
Desh: Deep Learning for System Health Prediction of Lead
Times to Failure in HPC

Anwesha Das, Frank Mueller
North Carolina State University

{adas4,fmuelle}@ncsu.edu

Charles Siegel∗
Cray Inc.

csiegel@cray.com

Abhinav Vishnu∗
Advanced Micro Devices, Inc.
abhinav.vishnu@amd.com

ABSTRACT
Today’s large-scale supercomputers encounter faults on a daily
basis. Exascale systems are likely to experience even higher fault
rates due to increased component count and density. Triggering
resilience-mitigating techniques remains a challenge due to the
absence of well defined failure indicators. System logs consist of
unstructured text that obscures essential system health information
contained within. In this context, efficient failure prediction via
log mining can enable proactive recovery mechanisms to increase
reliability.

This work aims to predict node failures that occur in supercom-
puting systems via long short-term memory (LSTM) networks that
exploit recurrent neural networks (RNNs). Our framework, Desh1
(Deep Learning for System Health), diagnoses and predicts failures
with short lead times. Desh identifies failure indicators with en-
hanced training and classification for generic applicability to logs
from operating systems and software components without the need
to modify any of them. Desh uses a novel three-phase deep learning
approach to (1) train to recognize chains of log events leading to
a failure, (2) re-train chain recognition of events augmented with
expected lead times to failure, and (3) predict lead times during
testing/inference deployment to predict which specific node fails in
how many minutes. Desh obtains as high as 3 minutes average lead
time with no less than 85% recall and 83% accuracy to take proac-
tive actions on the failing nodes, which could be used to migrate
computation to healthy nodes.

CCS CONCEPTS
• Computer systems organization → Reliability; • Comput-
ing methodologies→ Machine learning approaches; Neural net-
works; • General and reference → Evaluation;

KEYWORDS
LSTM, Failure Prediction, Log Mining, HPC, Node Failures, Lead
Times, Anomaly Detection, Deep Learning

∗Both the authors contributed to the paper when they were researchers at the Pacific
Northwest National Laboratory
1Desh means Country or Native Land in Hindi

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’18, June 11–15, 2018, Tempe, AZ, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5785-2/18/06. . . $15.00
https://doi.org/10.1145/3208040.3208051

ACM Reference Format:
Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu. 2018.
Desh: Deep Learning for System Health Prediction of Lead Times to Failure
in HPC. In HPDC ’18: International Symposium on High-Performance Parallel
and Distributed Computing, June 11–15, 2018, Tempe, AZ, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3208040.3208051

1 INTRODUCTION
Significant research efforts [23, 33] have been invested on anomaly
detection and failure prediction for enhanced system reliability.
With the transitioning from the petascale to the exascale com-
puting era, failures in large-scale HPC systems are anticipated to
increase and the MTBF (mean time between failures) will decrease,
wasting considerable compute capacity [8]. This obviates research
efforts to investigate the trade-offs between power, performance
and resilience with alternate solutions. Several failure characteri-
zations [24, 25], and machine learning (ML) solutions [22, 33] for
anomaly detection exist for large-scale computing systems. Past
work identified faults of gradually failing components with hours
of lead time [48], but most faults occur within a much shorter win-
dow. The state-of-the-art lacks in two key aspects. First, faults need
to be predicted even when lead times are short (in the order of
minutes), together with their exact fault location. In other words,
pin-pointing the component (e.g., which node) of impending fail-
ures and to do so just in time so that proactive recovery actions
can be taken (such as job migration [39] or quarantining unhealthy
nodes [25]) are equally important. Second, the large component
count of extreme-scale HPC presents a challenge to data mining
techniques such as support vector machines (SVM) [20] or princi-
pal component analysis (PCA) [33] due to their limited scalability
since prediction has to be performed in real time, and results have
to be available prior to the actual failure. Hence, novel scalable
and optimized data mining solutions are required. Moreover, the
natural language of unstructured logs produced by the comput-
ing systems gives rise to two problems. First, since the data lacks
any structure and labels, conventional ML techniques suffer from
limitations in processing it, e.g. forming feature vectors or classi-
fiers is non-trivial. Second, it is infeasible to infer intricate patterns
from high dimensional data quickly, unless the data is processed
and fed with appropriate input representation. Deep learning has
made tremendous progress in these aspects recently, particularly
in natural language understanding [31]. This motivates the need
to explore scalable unsupervised deep learning techniques in the
context of node failure prediction. Researchers agree that failure
prediction is useful even if imperfect and with limited precision [8].
Suppose 50% of the node failures are correctly predicted and the
remaining ones are incorrectly predicted (false positives), we can
then prevent half of the expensive checkpoint/restarts that require
global coordination with much cheaper process migrations.

https://doi.org/10.1145/3208040.3208051
https://doi.org/10.1145/3208040.3208051

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA A. Das et al.

HPC systems suffer from various kinds of failures at the hard-
ware, software, and application levels. While some failures are criti-
cal and obvious to detect, such as kernel panics, most anomalies are
not easy to track. Which component will fail and how it will impact
the system is not known ahead of time. The observed symptoms
of anomalies in the system may or may not reflect the exact root
cause. For example, a kernel panic may be caused by a Lustre file
system bug or a hardware machine check exception. However, the
unwanted consequences, such as node failures, job abortions, etc.,
can be mitigated if the anomalous patterns are detected well ahead
of time by incorporating fast data mining techniques.

This paper proposes Desh, Deep Learning for System Health, to
predict node failures using a recurrent neural network technique
called LSTM (long short-term memory). Desh obtains an average
lead time of more than 3 minutes, which suffices for commonly
known recovery mechanisms (see Section 4.6). While deep learning
has been investigated extensively in the areas of vision [17] and
speech recognition [28], its efficacy in the context of fault prediction
and localization for large-scale systems needs more investigation.
While DeepLog [18] detects anomalies using LSTM without any
lead time analysis, Desh predicts node failures. We discussed several
other differences to prior work in Section 4.5.

Challenges: Recent failure prediction approaches either do not
consider lead time to failure, use fault injection [38, 45] and syn-
thetic data for evaluation, modify systems with custom log augmen-
tation [47] relying on the source code format, or do not consider
the semantic information of the log entries [36]. In contrast, we use
real logs from four supercomputing systems without modifications
or augmentation as these logs are vendor controlled, and as are
the software layers emitting them, i.e., they cannot be modified
by us. The efficacy of the approach is determined by investigating
which parts of the log are pertinent for failure prediction, by dis-
carding benign events, and by leveraging expert-labeled ground
truth. The main challenge in efficient prediction lies in process-
ing the timestamps between two events across nodes correctly to
predict accurate lead times. The data has to retain the location
information of the anomaly, keeping track of the time differences
between correlated events that are generally not adjacent in the
logs. This requires a methodology that considers the anomalous
phrases leading to node failures and estimates the time of failure
based on prior learning.

Contributions: Desh uses LSTM to estimate lead times for im-
pending node failures. We perform phrase analysis of unlabeled log
entries, which may or may not belong to the failure chain. Desh
uses a novel three-phase deep learning approach to first train to
recognize chains of log events leading to a failure, second re-train
chain recognition of events augmented with expected lead times
to failure, and third predict lead times during testing/inference de-
ployment to predict which specific node fails in how many minutes.
The use of time differences between log entries in a chain requires
this second re-training step as failure chains are unknown prior to
the first training phase, i.e., it is unknown which events of a log are
safe or erroneous until the initial training has formed such chains.
Only after chains are known can time differences of earlier events
in the chain to a terminal log event indicating a node failure be
calculated. Based on time differences and along with the phrases,
Desh infers failure chains and ultimately reports specific node ids

(identifiers) leading to node failures. Based on trained failures, Desh
predicts failures with acceptable lead times before a node stops to
respond. Thus, Desh not only helps in flagging failures to take
recovery actions, it also gives insights as to what phrases indicate
node failures based on this statistical analysis.

