
Orchestrating Fault Prediction with Live Migration and
Checkpointing

Subhendu Behera1, Lipeng Wan2, Frank Mueller1, Matthew Wolf2, Scott Klasky2
{ssbehera,fmuelle}@ncsu.edu,{wanl,wolfmd,klasky}@ornl.gov

1North Carolina State University 2Oak Ridge National Laboratory
Raleigh, North Carolina, USA Oak Ridge, Tennessee, USA

ABSTRACT
Checkpoint/Restart (C/R) is widely used to provide fault tolerance
on High-Performance Computing (HPC) systems. However, Parallel
File System (PFS) overhead and failure uncertainty cause significant
application overhead. This paper develops an adaptive multi-level
C/R model that incorporates a failure prediction and analysis model,
which orchestrates failure prediction, checkpointing, checkpoint
frequency, and proactive live migration along with the additional
benefit of Burst Buffers (BB). It effectively reduces the overheads
due to failures, checkpointing, and recovery. Simulation results
for the Summit supercomputer yield a reduction of ≈20%-86% in
application overhead due to BBs, orchestrated failure prediction,
and migration. We also observe a ≈29% decrease in checkpoint
writes to BBs, which can increase the longevity of the BB storage
devices.

KEYWORDS
High Performance Computing, Failure Prediction, Resilience

ACM Reference Format:
Subhendu Behera, Lipeng Wan, Frank Mueller, Matthew Wolf, Scott Klasky.
2020. Orchestrating Fault Prediction with Live Migration and Checkpoint-
ing. In Proceedings of the 29th Int’l Symp’ on High-Performance Parallel &
Distributed Computing (HPDC ’20), June 23–26, 2020, Stockholm, Sweden.
ACM, NY, NY, USA, 5 pages. https://doi.org/10.1145/3369583.3392672

1 INTRODUCTION
Failures [13, 25] and high I/O contention [15, 17, 19] add significant
overhead to application execution and become the key challenge
for C/R efficiency in the era of exascale computing due to scale,
heterogeneity, and high parallelism. This work aims to address
these challenges in a novel manner exploiting recent technological
advances.

First, we improve the efficiency of writing checkpoints by taking
advantage of BBs. The PFS has long been identified as a bottle-
neck for highly parallel applications [16, 17, 30, 31]. Modern HPC
systems address this problem by integrating fast BBs into the I/O
subsystem as intermediate storage devices, which provide faster
I/O performance via buffering. Our checkpoint model uses BBs to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’20, June 23–26, 2020, Stockholm, Sweden
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7052-3/20/06. . . $15.00
https://doi.org/10.1145/3369583.3392672

store the checkpoint data faster than writes to PFS would have
been. Once the data is in BBs, it asynchronously bleeds it off to PFS,
i.e., computation within the application continues while a check-
point previously committed to a BB is slowly written to the PFS in
the background so that it can later be restored on a different node
should the current node fail. These fast, node-local writes to the BB
reduce the time required to store checkpoints on the critical path
of an application.

Second, we leverage failure prediction models to reduce the over-
head caused by re-computation due to failures. In past years, there
have been significant contributions in the prediction of failures
on large-scale systems [6, 7, 10, 11]. We utilize their log-based fail-
ure chain characterization technique to perform rigorous failure
analysis and prediction on system logs collected from real-world
HPC systems to identify instances of different possible failures and
distribution of lead times of such failures. Based on this analysis,
the reduced failure rate in Young’s formula [35] effectively reduces
checkpoint frequencies. Further, our checkpoint model integrates
Desh’s model from [7] to predict failures with known lead times.
The novelty is that it considers live migration to reduce the cost of
re-computation upon immanent failures and studies its impact.

In summary, we make the following contributions:
• We propose a multi-level checkpoint model that integrates
Desh [7] with its ability to predict failures in advance. Based
on the predicted lead time to failure, it chooses an appropri-
ate action to avoid or at least reduce re-computation upon
failure. It further incorporates BB devices in the model to
reduce the latency for storing checkpoints, but also to adap-
tively consider the additional latency before a checkpoint
becomes globally available within the PFS, and to trade off
C/R with live migration based on the predicted lead time to
failure.

