
A Numerical Soft Fault Model for Iterative Linear Solvers

James Elliott1,2

jjellio3@ncsu.edu
Mark Hoemmen2

mhoemme@sandia.gov
Frank Mueller1

mueller@cs.ncsu.edu
1 Department of Computer Science, North Carolina State University, Raleigh, NC

2 Center for Computing Research, Sandia National Laboratories, Albuquerque, NM

ABSTRACT
We present a fault model designed to bring out the “worst”
in iterative solvers based on mathematical properties. Our
model introduces substantially higher overhead, but smaller
variance, than a fault model based on random bit flips. We
also relate the statistics from our experiments back to the
solvers’ configuration, and briefly address the computational
effort that each model requires. Our approach requires sig-
nificantly fewer resources, while punishing our solvers with
undetectable errors that require notable overhead for recov-
ery. This work also illustrates the robustness of our resilient
algorithms: Not only do we make forward progress in the
presence of pathological faults, we always obtain the correct
answer.

Categories and Subject Descriptors
G.4 [MATHEMATICAL SOFTWARE]: Reliability and
robustness; G.1.3 [NUMERICAL ANALYSIS]: Numer-
ical Linear Algebra—Linear systems (direct and iterative
methods)

Keywords
Algorithm-Based Fault Tolerance; Sparse Iterative Methods;
Pessimistic Fault Modeling

1. INTRODUCTION
Recent studies indicate that large parallel computers will

continue to become less reliable as energy constraints tighten,
component counts increase, and manufacturing sizes decrease
[8, 5]. This unreliability may manifest in two different ways:
either as “hard” faults, which cause the loss of one or more
parallel processes, or as “soft” faults, which cause incorrect
arithmetic or storage, but do not kill the running applica-
tion.

This paper focuses on soft faults. Specifically, we consider
those that corrupt data or computations, without the hard-
ware or system detecting them and notifying the application

Publication rights licensed to ACM. ACM acknowledges that this contribution was au-
thored or co-authored by an employee, contractor or affiliate of the United States gov-
ernment. As such, the United States Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for Government
purposes only.
HPDC’15, June 15–20, 2015, Portland, Oregon, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3550-8/15/06 ...$15.00.
http://dx.doi.org/10.1145/2749246.2749254.

that a fault occurred. We call this type of soft fault Silent
Data Corruption (SDC). SDC is much less frequent than
process failures, but much more threatening, since the appli-
cation may silently return an incorrect answer. In physical
simulations, the wrong answer could have costly and even
life-threatening consequences. Users’ trust in the results of
numerical simulations can lead to disaster if those results are
wrong, as for example in the 1991 collapse of the Sleipner
A oil platform [11]. Unlike with hard faults, applications
currently have few recovery strategies. Hardware detection
without correction may cost nearly as much as full hardware
correction. Hardware vendors can harden chips against soft
faults, but doing so will increase chip complexity and likely
either increase energy usage or decrease performance. An
open field of research and the focus of this paper is design-
ing algorithms that can tolerate SDC.

2. PRECONDITIONED LINEAR SOLVERS
Our fault model assesses iterative, possibly preconditioned,

linear solvers under faults that are not detectable in stan-
dard implementations, and that can remain undetectable
using low overhead detectors. The model introduces a pes-
simistic fault. This accounts for our lack of knowledge of
exactly which physical events can lead to the worst case for
a particular problem and solver combination. We argue that
if a numerical approach can tolerate these types of perturba-
tions, then it should be able to tolerate transient arithmetic
errors. This minimizes fruitless speculation about how faults
manifest in real hardware, and instead asks whether an al-
gorithm can handle challenging numerical faults. The latter
presents a fault model that we show produces a much worse
case than random bit flips. If it is true that future hard-
ware will allow some transient soft errors, we should assess
fault tolerance in algorithms based on a worst-case scenario,
rather than the extremely biased case of random bit flips.

2.1 Soft Faults and Iterative Methods
Given a direct solver, if a soft fault corrupts arithmetic,

the method will reach a (possibly unacceptable) solution in a
bounded, known number of steps. Iterative methods behave
differently. They may 1) “converge through” the error, tak-
ing no more iterations than in the error-free case; 2) converge
but take more iterations; 3) stagnate — reach the maximum
iteration count without improving the initial approximation;
or 4) become divergent — oscillate wildly or have rapid error
growth such that the solver “explodes” toward infinity. In
the latter two cases, the solver fails to produce an acceptable
solution. Stagnation relates to the maximal attainable ac-

curacy, which bounds below the accuracy an iterative solver
can reach in finite-precision arithmetic. If a soft error in-
troduces error sufficient to damage the maximal attainable
accuracy, then the solver may stagnate.