2 BACKGROUND
Traditional language modeling uses frequency counts of variable
length sequences (n-gram model) in a vocabulary of words consid-
ering every word an individual unit. In other words, the probability
of a word given a history is based on maximum likelihood estima-
tion (MLE); two histories are similar if the last (n-1) words are the
same. N-gram models [7] do not correlate semantically close words
since words are indivisible. However, recurrent neural networks
(RNNs) have the power to predict future data based on sequences
of past data considering the semantic closeness since they exploit a
distributed representation of words, i.e., word vectors of real values.
Hence, in RNNs semantically similar words can be close together in
the vector space. LSTMs (long short-term memory) are RNNs aug-
mented with memory and logic gates, known to retain a long-term
memory of short-term data chains that represent events correlated
in time and space (see [27] for details). LSTMs contain hidden lay-
ers, which strengthen their memory persistence. Supercomputing
logs have unstructured textual data with short-term failures from
seconds (e.g., kernel crash in 20 seconds) up to minutes (e.g., link
control block failure in 5 minutes). Moreover, time-stamped logs
have diverse events logged in the granularity of microseconds,
and patterns evolve over varying intervals of time that have to be
remembered over a long time (days to weeks).

Prior TextMining Techniques: Past solutions based on proba-
bilistic models, PCA/ICA (principal/independent component analy-
sis) [33], and Markov chain and decision trees (e.g., random forests)
worked for systemswith comparativelymore structured logs, where
structure aids in feature extraction and offline anomaly detection.
They are less efficient when it comes to unstructured text data
mining with time constraints. Prevalent approaches such as Sup-
port Vector Machines (SVMs) [20] and sequence mining [19] either
require complex feature extraction or are unable to capture long-
term dependencies making systems intractable with scale. Very
recently Coates et al. [13] demonstrated that large-scale training
can be done through deep learning on HPC infrastructures with
acceptable classification performance and scalable efficiency. LSTM
works well for time sensitive data. It can unlearn and relearn over
time making it a preferable choice for Desh over other RNNs such
as logistic regression and multilayer perceptron (MLP).

Node Failures: This paper uses the term "node failures" fre-
quently. We define node failures as abnormal node shutdowns
caused by some system anomaly triggered by software or hardware.
These failures differ from intentional maintenance-related massive
node shutdowns or periodic service reboots. As any other predic-
tion solution, Desh does not investigate the exact root cause of the
anomaly leading to a failure, it instead emphasizes phrase mining
to identify impending node failures ahead of time. We have inves-
tigated normal service patterns of node shutdowns. Large-scale
node reboots clearly indicate service-oriented shutdowns. Desh

Desh HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Figure 1: Desh with LSTM

Figure 2: Desh Overview

considers anomalous node failures, that are identifiable by a termi-
nal log message, which is verified in consultation with the system
administrators.

3 DESH OVERVIEW
Table 1 provides an overview of the system logs studied, which
are collected from four contemporary HPC systems, namely M1,
M2, M3 and M4. All of these systems are production level clusters
typically running more than 1,200,000 jobs/year and tens of thou-
sands of compute node hours. Duration refers to the time duration
of the datasets used for evaluation. Size refers to the log data size
and scale indicates the cluster size in terms of the number of nodes.
40% of the top 10 supercomputers belong to the Cray series [2]. Our
system logs have been procured from contemporary Cray machines
for prediction evaluation.

Table 1: Log Details
System Duration Size Scale Type
M1 10 months 373GB 5600 nodes Cray XC30
M2 12 months 150GB 6400 nodes Cray XE6
M3 8 months 39GB 2100 nodes Cray XC40
M4 10 months 22GB 1872 nodes Cray XC40/XC30

These logs are analyzed by our framework called Desh, with
its three-phase solution design (Figure 1a). (1) In the first phase, a
sequence of phrases leading to node failures is extracted, which
trains LSTM phase 1 to learn/recognize such chains based on train-
ing data. (2) In the second phase, the formulated chains from phase
1 is fed to LSTM phase 2 to make it aware of the cumulative time
differences (∆ times) of just those phrases that belong to a failure
chain relative to the terminal phrase in the respective chain. (3) In
the inference phase, learned chains from the second phase allow us
to estimate the lead times of future failures with an indication of
the future location from test data that is disjoint from the training
data (Figure 1a). Desh features an RNN with input/output layers
along with multiple hidden layers that form a stacked LSTM to
facilitate training and prediction on system logs (Figure 1b). Fig-
ure 2 elaborately depicts the overall solution design for lead time
prediction described in detail below.

3.1 Phase 1: Training
The first phase entails learning failure chains from raw data. The
raw logs of Cray/Linux systems contain phrases with anomalies
interspersed with considerable amounts of noise and benign events,
much in contrast to IBM logs [1]. The phrases with timestamps
pertaining to specific nodes are separated. For example, a log mes-
sage has a timestamp T1, an event phrase P1 and a node N1 (see
row 4 in Table 2). Similarly, several such timestamped phrases will
correspond to specific nodes.

Tracking the node ids helps to retain the specific failure location
in the cabinet/blade/chassis. We train datasets node wise in this
phase (see Figure 3a). In other words, logs from each node are
concatenated and fed to the same LSTM. This has two advantages.
First, there is no overhead of storing the node id and processing it in
the vector, which saves memory and computation costs. Second, to
learn the patterns of failure chains observed, node identity is of no
consequence, what phrases appear in a sequence leading to various
node failures is required. We do not predict time in this phase, but
sort the log messages by their timestamps for the same reason. The
order of the phrases matters here, not their time difference. Time is
taken care of in phase 2. As seen in Figure 3, phase 1 uses sequence
of phrase ids as the vector.

Each event phrase is then segregated into static and dynamic
contents to identify the constant message subphrase separating it
from the variable component (e.g., error identifier, IP address) as
shown in Table 2. Thus P1, breaks down to its static component and
variable component (see Table 2). The dynamic component is dis-
carded. Once the constant messages are extracted they are encoded
to a uniquely identifiable number. These phrases are hyphenated
multi-word entities. Now, if we have a sequence of encoded phrases,
namely, {45, 67, 89, 40} for node N1, LSTM cannot comprehend their
semantic or syntactic relevance in this discrete form. Vector space
models with distributed representation help establish semantic cor-
relation. These encoded phrases are then vectorized using word
embeddings. Embeddings are defined contexts that check what ap-
pears before and after a target event phrase in a sequence of events.
We use the traditional skip-gram model [34] for word embeddings
of TensorFlow [3] to vectorize the data. For all the encoded phrases

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA A. Das et al.

Table 2: Phrase Vectors

Timestamp
(T)

Node Id (N) Phrase (P)

Static Dynamic
1 16:25:48.301744 c1-0c1s1n0 kernel ∗ LNet: hard-

ware quiesce ∗
p0-
20141216t162520,
All threads awake

2 16:39:59.507009 c4-0c0s0n2 Running ∗ using val-
ues from ∗

sysctl,
/etc/sysctl.conf

3 00:01:16.704832 c2-0c0s15n2 hwerr ∗ Correctable
aer replay timer
timeout error∗

[28451]:0x6624,
Info1=0x500:
Info2=0x18:

4 10:47:39.417963
(T1)

c0-0c0s0n2
(N1)

hwerr *:ssid rsp a sta-
tus msg protocol err
error∗ (P1)

:Info1=0x4c00054064:
Info2=0x0:
Info3=0x2

Table 3: Phrase Labeling

Safe Unknown Error
1 Mounting NID spe-
cific

LNet: No gnilnd traf-
fic received from

WARNING: Node
* is down

2 cpu *
apic_timer_irqs

∗ invoked oom killer Debug NMI de-
tected

3 Setting flag LNet:∗
gnilnd:kgnilnd
reaper dgram check

cb node unavail-
able

4 Wait4Boot PCIe Bus Error:
severity=Corrected

Kernel panic not
syncing

5 Sending ec node
infowith boot code

ERROR: Type:2;
Severity:80;

Stack/Call Trace

in the data, we have a set of phrase embeddings referring to their
context such as Lustre, Lnet, Hwerror etc. Using the embeddings
and what appears before and after a target, the vector space is
formed. Window sizes of 8 and 3 are used, respectively, to consider
the number of phrases left and right of a specific target phrase.
Desh trains via the stochastic gradient descent optimizer (sgd) with
categorical cross-entropy since log analysis is a multi-class problem.
Desh predicts the target phrase using the nearby phrases (e.g., for
sequence {45, 67, 89, 40, 89, 102}, it provides the probability that 40
is observed when {45, 67, 89} appears before it and {89, 102} appears
after it). This conforms to the vector representation (2) in Figure
2. Now, these vectors are fed into the stacked LSTM using two
hidden layers (3) to perform 3-step prediction (to predict the next 3
phrases). A larger history size and a higher number of hidden layers
increase accuracy, but also the computation time. Experimentation
proved 3-step prediction with 2 hidden layers, to have ≈85% accu-
racy taking ≈0.65 milliseconds in time. More than 1 hidden layer
strengthens LSTM’s efficacy to remember past phrases to make
predictions. This unsupervised LSTM phase 1 training emits the
trained sequences of phrase vectors.

