so for NAS MZ benchmarks. This is due to NoC contention
resulting from non-local allocations for the former while NAS
MZ has smaller memory footprints per task, which mediate
the ashing effect.

Contention for strong and weak scaling arises due to differ-
ent reasons. In case of weak scaling, the input specifications are
designed such that the data fits in the LLC. With hashing turned
off, the likely source of contention is UDN for pure MPI,
UDN+Cache coherence networks (MDN, TDN and CDN)
for hybrid, and cache coherence networks for pure OpenMP.
With hashing turned on, the dynamics change and the source
of contention becomes the cache coherence network due to
randomized data placement in remote L2s.

In case of strong scaling, the inputs are designed to fit into
the soft L3 cache but they exceed the individual L2 size of
a core. With hashing turned off, contention is due to off-chip
memory accesses (MDN) along with UDN (in case of pure
MPI) and cache coherence networks in case of the hybrid

model. For OpenMP, contention is mostly due to the cache
coherence networks. With hashing turned on, the complete
input fits the soft L3 but almost all the accesses become remote
(served by L2 caches of distant cores), causing more contention
on cache coherence networks compared to MDN and UDN
alone.

VI. RELATED WORK

Hung et al. [19] analyze the performance gain and paral-
lelization on many-core platforms for object detection, which
is a computationally intensive problem. They propose a perfor-
mance prediction equation for object detection, which is then
verified via experiments. Serres et al. [20] assess the perfor-
mance and scalability of UPC (Unified Parallel C) over GAS-
Net based on Pthreads and OperaMPI on the Tile64 many-core
architecture. They analyze Pthreads and MPI separately but not
hybrid OpenMP+MPI. Suh et al. [21] present a performance
analysis of FFT and CRBLASTER on the Maestro processor
(derived from the Tilera architecture), while Singh et al. [22]
analyze the performance and scalability of FFTW (Pthreads-
based parallelization) and CAF (iLib-based shared memory
parallelization) but neither MPI nor hybrid. Martin et al. [23]
provide an analysis of cache coherence and shared caches
within the context of scalability via simulation but do not
consider the latencies introduced due to a NoC. Jost et al. [24]
and Rabenseifner et al. [25] compare various programming
models on a cluster with SMP nodes and find benefits for the
hybrid mode. In contrast, we study scalability on manycores
and the NoCMsg lower-cost MPI on-chip abstraction, which
leads to no advantage of hybrid over MPIL. Zimmer et al. [4]
focus on comparing NoCMsg and OperaMPI to find that the
former significantly outperforms the latter, which is why our
study focuses on NoCMsg. They only briefly evaluate OpenMP
but do not assess hybrids while we cover hybrids and perform

more detailed scalability studies with CoMD and the latest
NAS MZ hybrid codes. Joven et al. [26] evaluate MPEG
decoding implemented as hybrid MPI+OpenMP on a 32-core
ARM manycore, which is only cache coherent up to 8 cores.
In contrast, Tilera is coherent up to 64 cores, which allows us
to assess the limits of OpenMP in comparison with MPI and
the hybrid model. Furthermore, we focus on NoC contention,
which is a novel contribution.

VII. CONCLUSION

We show that programming models affect performance
and scalability and are subject NoC latencies. Pure MPI is
highly scalable for a large manycore with a mesh NoC. But
when we induce hashing, we see a significant deterioration in
performance for larger numbers of cores due to stack sharing.
OpenMP follows closely while hybrid tends to trail behind
except for CoMD, in part due to its serial memory allocation.
We observe that data initialization inside the parallel section is
required for good locality and performance under OpenMP on
NUMA systems. However, if such parallelized initialization is
not feasible or cannot provide locality for all application phases
due to alternating access patterns, pure MPI and hybrid without
hashing perform best whereas OpenMP and any scheme with
hashing create NUMA bottlenecks.

We conclude that NoC latencies and contention are a
key consideration for scalability on many-core architectures.
Tilera offers a number of optimization opportunities due to six
NoCs, each dedicated for a certain purpose. Such a choice can
benefit performance at scale as the developer may select the
programming model that provides the best fit for an algorithm
and its data layout/partitioning. Our recommendation is for
vendors to provide such choices in their software stack.

ACKNOWLEDGMENT

Tilera Corporation provided technical support of the re-
search. This work was funded in part by NSF grants 1239246
and 1058779 as well as a grant from AFOSR via Securbora-
tion.