• We use Young’s formula [35] and incorporate a rigorous
failure analysis model in it, which effectively reduces the
frequency of checkpoints.

• Our study shows that the utilization of BBs results in a sig-
nificant reduction of checkpoint overhead for both small and
large size application checkpoints.

• The comparative study also shows that our failure analysis
with its prediction model allows for orchestration of C/R
plus live migration model with the assistance of BBs results
in a significant reduction in application overhead.

The remainder of this paper is organized as follows: Section 2
introduces the system design, develops our checkpoint model and
explains how BBs and proactive live migration are utilized. Section 3
discusses results from experiments followed by related work in
Section 4 and a summary of the contributions in Section 5.

https://doi.org/10.1145/3369583.3392672

2 SYSTEM DESIGN
Our Checkpoint/Restart model is devised for a Summit-like HPC
system. On this HPC system, the BB devices are locally attached to
compute nodes. As our model uses proactive live migration, a small
set of nodes is reserved but yet not allocated to any application.
Workload managers such as Slurm [34] and Flux [1] support the
allocation of spare nodes. We assume that spare nodes are always
available, which is given as long as the rate of failure is lower than
the rate at which failed nodes can be recovered. Upon failure, a
node can be taken from this reserved set to replace the failed one.
Our failure predictor analyzes system logs on a per-node basis and
predicts failures with their estimated lead times, i.e., the predic-
tor daemon is placed on each compute node (e.g., in a spare core,
which could be shared with other services). Since only system logs
are used for analysis, predictors are independent of the applica-
tion running on the compute nodes. Our model also features a
multi-level adaptive checkpoint capability that comprises multiple
techniques, including BB bleed-off, failure analysis and prediction,
and proactive live migration, which are discussed in the following.

2.1 Checkpoint Model

Figure 1: Decision Tree of the Checkpoint Model
Our base checkpoint model derives the optimal checkpoint in-

terval from a failure analysis model without considering failure
prediction. With the addition of failure prediction, the model is
extended to select effective and informed actions based on the de-
cision tree of Figure 1. The criteria based on which decisions are
made are as follows:

• Has a failure happened? At the top of the decision tree, it is
assessed if any failure has occurred. Upon a failure, the appli-
cation state needs to be recovered from the last checkpoint
in a BB or the PFS upon availability of an existing node or
addition of a new node from the reserved set, respectively.
The recovery strategy is to restart from the last checkpoint.
In the absence of a failure, we move to the node where the
failure prediction status is checked.

• Was a new node added? Upon a failure, all the ranks of an
application traditionally recover the checkpoint data from
the PFS. This introduces significant contention that increases
with checkpoint data size and the number of processes in the
application. Since Summit’s BBs are local, our checkpoint
model mandates only a newly added node, drawn from the
reserved set to replace the failed one, to recover the check-
point data from the PFS. The remaining nodes recover the
checkpoint data from local BBs. This considerably reduces
failure recovery overhead.

• Is a failure predicted? In the absence of a predicted failure, the
checkpoint model falls back to the optimal checkpoint inter-
val to save the application state periodically. This provides
tolerance against the failures that are neither predictable nor
can be handled with a proactive action such as live migration.
If a failure can be predicted, then the next action is indicated
further down in the decision tree.

• Is proactive live migration feasible? If a failure is predicted,
then we select an action based on the lead time to failure.
With enough lead time to proactively migrate the application,
the failure can be avoided by live migration. The application
can continue with its computation while being migrated to
a new and healthy node selected from the set of reserved
nodes. The failed node is recovered and added to the set of
reserved nodes for future use. If lead time is insufficient for
migration, no action is taken as failure is unavoidable.

One point of discussion is the accuracy of prediction. It is as-
sumed here that the accuracy is high [7] and lead times are reliable
except for a few outliers [6]. Clearly, if prediction accuracy itself was
low, only periodic checkpoints of the base model should be taken,
which is not the focus of this work. The following assumptions
underlie the model:

(1) Any checkpoint made to save the application state is per-
formed by all the processes of an application.

(2) Failures happen on a single compute node and do not propa-
gate to other nodes.

(3) No distinction is made between soft failures and hard/node
failures, i.e., both are handled uniformly.