Phrase Labeling: From these vectors, we decode the phrases
to filter (4) them into three categories: safe, error and unknown
as shown in Table 3. Safe represents the benign phrases, which
are definitely not related to any system anomaly (e.g.,Wait4Boot).
Error refers to those phrases, which are definitely indicative of
some anomaly (e.g., Stack Trace). The Unknown tag is given to
those phrases that may or may not be indicative of some anomaly
(e.g., PCIe Bus Error: severity=Corrected). It should be clarified that
tagging a phrase as Error does not imply that it will always be a
part of node failures, it may or may not be a part of node failure.
However, these phrases are either terminal messages (e.g., Stop NMI
detected) or major hardware, software malfunctioning (e.g., page
faults) seen in Linux logs. We do not consider the log severity levels
even if present. This phrase grouping is based on consultation with
the system administrators. After categorization, we have phrases
with Safe (S), Error (E) or Unknown (U) labels. Safe (S) phrases
are eliminated now, since our primary interest is in the error and
unknown phrases.

Phrase labeling is deliberately not done before vectorization since
training is more robust with noise. Moreover, indicators for erro-
neous or benign events are not an a priori for unsupervised learning.
Desh incorporates labeling to optimize computation costs in phase
2 to determine the likelihood that unknown phrases lead to node
failures. A sequence of events leading to a node failure is formed us-
ing Unknown (U) and Error (E) tagged phrases after referring to the
raw data, since terminal messages indicating a node going down are
known (e.g., Shutdown events, cb_node_unavailable). Desh forms
trained failure chains (5) learning contextually relevant phrases
temporally close as shown in Table 4. At this juncture, we evaluate
statistically how certain unknown phrases form a failure chain,
while others never appear in any chain. This likelihood estimation
unveils insights to log messages eventually leading to node failures.
We discuss the analysis of unknown phrases in Section 4.3.

LSTMPhases: Figure 3 depicts a unified view of the three phases.
Desh phase 1 and phase 2 are training phases that process the vec-
tors concatenated, i.e., one node after the other (Figures 3a and 3b).
Desh learns failure sequences from different nodes sequentially.
The difference is the contents of the input vector for each log mes-
sage pertaining to a node. While phase 1 contains only phrase ids,
phase 2 contains the time differences between phrases along with
phrase ids (Section 3.2). In phase 3, Desh detects failures based on
the previous training applied to the new test data (different from
the training set). As seen in Figure 3, the vectors fed to LSTM phase
3 are from a specific node (not concatenated). The vectors contain
time differences (∆T) of phrases along with phrase ids similar to
phase 2 (Section 3.3). The idea behind this is to first learn from
all nodes and use that assimilated learning to detect failures per
individual node during testing and inference.

3.2 Phase 2: Training
The objective of the second phase is to predict lead times based on
the learned failure chains. In phase 1, the presence of noise makes
∆T calculation infeasible, since we need to consider anomalous
phrases leading to node failures without interspersed Safe phrases.
In this phase, we segregate the phrases forming the failure chains
from the rest (not part of a failure chain), and compute the time
differences between phrases in the failure chain to enable lead time
prediction. Desh then trains multiple failure chains to learn the

Desh HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Figure 3: LSTM Phases
Table 4: Example Failure Chain

Timestamp Phrase Label Phrase Vector
P1 03:59:58.466 (T1) CPU *: Machine Check Excep-

tion:
U ∆T1=07.822, P1

P2 03:59:59.543 (T2) [Hardware Error]: Run the
above through ’mcelog –ascii

U ∆T2=06.745, P2

P3 04:00:00.477 (T3) [Hardware Error]: RIP !INEX-
ACT! 10:

U ∆T3=05.811, P3

P4 04:00:01.706 (T4) Kernel panic - not syncing: Fatal
Machine check

E ∆T4=04.582, P4

P5 04:00:01.731 (T5) Call Trace: E ∆T5=04.557, P5
P6 04:00:06.288 (T6) cb_node_unavailable E ∆T6=00:000, P6

Table 5: LSTM Parameter Specifications
Input

Vector
Output
Vector

#HL Steps #HS Loss Function,
Optimizer

Phase-1 (P1, P2..PN) (P11, P15..PN) 2 3 8 SGD, categorical
crossentropy

Phase-2 (∆ T1, P1),
(∆ T2, P2,..)

(∆ T11, P11),
(∆ T22, P22,..)

2 1 5 MSE, Rmsprop

Phase-3 (∆ T4, P4),
(∆ T5, P5,..)

(∆ T15, P15),
(∆ T16, P16,..)

2 1 5 MSE, Rmsprop

diverse ∆Ts with phrase ids to eventually predict what times are
expected in the future. This enables the capability of lead time
prediction of Desh.

We know the timestamps and the phrases (either U or E) pertain-
ing to a detected node failure from phase 1. Table 4 demonstrates
how the time differences between the phrases in the failure chain
are converted to an input vector for LSTM phase 2, for a specific
node failure. This failure was caused by hardware processor corrup-
tion. Here, a CPU experienced a hardware machine check exception,
followed by kernel panic with a call trace, after which the node
failed. Table 4 enlists a few phrases for brevity.

∆Time Calculation: Our target is to predict the lead time to
a node failure. Anomalous messages precede terminal messages
in a failure sequence. The manifested failure is indicated by the
higher order time-series. Hence, we sort the data in descending
order of timestamps and calculate ∆Ts, which is the cumulative
time difference between the current phrase and the last phrase
(highest order) in the sequence. The highest timestamped phrase in
the sequence is assigned ∆T=0 since there is no phrase left in the
sequence to calculate the time difference. For example, in Table 4,
∆T6 is assigned 0. Next, we compute the ∆Ts subtracting times-
tamps of every phrase from T6 (e.g., T6-T5, T6-T4, T6-T3 etc.) in the
failure chain, respectively, and obtain the time differences in sec-
onds (7.822, 6.745, 5.811, 4.582, 4.557, 0). The input to LSTM phase
2 is a 2-state vector with the ∆T and the phrase id, as shown in the
Phrase Vector column of Table 4. As seen in Figure 3, the vectors
are concatenated across node logs, but with added ∆ times unlike
phase 1. Training on these time differences helps LSTM learn how
late the terminal phrase is expected to appear in the sequence based
on the previously seen phrases. In phase 2 the LSTM is fed with
these vectors with a history size of 5 to perform 1-step prediction
for every sequence with 2 hidden layers.

This training performed offline on multivariate time-series ex-
pects the predicted value to be close to the actual value seen in the
training data, thus the objective function employed is the mean
squared error (MSE) loss minimization combined with the RMSprop
optimizer.

3.3 Phase 3: Testing
In the third phase, LSTM is used on the test data to validate trained
failure chains from Phase 2. The test data is processed to form
encoded vectors with time differences and phrases similar to the
discussion of Table 4 in Section 3.2. It should be noted that here
we need to track the node id to know which node is expected to
fail with how much time is left before any failure. Please note in
Figure 3c, the vectors are not concatenated across nodes as in phase
1 and 2. Instead, the log of each node is passed to an identical
trained LSTM. Sequences of vectors containing ∆Ts and phrase
ids pertaining to nodes are formed from the test data. We form
batches corresponding to distinct nodes with their sequence of
phrase vectors. Suppose we have 100 distinct nodes in the test data,
then we have 100 batches of size M, i.e., M 2-state vectors in each
batch. This represents node ids in a way that saves computation cost
and conforms to the input vector format. LSTM uses this test data
and the target data obtained from the previously trained failure
chains for evaluation. LSTM predicts the next sample from the
trained data (failure chain), compares with the vector in the test data
and computes the MSE. Notice that this is not a binary classification
problem. While validating phrases in a sequence the prediction if
a node failure will happen is determined by trying to find a close
match to the actual target failure chain.