Pessimistic faults have mathematical interpretations. For
example, they may introduce a fictitious, abnormally large
eigenvalue to the matrix A. Iterative solvers approximate
the solution as a linear combination of basis vectors that are
weighted by the largest eigenvalues in the system. The fault
will thus make the solver converge to a bogus solution domi-
nated by the fictitious eigenvalue. Also, iterative solvers are
often used for solving discretized versions of elliptic partial
differential equations (PDEs). Their solutions must satisfy
the maximum principle: their maximum must be found on
the boundary. One may view a soft fault as a (transient)
violation of this principle. Alternatively, a “bad” soft error
may make the problem appear to have a nonmathematical
discontinuity.

Our fault model evolves from these mathematical interpre-
tations. We model faults as a specific MPI process returning
a bad vector from its preconditioner application. We gen-
erate faults in two ways: a fault may 1) scale its contribu-
tion to the global vector, or 2) permute its local portion of
the global vector. Permutations preserve the vector’s norm,
while making its contents incorrect. This models disconti-
nuity. Scaling increases or decreases the norm of the vector
predictably. This, or directly corrupting inner product or
norm results, perturbs the eigenvalue approximations. Cor-
rupting the basis vectors also makes the algorithm search for
a solution in the wrong direction. Our numerical fault model
suffices to cause stagnation or divergence in non-restarted
solvers.

2.2 Selective Reliability
Our fault-tolerance strategy rests on relating numerical

methods that naturally correct errors to system-level fault
tolerance. In particular, we assume a selective reliability
or “sandboxing” programming model [6] that lets algorithm
developers isolate faults to certain parts of the algorithm
in a coarse-grained way. In our scheme, we enforce that
the outer solver be reliable, while letting the inner solver
run in an unreliable mode. We aim to spend most of our
computation time in cheap “unreliable” computations, while
minimizing the time we spend in the presumably expensive
outer solve.

Analytically, any faults that occur in the inner solver man-
ifest as a “different preconditioner” to the outer solver. We
choose Flexible GMRES [9] as the outer solver, since it can
tolerate a preconditioner that changes between iterations.
As an inner solver, we use the Generalized Minimal Residual
Method (GMRES) from Saad and Schultz [10]. We show re-
sults for this inner/outer solver system, called FT-GMRES,
that uses a multigrid preconditioner (MueLu) and solves a
Poisson problem. Multigrid is the preferred preconditioner
for Poisson problems.

2.3 Implementation
We implemented our solvers using the Tpetra [1] sparse

linear algebra package in the Trilinos framework [7] and val-
idated them against both MATLAB and the solvers in Trili-
nos’ Belos package [2]. Implementing our solvers using Trili-
nos lets us benefit from the scalability and performance of
its sparse matrices and dense vectors.

3. RESULTS

3.1 Methodology
We previously described how we corrupt the precondi-

tioner’s output. To evaluate the impact of our precondi-
tioned solvers in the presence of SDC, we perform the fol-
lowing steps:

1. Solve the problem injecting no SDC, and compute the
number of times, K, the preconditioner was applied.

2. For all j in [1, K], reattempt the solve, introducing
SDC at the j-th preconditioner application. This re-
sults in K total solves.

3. For all K solves with SDC, compute the relative per-
cent of additional preconditioner applies over the SDC-
free solve1, e.g., Appliesobserved−AppliesF ailureF ree

AppliesF ailureF ree
× 100

4. Repeat Steps 2 and 3, letting various numbers of MPI
processes participate in the SDC injection.

5. Repeat Steps 2-4, varying the scaling factor applied to
the SDC.

6. For each combination of scaling factor and number of
faulty processes, plot the average number of additional
preconditioner applies as a percentage. 0% means no
additional applies; 100% means twice as many.

3.2 Model Comparisons
Fig. 1 shows a side-by-side comparison of the overhead

introduced from random bit flips and our numerical fault
model. Here, we use no detection mechanism and force our
solver to roll through all errors.

Each plot represents a different fault model, so the results
cannot be compared geometrically. The intent of the figure
is to illustrate the overhead we observe given faults from
each model. Recognize the overheads have roughly the same
range, yet the variance in Fig. 1a is considerably higher than
our model (Fig. 1b). We address this in greater detail in
§ 3.4.