REFERENCES

[11 Official OpenMP Specification, www.openmp.org, May 2005. [Online].
Available: http://www.openmp.org/drupal/mp-documents/spec25.pdf

[2] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface stan-
dard,” Parallel Computing, vol. 22, no. 6, pp. 789-828, Sep. 1996.

[3] “Tilera processor family,” www.tilera.com.

[4] C. Zimmer and E. Mueller, “Nocmsg: Scalable noc-based message
passing,” in International Symposium on Cluster, Cloud and Grid
Computing, 2014.

[5] J. L. Gustafson, “Reevaluating amdahl’s law,” Communications of the
ACM, vol. 31, no. 5, pp. 532-533, 1988.

[6] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, spring joint computer conference. ACM, 1967, pp. 483—485.

[71 D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, vol. 27,
pp. 15-31, 2007.

[8] “Intel xeon phi,” https://www-ssl.intel.com/content/www/us/en/
processors/xeon/xeon-phi-coprocessor-datasheet.html, Apr. 2015.

[9] “Adapteva processor
silicon-devices/e16g301/.

family,” www.adapteva.com/products/

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

“Single-chip cloud
sccloudcomp.php.
“SCC External Architecture Specification (EAS) Revision 0.94.”

S. Borkar, “Thousand core chips: a technology perspective,” in Pro-
ceedings of the 44th annual Design Automation Conference. ACM,
2007, pp. 746-749.

J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom et al., “A 48-core ia-
32 message-passing processor with dvfs in 45nm cmos,” in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE
International. 1EEE, 2010, pp. 108-109.

B. D. de Dinechin, P. G. de Massas, G. Lager, C. Lger, B. Orgogozo,
J. Reybert, and T. Strudel, “A distributed run-time environment for the
kalray mppa-256 integrated manycore processor,” Procedia Computer
Science, vol. 18, no. 0, pp. 1654 — 1663, 2013, 2013 International
Conference on Computational Science.

computer,” blogs.intel.com/research/2009/12/

K. Yagna, O. Patil, and F. Mueller, “Efficient and predictable group
communication for manycore nocs,” in International Supercomputing
Conference, Jun. 2016.

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE micro, no. 5,
pp. 15-31, 2007.

M. Kang, E. Park, M. Cho, J. Suh, D. Kang, and S. P. Crago, “Mpi
performance analysis and optimization on tile64/maestro,” in Proceed-
ings of Workshop on Multi-core Processors for SpaceOpportunities and
Challenges Held in conjunction with SMC-IT, 2009, pp. 19-23.
Programming The Tile Processor, Tilera, "www.tilera.com”.

Y.-F. Hung, S.-Y. Tseng, C.-T. King, H.-Y. Liu, and S.-C. Huang,
“Parallel implementation and performance prediction of object detection
in videos on the tilera many-core systems,” in Pervasive Systems,
Algorithms, and Networks (ISPAN), 2009 10th International Symposium
on. 1EEE, 2009, pp. 563-567.

O. Serres, A. Anbar, S. Merchant, and T. ElI-Ghazawi, “Experiences
with upc on tile-64 processor,” in Aerospace Conference, 2011 IEEE.
IEEE, 2011, pp. 1-9.

J. Suh, K. J. Mighell, D.-I. Kang, and S. P. Crago, “Implementation of
fft and crblaster on the maestro processor,” in Aerospace Conference,
2012 IEEE. 1EEE, 2012, pp. 1-6.

K. Singh, J. P. Walters, J. Hestness, J. Suh, C. M. Rogers, and S. P.
Crago, “Fftw and complex ambiguity function performance on the
maestro processor,” in Aerospace Conference, 2011 IEEE. 1EEE, 2011,
pp. 1-8.

M. M. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache
coherence is here to stay,” Communications of the ACM, vol. 55, no. 7,
pp- 78-89, 2012.

G. Jost, H. Jin, D. an Mey, and F. F. Hatay, “Comparing the openmp,
mpi, and hybrid programming paradigms on an smp cluster,” in Pro-
ceedings of EWOMP, vol. 3, 2003, p. 2003.

R. Rabenseifner, G. Hager, and G. Jost, “Hybrid mpi/openmp parallel
programming on clusters of multi-core smp nodes,” in Parallel, Dis-
tributed and Network-based Processing, 2009 17th Euromicro Interna-
tional Conference on. IEEE, 2009, pp. 427-436.

J. Joven, A. Marongiu, F. Angiolini, L. Benini, and G. D. Micheli, “An
integrated, programming model-driven framework for noc-qos support

in cluster-based embedded many-cores.” Parallel Computing, vol. 39,
no. 10, pp. 549-566, 2013.