We use a threshold of 0.5 for inferring node failures. In other
words, when LSTM obtains MSE≤0.5, we consider those outcomes
to check for failure. Based on experimentation, more than 0.5 MSE

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA A. Das et al.

in the test data emitted chains that are quite dissimilar from those
in the trained failure chains. Suppose the prediction is {P1, P3, P7}
and the failure chain is {P1, P3, P8}. We may consider it a failure
and cross validate with the ground truth data. We can then extract
the ∆Ts from the vectors and compute the predicted lead times. Let
us say we have {(6.2, P4), (2.57 P6), (1.4, P9)}, with time in minutes,
then a lead time of 4.8 minutes is predicted before the node fails.
Overall, Desh obtains node failures with as high as 87.5% recall
and an avg. of 19.43% false positives. Table 5 depicts the major
parameters of LSTM training for Desh in phases 1, 2 and 3. The
input/output vectors show the details of the vector entries; HL
indicates the number of hidden layers used; Steps refers to the
number of steps of prediction, i.e., how many samples to predict
based on the history provided; and HS refers to the History Size,
the window size of samples given during training based on which
prediction happens. Lastly, the loss function and optimizer required
for LSTM is indicated per phase.

4 EVALUATION
We have built a prototype implementation of Desh using Keras [11]
with a TensorFlow [3] backend. Our evaluation uses actual system
logs of several supercomputing machines to demonstrate the effi-
cacy of Desh. Desh obtains as high as 3 minutes lead time, with no
less than 83.63% accuracy. We split the dataset for all the systems
for training and testing. 30% of the data is used for training and the
remaining is used for testing. The experiments are performed on the
Intel platform. Our experimental evaluation quantifies the predic-
tion efficacy of Desh in terms of the standard performance metrics,
performs lead time sensitivity and determines the implications of
unknown phrase analysis in the context of system reliability.

4.1 Prediction Accuracy
Table 6 tabulates the metrics used for statistical analysis, namely,
recall, precision, accuracy, F1 score, false positive rate and the
false negative rate. Their corresponding formulas are indicated in
Column 2, where TP = True Positives, FN = False Negatives, TN
= True Negatives and FP = False Positives, respectively. Correctly
predicted failures are true positives, incorrectly predicted failures
are false positives, failures missed by Desh are false negatives, and
the sequence of phrases not predicted by Desh as failures, which
are actually not failures, are true negatives. Additionally, we have
computed the F1 score, which evaluates Desh’s failure prediction
accuracy considering the weighted average of recall and precision.

Figure 4 illustrates that, both accuracy and F1 score are relatively
high for all the systems. While the recall rates do not vary much
(85.10% through 87.5%), M4 has comparatively low precision.

Observation 1: Desh has ≥84% precision, ≥83.6% accuracy and
≥85.7% F1 score along with as high as 87.5% recall rates across all the
four systems.

This implies that the information gained from the learned failure
chains aided Desh in making accurate predictions for the overall
test data. In other words, new patterns or unknown failures are
rare, hence, our model was a good match.

The failure chains were reliable to sustain the model’s predictive
power over the events encountered during testing. Another reason
for Desh’s performance is the history window size is 5 to 8 in Desh.
More history improves accuracy consuming more time. Reducing
the history size to 3 brings down the accuracy by 10% to 14%.

Table 6: Prediction Efficiency
Metrics Formula
Recall (%) TP/(TP+FN)
Precision (%) TP/(TP+FP)
Accuracy (%) (TP+TN)/(TP+FP+FN+TN)
F1 Score (%) 2*(Recall*Precision)/(Recall+Precision)
FP Rate (%) FP/(FP+TN)
FN Rate (%) FN/(TP+FN), (1-Recall)

The false positive and false negative rates for the systems are
shown in Figure 5. While the false positive rates range from 16.66%
to 25%, the false negative rates do not exceed 15%. They vary be-
tween 12.5% to 14.89% indicating that Desh is effective in not miss-
ing actual failures. M1 has a higher false positive rate and higher
true negatives. For M1, incorrectly flagged failures were higher.
Since the overall accuracy and F1 score are high, a 25% false posi-
tive rate is acceptable and Desh is capable of predicting most of the
node failures.

Table 7: Node Failure Classes
Class Failures Avg. Lead

Times(secs)
1 Job Job scheduler (Slurm)-based errors, 81.52

Task/Application related bugs
2 MCE H/W Machine Check Exceptions, 160.29

Page/Memory Faults,
Processor Corruptions

3 FileSystem Lustre/DVS Bugs, 119.32
(FS) Packet/Protocol Errors

4 Traps Segmentation Faults, 115.74
Trap invalid opcode

5 Hardware NMI Faults, critical 124.29
(H/W) hardware errors,

Node heartbeat errors
6 Panic Stack Trace, Kernel Panic 58.87

4.2 Lead Times
Our research goal is to obtain sufficient lead times while retaining
the prediction accuracy. We have analyzed lead times across three
dimensions, seeking to answer the following questions:
• How does the diversity of node failures affect the lead times?
• How high is the average lead time for each of the systems?
• How sensitive are the lead times w.r.t. the false positive rates?

To this end, we classify node failures considering their predomi-
nant context of failures. We have investigated various chains lead-
ing to failed nodes and determined the prominent phrases causing
anomalous node shutdowns. Table 7 enumerates those classes eval-
uating the sequence of events. Job class refers to the node failures
caused by the slurm job scheduler due to slurm controller connec-
tivity problems or resource outage caused by application aborts etc.
MCEs refer to hardware machine check exceptions frequently en-
countered by compute nodes causing processor corruptions, mem-
ory faults and other hardware interrupts. FileSystem bugs are
mostly Lustre (parallel file system) errors, mount problems of DVS

Desh HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

 0

 20

 40

 60

 80

 100

 120

M1 M2 M3 M4

P
e

rc
e
n

ta
g
e

 (
%

)

Systems

Recall

85.1 87.5 86.9 87.5

Precision

95.2 92.1
97.5

84

Accuracy

83.6 85.7 86.5 85.1

F1 Score

89.8 89.7 91.9
85.7

Figure 4: Prediction Rates

 0

 5

 10

 15

 20

 25

 30

M1 M2 M3 M4

P
e
rc

e
n
ta

g
e
 (

%
)

Systems

FP Rate
25

18.75

16.66 17.39

FN Rate

14.89

12.5 13.04 12.5

Figure 5: FP Rate and FN Rate

 0

 50

 100

 150

 200

Job
M

C
E

FS Traps

H
/W

Panic

A
v
g

.
L

e
a

d
 T

im
e

 (
s
e

c
s
)

Node Failure Class

Standard Deviation

Figure 6: Lead Times+Failure Classes

 100

 120

 140

 160

 180

 200

M1 M2 M3 M4

A
v
g

.
L

e
a

d
 T

im
e

 (
S

e
c
s
)

Systems

Standard Deviation

Figure 7: Avg. Lead Times of Systems

 0

 10

 20

 30

 40

 50

 100 150 200 250 300 350 400

F
a

ls
e

 P
o

s
it
iv

e
 R

a
te

 (
%

)

Avg. Lead Times (seconds)

Figure 8: Lead Times and FP Rate

(data virtualization server) etc. Several bit errors, packet and pro-
tocol errors are also considered in this class, which are common
in many failure chains. While Traps are typically software inter-
rupts, exceptions, segmentation faults and invalid opcode errors,
the Hardware errors are node heartbeat fault messages, NMI faults,
interconnect failures etc. Lastly, a kernel panic followed by a stack
trace can be triggered by both hardware faults and software excep-
tions. Kernel panics commonly cause nodes to fail. Figure 6 helps
to answer the first question. The standard deviation as seen is low.
It is intuitive that kernel panics do not have high lead times since
the anomalies happen just prior to the failure, without enough
lead time for proactive job migration. Their avg. lead time is ≈1
minute. MCEs and FileSystem failures have comparatively higher
lead times, job scheduler-based failures are rare with ≈82 seconds
lead time.

Observation 2: Based on the class of failures, procured lead times
differ. LSTM training is efficient when trained data contains major
failure classes with correlated log messages preceding an actual ter-
minal message where node stops responding.