Note, Fig. 1a shows the highest overhead when all 32 sub-
domains inject the 58th or 59th exponent bit flips. This is
not a weakness in our model. Those specific faults intro-
duce very large magnifications into the vector, but not large
enough to create an infinite or not-a-number value. Elliott et
al. [3] explored exactly this scenario of faults and proposed
a low overhead detector that efficiently filters such errors
with O(1) cost. For this exact reason our results analyze
scaling factors that would slip through such a filter. Only
the largest scaling factor, 1 × 105, would be detected by a
projection bound.

Next, we enable both explicit residual (‖Ax − b‖) and
projection bound tests per each inner iteration in Fig. 2. The
resulting colorbar bounds are similar for both the numerical
model and the bit flip model. That is, both models require
a maximum overhead in the range of 100% − 120%. This
also exposes the trouble with bit flip injection: bit position
does not affect the introduced overhead consistently. For
example, exponent bits sometimes introduce high overhead,
while mantissa bits can introduce overhead proportional to
exponent bits. Notice that the right-most column of the
numerical fault model is not the highest overhead — this is

1If Appliesobserved − AppliesFailureFree < 0, i.e., SDC ac-
celerated convergence, we record zero overhead.

(a) Overhead given no attempt to detect and respond to faults
with a random bit flip model.

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

50

100

150

200

250

300

350

400

450

500

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(b) Overhead given no attempt to detect and respond to faults
with a numerical fault model.

Figure 1: Overhead comparison with no fault detection, for a numerical fault model (right) and random bit flip injection (left)

(a) Overhead when utilizing detection with a random bit flip
model.

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

0

15

30

45

60

75

90

105

120

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(b) Overhead when utilizing detection with a numerical fault
model.

Figure 2: Overhead comparison with fault detection on, for a numerical fault model (right) and random bit flip injection (left)

due to a very low overhead detector, whereas checking the
explicit residual requires a preconditioner apply.

3.3 Computational Effort
Our fault model captures hard to detect, yet numerically

challenging faults. The largest overhead is easily charac-
terized by our model and requires substantially less experi-
mentation. For example, each shaded region constitutes one
trial (of which we compute a mean). Clearly evaluating 25
unique experiments is much cheaper than evaluating 64× 5
experiments. Moreover, if the experiment is not designed
to account for the bias introduced by random bit flips, the
mean will approximate optimistic overheads.

3.4 Expected Overhead Comparison
We compute the expected overhead across all experiments,

i.e., compute the expected value for each row of these graphs.
It becomes clear by inspection that our approach captures a
worst-case scenario well beyond that of random bit flipping.
That is, we are ensuring our algorithms can tolerate “bad”
undetectable errors — error cases that random bit flips fail
to expose — since we lack knowledge of exactly which val-

ues are the most sensitive. If an algorithm can handle our
fault model, it can certainly handle the errors introduced by
random bit flips.

We now compute the expected overhead given all samples
for a given number of faulty subdomains. This computes
the expected value for a “row” of the prior figures. For our
numerical model, this entails grouping all scaling factors to-
gether, while for the bit flip model this considers an equally
likely chance of flipping any of the 64 bits in the IEEE-754
representation.

Table 1 summarizes the expectation across all experiments
for a given number of faulty subdomains when no reactive
fault tolerance is used. This corresponds to Figures 1a and 1b.
Clearly, our numerical faults are much worse than bit flips.
Our model tends to create roughly 25 additional precondi-
tioner applies, because our inner solver iterates 25 iterations
(max) per inner solve. Our faults are sufficient to require
an entire inner solve. We then obtain our solution in the
next inner iteration, requiring roughly the failure free num-
ber of iterations (6). This gives a total iteration (and pre-
conditioner apply) count of approximately 25+6. Our model
has significantly smaller variance than what random bit flips

would have introduced. This indicates that our model con-
sistently introduces poor behavior, which is our intent.

Table 1: Additional preconditioner applies given no fault
detection; percent additional applies in parentheses.

Additional Preconditioner Applies

Faulty Bit Flips Numerical
Subdomains mean StdDev mean StdDev

1 7.28 (121%) 10.94 24.73 (412%) 5.05
2 7.56 (126%) 11.08 24.93 (416%) 5.07
8 8.11 (135%) 11.35 26.40 (440%) 1.90
16 8.56 (143%) 12.08 26.43 (441%) 1.89
32 9.51 (158%) 13.38 26.93 (449%) 2.85

Table 2 analyzes the overhead if we check explicit residuals
and projection lengths [3] inside the inner solver (Fig. 2a).
Again, we show that random bit flips present very optimistic
overheads. The reason for this was rigorously addressed by
Elliott et al. [4]. Even with fault detection enabled, our fault
model is still sufficient to show high overhead. This is de-
sired. The faults we introduce are not necessarily detectable
immediately. This forces our solvers to iterate 2-3 iterations
before finally reaching a divergent state that is detectable.
These are precisely the events we wish to study — faults that
are undetectable, yet cause the solvers to eventually reach
an invalid state. This motivates the study of low-overhead
detection mechanisms.