Figure 7 shows the average lead times of each of the 4 systems
with their standard deviations. M2 has higher lead times than the
rest since M2 features more node failures caused by Hardware and
Filesystem classes and fewer kernel panics. All the systems
have more than 2 minutes average lead time. The standard devia-
tions of lead times of a specific failure class is lower than it is in a
specific system. On investigation we found that, a system has higher
variations of failures with diverse failure class, hence the obtained
lead times vary. For all the node failures of the same failure class,

the deviation in lead times are not that high as seen in Figure 6.
Figure 8 shows the lead time sensitivity. Let us recall the cumulative
∆T calculation Desh performs in phase 2 training, as described in
Section 3.2. Suppose, we have a sequence of events in the test data,
{(4, P1), (3.1, P2), (2.5, P3), (0, P4)} with ∆Ts (in minutes) and phrases
in each sample vector. Now, if Desh predicts a failure while testing
P4, we obtain 0 lead time (P4 is a terminal message), if a failure is
flagged after checking P3 we get 2.5 minutes lead time. In other
words, the earlier we flag the longer the lead time. The caveat is
that there are several other sequence of events similar to a target
failure chain not leading to a failed node. In those cases, if failure
is flagged after checking P2 or P1, we obtain 4 minutes lead time
at the expense of an increasing false positive rate. This makes the
sensitivity study important. We aim at longer lead times, yet need
to limit the false positive rate. Figure 8 indicates that a false positive
rate in the range of 18% to 30% results in a lead time of 105 seconds
to 196 seconds. As the lead time increases to more than 4 minutes,
false positives rise to 39%, finally reaching 44% with ≥6 minutes
lead time.

Observation 3: Desh obtains more than 2 minutes lead time with
acceptable false positive rate (16.66% to 25%) and false negative rate
(12.5% to 14.89%) across all the 4 systems.

Observation 4: The standard deviation of lead times to node failures
of a specific failure class is lower than the standard deviation across
all node failures in a system indicating that different failure classes
have unique and reproducible lead times to failure.

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA A. Das et al.

Table 8: Unknown Tagged Phrases
Phrase (%)
P1 LustreError * 56
P2 Out of Memory/Killed Process 15
P3 Lnet: Critical H/W error 36
P4 Slurm load partitions error: Unable to contact slurm controller 42
P5 hwerr[*]: Correctable AER_BAD_TLP Error * 12
P6 Sent shutdown to llmrd at process * 17
P7 AER: Multiple corrected error recvd * 21
P8 Trap invalid code * Error * 8
P9 modprobe: Fatal: Module * not found * 27
P10 <node_health> * Warning: program * returned with exit code * 29
P11 DVS: Verify Filesystem 60
P12 BUG: unable to handle kernel NULL pointer dereference 25

 0

 10

 20

 30

 40

 50

 60

 70

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
p11

p12

P
e

rc
e

n
ta

g
e

 (
%

)

Unknown Phrases

Contribution to Node Failures

Figure 9: Unknown Phrase Analysis
Table 9: Unknown Phrases with and without Node Failures

Failure 1 Failure 2 Not Failure 1 Not Failure 2
1 H/W Error: MCE Logged LustreError * nscd: nss_ldap reconnected LustreError: Skipped
2 Corrected Memory Errors on Page * DVS: Verify Filesystem: * <node_health> program * nscd: nss_ldap reconnected

returned with exit code *
3 <node_health> program * DVS: * no servers functioning properly Trap Invalid Code Hw Error: MCE Logged
returned with exit code *

4 mce_notify_irq: * Startproc: nss_ldap: failed.. Killed process * Corrected DIMM Memory Errors
5 Lnet: critical hardware error: * Stop NMI Detected Out of memory * MCE_notify_IRQ
6 [Gsockets] debug [0]: critical h/w error Slurm load partitions error: Lustre: * binary skipped * Lnet: H/W Quiesce

Unable to contact slurm controller
7 Stop NMI Detected Slurmd Stopped hwerr[*]: RSP Corrected Memory Errors on Page *

A_status_msg_protocol_error*
8 <node_health> warning: * node is down System: halted <node_health> * failures: Lustre: * connected to *

The following tests * failed

4.3 Unknown Phrase Analysis
Table 8 depicts a subset of commonly encountered phrases in Cray
logs that are not individually benign or erroneous by itself but can
manifest as failures based on other system events. Their percentage
of appearance in node failure chains is indicated in Column 3. Some
phrases are seen in many abnormal node shutdowns such as Lus-
treError (P1) and DVS: Verify Filesystem (P11). It is interesting to
note that an appearance of anomalous messages such as software
trap (P8) or network critical hardware error (P3) do not necessarily
result in failing nodes. We have observed these phrases in sequences
of events pertaining to nodes without unusual node shutdowns
during those time frames. We distinguish between anomaly-based
node failure versus intended node shutdowns such as maintenance
service or periodic reboots. Those have simpler patterns in mani-
festation. Figure 9 demonstrates that while hardware correctable
errors (P5) and out of memory/killed process errors contribute less
to failures, Lustre filesystem bugs are quite common. This is because
several hardware faults trigger software faults that in turn trigger
other software errors, even if the root cause may be a hardware
error (conforms to the observation by Gainaru et al. [21]). This
observation is subject to the events during the time frame consid-
ered. Even if the statistics vary based on the target systems and
datasets used, this estimate drives home an important point, namely
that the presence of software traps or critical hardware errors does
not always lead to node failures, if their cause can be corrected
eventually. Our aim is not to perform root cause diagnosis here. In

contrast, erroneous phases such as kernel panics/stack trace, NMI
faults, CPU stalls and several hardware machine check exceptions
(MCEs) do result in failed nodes.

Table 9 depicts 4 sample sequences of events. The first two are
node failures caused by anomalies, the last two are not node fail-
ures. In fact, node shutdown messages were absent during those
time frames. We pick snippets of important phrases to highlight
cases where such unknown phrases may or may not lead to an
anomaly. The first node failure was caused by too many hardware
machine check exceptions causing the CPUs to get corrupted. The
non-failure case 1 (3rd column) shows a sequence of messages
that did not eventually cause any node failure, although the node
encountered traps, followed by jobs getting killed and hardware
protocol errors. Note that the 10th phrase (program * returned with
exit code) from Table 8 is present in both a failure case (1st col-
umn) and a non-failure (3rd column). The 2nd node failure was
caused by filesystem bugs and a slurm controller connectivity error.
The non-failure case 2 (4th column) shows Lustre errors in the
beginning, yet the node endured several MCEs and DIMM memory
errors without failing immediately. In fact, hardware MCEs and
corrected memory errors were logged in both failure (column 1)
and non-failure (column 4) cases, as are Lustre errors (column 2+4).
Overall, it is clear that phrase mining-based anomaly detection is
non-trivial and appearance of anomalous phrases neither indicates
root causes nor certainty of eventual node shutdowns. We have pro-
vided an estimate of how much the unknown phrases contribute to
a node failure. Terminal messages such as Stop NMI detected usually

Desh HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

appear whenever a node goes down (either normal or anomalous),
debug NMI detected is more often seen with anomalies. What are
the implications of these insights? Most vendors and HPC adminis-
trators expect accurate failure indicators to save resources, what
messages lead to failures may not be anyone’s concern. However,
such characterization implies the following observations:

Observation 5: A log message with a given phrase may be benign
in one context while it is part of a failure chain in another one, or it
may lead to a fault that is later corrected so that the fault is masked
resulting in no failure.

Major hardware bugs and software panics are known to cause
failure [24] in HPC systems. But in-spite of the appearance of similar
messages (traps, critical hardware errors), nodes do not always fail.
Events external to a specific node (e.g., interconnect bugs, tempera-
ture conditions) can cause such bugs and there exists conditions
under which these faults do not cause failures. This is different from
the known spatial correlation [25] that node failure correlation is
higher within the same cabinet than a blade. It will be interesting
to determine what faults under what condition do not cause failures.

Observation 6: In general, tags such as warning or critical with a
log message should not be uniquely associated with a log event as the
context of correlated events in time and space in a failure chain is
indicative of anomalies, not a single event by itself.

In the past, researchers have heavily relied on fatal severity level
to formulate detection schemes. With contemporary system logs,
understanding the sequence of events enhances machine learning
solutions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

#Steps of Prediction

History Size 8
History size 5

Figure 10: Cost Analysis

4.4 Cost Analysis
Desh operates in three phases as discussed earlier (Section 3). The
training phases 1 and 2 are performed offline and have no conse-
quence to the prediction performance. However, we report the time
taken to perform predictions based on the history size. As shown in
Figure 10, with a larger history window, the time taken is slightly
longer. As expected, 3-step predictions take longer than 1-step pre-
diction. The times taken by 2-step predictions are comparable for
both the history sizes of 8 and 5. The size of the vector entries
and computing platform used to run LSTM also determine the cost.
Optimizing detection speedup is not Desh’s goal. Nevertheless, the

prediction time can be insightful to provide further optimizations
in log mining solutions.

4.5 Desh Comparison
The closest work related to Desh is DeepLog [18]. DeepLog uses
stacked LSTM on HDFS, Openstack and BlueGene logs to detect
anomalies. However, there are fundamental conceptual differences
that makes Desh’s application of LSTM unique. We discuss them
briefly here:
• DeepLog injects anomalies for cloud systems (e.g., during VM cre-
ation). Desh considers failures extracted from real field data, with
no synthetic injection performed. Their anomaly detection with
BlueGene/L RAS logs is similar to our Cray system log analysis.
However, their log labeling and inference of anomaly differs sub-
stantially. Their normal and abnormal labeling relies on normal ex-
ecution patterns to detect deviations for abnormal messages, which
is not our work. Moreover, these logs are more structured than
Cray logs, which are unstructured because of diverse log sources.
For example, in Table 12, the first two phrases are considered ab-
normal and the last two normal based on the a priori information
about BlueGene/L system event logging. Desh does not consider
an individual message as abnormal unless it contributes to a node
failure chain. We also explicitly demonstrate that severity labels
are insufficient indicators of system malfunctioning (Section 4.3).
Although DeepLog’s workflow construction is analogous to our
failure chain formation, they consider performance anomaly on a
per-log entry level, i.e., if the actual value does not appear in the top
g predicted keys, it is considered an anomaly. Our failure definition
is more refined, it is based on a sequence of event vectors observed.
An individual phrase by itself does not determine an anomaly, since
the node failures are flagged based on the trained failure chains.
•We design LSTM to predict lead times and track the node ids to
pin-point failure location. In other words, Desh can warn, In 2.5
minutes, node X located in Y is expected to fail. The
node id (e.g., cA-cBcCsSnN) contains the exact location information
(cabinet: AB, chassis: C, blade: S, number: #N). This indication can
prevent further scheduling of jobs on node X, existing applications
can be migrated from that node to another healthy node. Such
proactive actions can mitigate service disruptions and future job
failures. DeepLog is not designed to predict lead times, it can detect
performance anomalies in the system to aid diagnosis. Desh aims
to strike a good balance between lead times and false positives. In-
creasing lead times hurts the false positive rate. Instead, acceptable
lead times with low false positive rates are desirable.
• Apart from the differences in anomaly definition (per log entry
level vs. sequence level) and research goals (performance anomaly
detection vs. node failure prediction), HDFS and Openstack logs are
at a higher software layer (atop native filesystems and JIT engines)
than low-level Linux-style Cray logs. Hence, performance anom-
alies recurring in such systems are different from the hardware
critical errors appearing in HPC systems. Moreover, Desh exploits
word embedding for vectorization along with cumulative ∆ time
calculation, differing from DeepLog’s solution paradigm.

We have further enumerated the major capability differences
between DeepLog and Desh in Table 11. DeepLog has performed
online model updates to improve false positive rates and does not

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA A. Das et al.

Table 10: Desh Comparison

Solutions Method Lead Recall Precision Anomaly System Location
Time Injection

Hora [38] Bayesian
Networks

10 mins 83.3% 41.9% ✓ Dist. RSS Feed
Reader

component
specific

Gainaru et al. [21] Signal Analysis N/A 60% 85% × Blue Waters N/A
Islam et al. [29] Deep Learning N/A 85% 89% × Google Cluster Job-level
UBL [14] Self-Organizing

Map (SOM)
50 secs N/A N/A ✓ RUBiS, Hadoop,

System S
N/A

CloudSeer [45] Automatons,
FSMs

N/A 90% 83.08% ✓ OpenStack N/A

Desh Deep Learning 3 mins 86% 92.2% × Cray node-level

Table 11: Desh vs. DeepLog

Features Desh DLog
1 No Source-Code ✓ ✓

2 Lead Time ✓ ×

3 Component location ✓ ×

4 Sequence-level Anomaly ✓ ×

5 Injected Failures × ✓

6 Node Failures ✓ ×

7 Cloud+HPC × ✓

8 False Positive Rate ✓ ×

Table 12: BlueGene/L Log
Log Message Label
1 kernel Info total of 2 ddr error(s) detected and corrected Abnormal
2 kernel Info CE sym 9, at *, mask * Abnormal
3 App fatal ciod: Error creating node map Normal
4 kernel fatal MailboxMonitor::serviceMailboxes Normal

aim at tracking the component location. We have performed lead
time characterization w.r.t. false positive rates.

Apart from DeepLog, there exist several state-of-the-art fail-
ure prediction solutions for system resilience. We have compared
Desh with a few of those solutions in Table 10. CloudSeer per-
forms automaton-based workflow monitoring on OpenStack, and
UBL [14] predicts performance anomalies exploiting self-organizing
maps, both using anomaly injection. UBL (Unsupervised Behavior
Learning) calculates lead time as the difference between the points
in time of actual SLO (service level objective) violation and of anom-
aly detection for Hadoop, RUBiS and System S using application
logs. In contrast, Desh predicts lead times of node failures using
LSTM for low-level system logs. Hora uses fault injection to perform
prediction in the Netflix RSS feed reader, which is architecturally
different from HPC systems. Islam et al. [29] uses LSTM like Desh,
obtains high precision and recall but targets the job failure problem
rather than node failure. Gainaru et al. [21] integrates their older
research tool, ELSA [22], to perform online anomaly detection on
Blue Waters. They obtain comparatively lower recall (60%) rates.
Overall, Desh demonstrates a novel way of predicting node failures
with low false positives and high accuracy.

4.6 Discussion
With increase in scale of production computing systems, the mean
time between failures (MTBF) is expected to decrease. Failures are
expected to occur in shorter intervals of time [40]. Failure lead
time prediction can decrease the failure rate in large-scale systems.
Desh incorporates stacked LSTM efficiently to have high predic-
tion accuracy (85.71%), acceptable false positive rates (19%) and
3 minutes lead time warnings. Unknown phrase analysis further
reveals the prospects of understanding system characteristics when
a set of events leads to a failure versus conditions when the same
set of events does not lead to a failure. In other words, the failure
manifestation condition has several correlated system parameters
indicating non-deterministic symptoms. Hence, further investiga-
tions of phrase mining-based failure prediction look promising.

How generic is Desh? Desh has been evaluated on Cray Logs.
How generic is it for other system logs? We have thoroughly in-
vestigated prior HPC logs such as BlueGene that are comparatively
easier for feature classification. Several solutions exist in this con-
text [32, 49]. Hence, prior researched techniques suffice. Several
studies [29, 30, 42, 46] have employed LSTM for system anomaly
detection in cloud computing systems and service-oriented archi-
tectures, making Desh’s solution paradigm highly generic. How
efficient and computationally inexpensive is the question. That
depends on the problem goal and system characteristics. Cray sys-
tems contain dense unstructured logging from multiple log sources,
which makes log mining non-trivial. Desh can certainly be adapted
to other large-scale production systems with a different logging par-
adigm with some customizations. Our approach in itself is unsuper-
vised and remains unperturbed by the chasms of diverse computing
infrastructures.

Howmuch lead time is sufficient? What actions are feasi-
ble? Desh reiterates the requirement for sufficient lead times. So
how much lead time is good enough? Several proactive recovery
mechanisms have been investigated such as job migration, pro-
cess cloning, lazy checkpointing and similar techniques that are
successful in mitigating job failures. Traditional reactive check-
point/restarts are expensive. Process-level job migrations [41] take
13 to 24 seconds, skip/lazy checkpointing [40], or quarantining
nodes [25] by preventing future job scheduling on them are all
feasible proactive actions that can be taken in practice, if Desh can
indicate impending node failures with lead times longer than these
mitigation actions require. Dino [39] proposes node cloning service
in 90 seconds. Three minutes lead time suffices for the discussed
recovery options. With a reduced false positive rate, even lower
lead times (≈1.5 minutes) can be helpful for proactive resilience
actions. Further discussion about failure recovery is beyond the
scope of this paper.

5 RELATEDWORK
Data mining solutions for enhanced system reliability are being
investigated both in cloud computing and HPC systems. Under-
standing performance and resilience trade-offs is important for
failure prediction in large-scale systems. We categorically highlight
features that are distinct in Desh.