Table 2: Additional preconditioner applies with reactive
fault tolerance; percent additional applies in parentheses.

Additional Preconditioner Applies

Faulty Bit Flips Numerical
Subdomains mean StdDev mean StdDev

1 1.49 (25%) 2.54 7.00 (117%) 2.12
2 1.56 (26%) 2.48 7.00 (117%) 2.12
8 1.69 (28%) 2.35 7.27 (121%) 1.72
16 1.81 (30%) 2.74 7.07 (118%) 1.74
32 1.83 (30%) 2.54 6.97 (116%) 1.83

4. CONCLUSION
We have presented results based on a fault model that

allows us to characterize the numerical errors introduced
by faults, and have shown that this model encompasses the
range of overhead that the random bit flip model can intro-
duce. Our fault model does not aim to predict the actual
behavior of SDC. Rather, it shows a case sufficiently “bad”
for us to assess how our fault-tolerance strategies behave
when presented with very damaging SDC.

Our approach is a very different way of assessing precondi-
tioned iterative linear solvers given an uncertain fault model.
Rather than focus on what specifically constitutes a fault,
we force our solvers to work through numerically challenging
events. We specifically tune our fault model to inject errors
that are not necessarily detectable. Our errors live inside
the solvers’ valid norm bounds, and empirically we observe
our errors may cause divergence in latter iterations rather
than immediately.

We compare our model to that of random bit flips, show-
ing that random bit flip injection is not likely to show worst-

case overhead. We support this through a methodical injec-
tion of bit flips, and by computing statistics over all experi-
ments, as well as per bit position. Furthermore, we show our
approach produces very predictable variance, irrespective of
the number of processes that are faulty.

Acknowledgment
This work was supported in part by grants from NSF (awards
1058779 and 0958311) and the U.S. Department of Energy
Office of Science, Advanced Scientific Computing Research,
under Program Manager Dr. Karen Pao. Sandia National
Laboratories is a multiprogram laboratory managed and op-
erated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

5. REFERENCES
[1] C. G. Baker and M. A. Heroux. Tpetra, and the use of

generic programming in scientific computing.
Scientific Programming, 20(2):115–128, 2012.

[2] E. Bavier, M. Hoemmen, S. Rajamanickam, and
H. Thornquist. Amesos2 and Belos: Direct and
iterative solvers for large sparse linear systems.
Scientific Programming, 20(3):241–255, 2012.

[3] J. Elliott, M. Hoemmen, and F. Mueller. Evaluating
the impact of SDC on the GMRES iterative solver. In
28th IEEE International Parallel & Distributed
Processing Symposium (IEEE IPDPS 2014), Phoenix,
USA, May 2014.

[4] J. Elliott, M. Hoemmen, and F. Mueller. Exploiting
data representation for fault tolerance. In Proceedings
of the 5th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems, ScalA ’14, pages
9–16, 2014.

[5] A. Geist. What is the monster in the closet? Invited
Talk at Workshop on Architectures I: Exascale and
Beyond: Gaps in Research, Gaps in our Thinking,
Aug. 2011.

[6] M. Heroux. Scalable Computing Challenges: An
Overview. Minisymposium talk at SIAM Annual
Meeting: Supercomputing Challenges: Petascale and
Beyond, July 2009.

[7] M. A. Heroux et al. An overview of the Trilinos
project. ACM Trans. Math. Softw., 31(3):397–423,
2005.

[8] P. Kogge et al. ExaScale computing study: Technology
challenges in achieving exascale systems. Technical
report, Defense Advanced Research Project Agency,
Information Processing Techniques Office, 2008.

[9] Y. Saad. Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2nd edition, 2003.

[10] Y. Saad and M. H. Schultz. GMRES: A generalized
minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. Sci. Stat. Comput.,
7(3):856–869, July 1986.

[11] J. Schlaich and K.-H. Raineck. Die Ursache für den
Totalverlust der Betonplattform Sleipner A. Beton-
und Stahlbetonbau, 88:1–4, 1993.