LSTMApplications: Recent works such as [29, 30, 42, 46] have
leveraged LSTM for failure prediction. Wang et al. [42] uses LSTM
to improve the quality of service in service-oriented architectures.
Researchers [30, 46] have utilized binary classification for predicting

Desh HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

failures without any lead time discussion. Islam et al. [29] perform
failure prediction on cloud computing systems focusing on resource
usage and jobs/tasks termination and have obtained 87% accuracy.
Their high-level goals are similar to ours. However, Desh formulates
failure chains and focuses on predicting lead times from real data.
The obtained lead times are promising for taking proactive recovery
actions in practice. DeepLog [18] is the closest work to Desh. Apart
from the target logs such as Openstack, which are very different
from Cray logs, DeepLog’s definition and detection of anomaly
differs from Desh. They predict a single phrase as an anomaly,
while Desh evaluates a chain of events to flag an anomaly.

Failure Prediction: Nie et al. [35] study GPU errors using neu-
ral networks. Nodeinfo [36] proposes an unsupervised alert detec-
tion system using ideas of information entropy and binary scoring.
Bouguerra et al. [6] find that the failure distribution correlates with
the false negative distribution and that the temporal correlations of
failure needs to be understood. Xie et al. [43] assess the Lustre file
system of the Titan Supercomputer to propose a statistical regres-
sion approach, which predicts output performance in petascale file
systems. Chilimbi et al. [10] propose Adam, a scalable deep learn-
ing training system. Bautista-Gomez et al. [5] discuss the spatial
and temporal analysis of DRAM memory errors in HPC systems.
However, their objectives differ as they do not aim at node fail-
ures in computing systems. Hora [38] formulates a Bayesian model
for component failure prediction using component dependencies
unlike Desh, which is unaware of such system dependencies and
solely relies on the data for inference. Gainaru et al. [21] discuss
an online failure prediction model using feedback simulation with
their toolkit ELSA [22]. In contrast, Desh uses deep learning to
predict lead times to failures.

Log Analysis: Event block detection by Baseman et al. [4] fo-
cuses on tokenizing unstructured text. Pecchia et al. [37] find that
grouping events based on predetermined time thresholds performs
badly. Additional consideration of likelihood of entries improves
field data analysis. Di Martino [15] uses the MTW (multiple time
windows) heuristic to group supercomputing error logs. Prior log
analysis techniques have studied various event correlation meth-
ods [22], time coalition techniques [16] and log parsing meth-
ods [26]. Our work uses word embeddings to vectorize the data.
While processing the log input is similar to other unstructured text
parsing, Desh exploits the relevant context (word embeddings, dis-
cussed in Section 3.1) for node failure prediction. Tiwari et al. [40]
discuss lazy checkpointing to reduce overhead and describe tem-
poral characteristics of failures in multiple HPC systems. Failure
characterization [24, 25] has been studied to understand the require-
ments of exascale computing, which provides important statistics
for system characterization to help understand the challenges be-
fore embarking on log mining-based resilience studies.

Anomaly Detection in Distributed Systems: Log mining-
based performance diagnosis on cloud computing systems [44, 45,
47] has garnered considerable attention recently. The solutions do
have some similarities with the HPC resilience frameworks (e.g.,
log parsing, applied ML techniques). One concern with these so-
lutions making them incompatible with HPC systems are fault
injections [14, 18, 38, 45] and source code referenced log statement
parsing or augmentation [44]. Moreover, logs from distributed sys-
tems such as HDFS and OpenStack are at a much higher level in the

software stack than HPC architectures. Hence, failure prediction
gets complex with diverse log sources compared to per-log level
anomaly identification. Data center log analytics based on work-
flow monitoring [12, 45] and system tracing [9] differ in their log
analysis objective (e.g., lack of lead time sensitivity study, retaining
component location information), distinguishing them from Desh.

In summary, failure prediction is considerably researched. Our
novel contribution is an efficient way of predicting lead times in con-
temporary HPC systems, which may pave way for further analysis
of deep learning-based failure prediction.

6 CONCLUSION
Desh provides a powerful technique to process HPC logs using
LSTM for efficient failure prediction. Desh uses a novel three-phase
deep learning approach to first train to recognize chains of log
events leading to a failure, second re-train chain recognition of
events augmented with expected lead times to failure, and third
predict lead times during testing/inference deployment to predict
which specific node fails in how many minutes. Desh obtains more
than 2 minutes average lead times with an F1 score as high as
89.88%. Our lead time sensitivity study and its correlation with
diverse failure classes can aid system designers comprehend what
is required for faster prediction in the upcoming exascale era. We
use actual field data from supercomputing sites without any failure
injection for anomalies. Our insights can have implications on
real-time approaches required for quick anomaly detection online,
on the significance of novel phrase mining paradigms befitting for
contemporary large-scale computing systems and on new statistical
paradigms to leverage unknown log phrases in system anomaly
detection.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their valuable
comments and helpful suggestions. This work was funded in part
by subcontracts from Lawrence Berkeley and Sandia National Lab-
oratories, Air Force Office of Scientific Research grant FA9550-12-
1-0442, and NSF grants 1217748 and 0958311. Any views expressed
in this paper are those of the authors and do not necessarily reflect
the views of AMD, Cray, NSF, or any other national labs.

©2018 Advanced Micro Devices, Inc. All rights reserved. AMD,
the AMD Arrow logo, and combinations thereof are trademarks
of Advanced Micro Devices, Inc. Other product names used in
this publication are for identification purposes only and may be
trademarks of their respective companies.

REFERENCES
[1] [n. d.]. CFDR Data. https://www.usenix.org/cfdr-data
[2] [n. d.]. Top 500. https://www.top500.org/lists/2017/11/
[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale
Machine Learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. 265–283.

[4] Elisabeth Baseman, Sean Blanchard, Zongze Li, and Song Fu. 2016. Relational
Synthesis of Text and Numeric Data for Anomaly Detection on Computing
System Logs. In 15th IEEE International Conference on Machine Learning and
Applications, ICMLA 2016, Anaheim, CA, USA, December 18-20, 2016. 882–885.

https://www.usenix.org/cfdr-data
https://www.top500.org/lists/2017/11/

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA A. Das et al.

[5] Leonardo Bautista-Gomez, Ferad Zyulkyarov, Osman Unsal, and SimonMcIntosh-
Smith. 2016. Unprotected computing: a large-scale study of DRAM raw error
rate on a supercomputer. In High Performance Computing, Networking, Storage
and Analysis, SC16: International Conference for. IEEE, 645–655.

[6] Mohamed Slim Bouguerra, Ana Gainaru, and Franck Cappello. 2013. Failure
prediction: what to dowith unpredicted failures. In 28th IEEE international parallel
and distributed processing symposium, Vol. 2.

[7] Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and
Jenifer C Lai. 1992. Class-based n-gram models of natural language. Computa-
tional linguistics 18, 4 (1992), 467–479.

[8] MD Catonsville, Bob Adolf, Shekhar Borkar, Nathan DeBardeleben, Mike Heroux,
Dave Rogers, Vivek Sarkar, Martin Schulz, Mark Snir, Bob Woodward UMN, et al.
2012. Inter-Agency Workshop on HPC Resilience at Extreme Scale. (2012).

[9] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric A. Brewer.
2002. Pinpoint: Problem Determination in Large, Dynamic Internet Services. In
2002 International Conference on Dependable Systems and Networks (DSN 2002),
23-26 June 2002, Bethesda, MD, USA, Proceedings. IEEE, 595–604.

[10] Trishul M. Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanara-
man. 2014. Project Adam: Building an Efficient and Scalable Deep Learning
Training System. In 11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014. 571–582.

[11] François Chollet et al. 2015. Keras. https://github.com/keras-team/keras.
[12] Zaheer Chothia, John Liagouris, Desislava Dimitrova, and Timothy Roscoe. 2017.

Online Reconstruction of Structural Information from Datacenter Logs. In Pro-
ceedings of the Twelfth European Conference on Computer Systems. ACM, 344–358.

[13] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng
Andrew. 2013. Deep learningwith COTSHPC systems. In International Conference
on Machine Learning. 1337–1345.

[14] Daniel Joseph Dean, Hiep Nguyen, and Xiaohui Gu. 2012. Ubl: Unsupervised
behavior learning for predicting performance anomalies in virtualized cloud
systems. In Proceedings of the 9th international conference on Autonomic computing.
ACM, 191–200.

[15] Catello Di Martino. 2013. One size does not fit all: Clustering supercomputer
failures using a multiple time window approach. In International Supercomputing
Conference. Springer, 302–316.

[16] Catello Di Martino, Marcello Cinque, and Domenico Cotroneo. 2012. Assessing
time coalescence techniques for the analysis of supercomputer logs. InDependable
Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference
on. IEEE, 1–12.

[17] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. 2015. Long-term
recurrent convolutional networks for visual recognition and description. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2625–2634.

[18] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection andDiagnosis from System Logs throughDeep Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1285–1298.

[19] Xiaoyu Fu, Rui Ren, Sally A McKee, Jianfeng Zhan, and Ninghui Sun. 2014.
Digging deeper into cluster system logs for failure prediction and root cause
diagnosis. In Cluster Computing (CLUSTER), 2014 IEEE International Conference
on. IEEE, 103–112.

[20] Errin W Fulp, Glenn A Fink, and Jereme N Haack. 2008. Predicting Computer
System Failures Using Support Vector Machines. WASL 8 (2008), 5–5.

[21] Ana Gainaru, Mohamed Slim Bouguerra, Franck Cappello, Marc Snir, andWilliam
Kramer. 2014. Navigating the blue waters: online failure prediction in the petascale
era. Argonne National Laboratory Technical Report. Technical Report. ANL/MCS-
P5219-1014.

[22] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer. 2012. Fault
prediction under themicroscope: a closer look into HPC systems. In SC Conference
on High Performance Computing Networking, Storage and Analysis, SC ’12, Salt
Lake City, UT, USA - November 11 - 15, 2012. 77.

[23] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer. 2013. Failure
prediction for HPC systems and applications Current situation and open issues.
International Journal of High Performance Computing Applications 27, 3 (2013),
273–282.

[24] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari. 2017.
Failures in large scale systems: long-term measurement, analysis, and implica-
tions. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC 2017, Denver, CO, USA, November 12
- 17, 2017. 44:1–44:12.

[25] Saurabh Gupta, Devesh Tiwari, Christopher Jantzi, James H. Rogers, and Don
Maxwell. 2015. Understanding and Exploiting Spatial Properties of System
Failures on Extreme-Scale HPC Systems. In 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2015, Rio de Janeiro, Brazil,
June 22-25, 2015. 37–44.

[26] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R Lyu. 2016. An evaluation
study on log parsing and its use in logmining. InDependable Systems andNetworks

(DSN), 2016 46th Annual IEEE/IFIP International Conference on. IEEE, 654–661.
[27] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

computation 9, 8 (1997), 1735–1780.
[28] Kun-Yi Huang, Chung-Hsien Wu, Ming-Hsiang Su, and Hsiang-Chi Fu. 2017.

Mood detection from daily conversational speech using denoising autoencoder
and LSTM. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE Interna-
tional Conference on. IEEE, 5125–5129.

[29] Tariqul Islam and Dakshnamoorthy Manivannan. 2017. Predicting Application
Failure in Cloud: A Machine Learning Approach. In Cognitive Computing (ICCC),
2017 IEEE International Conference on. IEEE, 24–31.

[30] XU Jianwu, Ke Zhang, Hui Zhang, Renqiang Min, and Guofei Jiang. 2017. System
failure prediction using long short-term memory neural networks. US Patent
App. 15/478,714.

[31] Rie Johnson and Tong Zhang. 2016. Supervised and semi-supervised text cat-
egorization using LSTM for region embeddings. In International Conference on
Machine Learning. 526–534.

[32] Zhiling Lan, Jiexing Gu, Ziming Zheng, Rajeev Thakur, and Susan Coghlan. 2010.
A study of dynamic meta-learning for failure prediction in large-scale systems. J.
Parallel and Distrib. Comput. 70, 6 (2010), 630–643.

[33] Zhiling Lan, Ziming Zheng, and Yawei Li. 2010. Toward automated anomaly
identification in large-scale systems. IEEE Transactions on Parallel and Distributed
Systems 21, 2 (2010), 174–187.

[34] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[35] Bin Nie, Ji Xue, Saurabh Gupta, Christian Engelmann, Evgenia Smirni, and Devesh
Tiwari. 2017. Characterizing Temperature, Power, and Soft-Error Behaviors
in Data Center Systems: Insights, Challenges, and Opportunities. In Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS),
2017 IEEE 25th International Symposium on. IEEE, 22–31.

[36] Adam J Oliner, Alex Aiken, and Jon Stearley. 2008. Alert detection in system logs.
In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on. IEEE,
959–964.

[37] Antonio Pecchia, Domenico Cotroneo, Zbigniew Kalbarczyk, and Ravishankar K
Iyer. 2011. Improving log-based field failure data analysis of multi-node com-
puting systems. In Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st
International Conference on. IEEE, 97–108.

[38] Teerat Pitakrat, DušanOkanović, André vanHoorn, and Lars Grunske. 2017. Hora:
Architecture-aware online failure prediction. Journal of Systems and Software
(2017).

[39] Arash Rezaei and Frank Mueller. 2015. DINO: Divergent Node Cloning for
Sustained Redundancy in HPC. In Cluster Computing (CLUSTER), 2015 IEEE
International Conference on. IEEE, 180–183.

[40] Devesh Tiwari, Saurabh Gupta, and Sudharshan S Vazhkudai. 2014. Lazy check-
pointing: Exploiting temporal locality in failures to mitigate checkpointing over-
heads on extreme-scale systems. In Dependable Systems and Networks (DSN), 2014
44th Annual IEEE/IFIP International Conference on. IEEE, 25–36.

[41] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L Scott. 2008.
Proactive process-level live migration in HPC environments. In Proceedings of
the 2008 ACM/IEEE conference on Supercomputing. IEEE Press, 43.

[42] Hongbing Wang, Zhengping Yang, and Qi Yu. 2017. Online Reliability Prediction
via Long Short Term Memory for Service-Oriented Systems. In Web Services
(ICWS), 2017 IEEE International Conference on. IEEE, 81–88.

[43] Bing Xie, Yezhou Huang, Jefrey S Chase, Jong Youl Choi, Scott Klasky, Jay Lof-
stead, and Sarp Oral. 2017. Predicting Output Performance of a Petascale Super-
computer. In Proceedings of the 26th International Symposium on High-Performance
Parallel and Distributed Computing. ACM, 181–192.

[44] Wei Xu, Ling Huang, Armando Fox, David A Patterson, andMichael I Jordan. 2010.
Detecting large-scale system problems by mining console logs. In Proceedings of
the 27th International Conference on Machine Learning (ICML-10). Citeseer, 37–46.

[45] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui Zhang, and Guofei Jiang.
2016. Cloudseer: Workflow monitoring of cloud infrastructures via interleaved
logs. ACM SIGOPS Operating Systems Review 50, 2 (2016), 489–502.

[46] Ke Zhang, Jianwu Xu, Martin Renqiang Min, Guofei Jiang, Konstantinos Pelechri-
nis, and Hui Zhang. 2016. Automated IT system failure prediction: A deep
learning approach. In 2016 IEEE International Conference on Big Data, BigData
2016, Washington DC, USA, December 5-8, 2016. 1291–1300.

[47] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm. 2016. Non-
Intrusive Performance Profiling for Entire Software Stacks Based on the Flow
Reconstruction Principle. In 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. 603–618.

[48] Ziming Zheng, Li Yu, Zhiling Lan, and Terry Jones. 2012. 3-Dimensional root
cause diagnosis via co-analysis. In 9th International Conference on Autonomic
Computing, ICAC’12, San Jose, CA, USA, September 16 - 20, 2012. 181–190.

[49] Ziming Zheng, Li Yu, Wei Tang, Zhiling Lan, Rinku Gupta, Narayan Desai, Susan
Coghlan, and Daniel Buettner. 2011. Co-analysis of RAS log and job log on
Blue Gene/P. In Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE
International. IEEE, 840–851.

https://github.com/keras-team/keras

	Abstract
	1 Introduction
	2 Background
	3 Desh Overview
	3.1 Phase 1: Training
	3.2 Phase 2: Training
	3.3 Phase 3: Testing

	4 Evaluation
	4.1 Prediction Accuracy
	4.2 Lead Times
	4.3 Unknown Phrase Analysis
	4.4 Cost Analysis
	4.5 Desh Comparison
	4.6 Discussion

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