(4) The data is transferred from BBs to the PFS asynchronously,
e.g., via the Spectral library on Summit [22].

2.2 BB Utilization
Concurrent access to PFS by all the compute nodes would intro-
duce high overhead during checkpoints. Instead, BBs are utilized
to provide faster access and lower contention depending on the BB
architecture. On Summit, a BB device is attached to each compute
node locally — in contrast to the cluster BB system on NERSC’s
Cori [4]. Each BB device has 1.6 TB capacity with up to 2.1 GB/sec
write and 5.5 GB/sec read I/O bandwidth on a compute node [29].

There are two scenarios in which concurrent access to PFS leads
to performance degradation. First, for checkpoints, all processes
need to write checkpoint data concurrently to PFS. We resolve this
issue by storing the checkpoint data in BBs and later bleeding it off
to the PFS asynchronously, i.e., by limiting the number of nodes
with BB to PFS transfer at any time. Second, for failure recovery
of the application, all processes need to access PFS concurrently.
However, each checkpoint is stored to the local BB first. Hence,
only the new node replacing the failed one needs to recover the
checkpoint data from PFS. All other nodes recover from their local
BB device.

2.3 Proactive Live Migration
Proactive live migration allows us to relocate the processes on a
compute node that may fail based on our failure prediction to a
new and healthy node. We make several assumptions regarding our
proactive live migration technique. First, during most live migration

interval, the process continues to execute (until a final frozen state
is transferred) [32, 33]. Second, we assume that the costs associated
with the process of live migration, e.g., loading the application on
one of the reserved nodes and making the changes required in the
MPI runtime environment, are minimal and can thus be ignored.
Finally, the total amount of data that needs to be transferred to
complete live migration is upper bounded by the DRAM size on a
compute node. On Summit, DRAMmemory is 512 GB per node [29].
We also experimentally determined that the inter-node bandwidth
on Summit is ≈12.5 GB/sec. Hence, the maximum amount of time
needed to migrate an application is 41 seconds.

2.4 Failure Analysis Model
The optimal checkpoint interval in our checkpoint model further
includes a rigorous analysis of failure logs. The study analyzes the
system logs collected from three real-world HPC systems from
Desh [7] over a period of six months. Using the Desh approach,
the most common sequences of phrases in logs that may lead to
a failure are considered. Our assumption in this work is that any
sequence of phrases, so-called failure chains, results in an actual
failure. The time difference between the first phrase and the last
phrase in a chain is considered as the lead time. The reduced failure
rate is included in the optimal checkpoint interval formula.

3 EVALUATION
3.1 Simulation Framework
Our simulation framework developed using SimPy [27] emulates
the system-level characteristics of Summit and the execution based
on traces of the real-world scientific applications in Table 1.

Table 1: HPCWorkload Characteristics

Application
Number of

Nodes
Checkpoint
Size (GB)

Computation
Time (hour)

CHIMERA 2,272 163,840 360
XGC 1,515 37,926 240
S3D 505 5,120 240
GYRO 126 50 120
POP 126 26 480

VULCAN 64 0.83 720

Previous studies [26, 28] have found that the mean time between
failure (MTBF) follows a Weibull distribution. In experiments, the
Weibull distribution parameters for OLCF’s Titan from Wan et
al. [30] are considered to generate failures during the simulation.
Since the actual failure statistics of Summit are unavailable, it is
assumed that the failure distribution of OLCF’s Titan also applies to
Summit. Upon a simulated node failure, a node is selected randomly
from the set of all nodes, and the failure is simulated on that node.
The number of failures for a job depends on the number of nodes
an application run uses, i.e., given the MTBF rate, larger jobs (with
more nodes) are subject to a high total number of failures. Simula-
tion is repeated 1,000 times, and the measurements are averaged
over those 1,000 runs. We also measure the I/O performance on
Summit by considering the optimal performance on a single node
and then extending it with weak scaling up to 1,000 nodes. This
model is utilized in determining I/O latency for storing checkpoints.

3.2 C/R Model Evaluation
The evaluation compares three models to study the impact of the
BBs and our failure prediction and analysis model assisted by proac-
tive live migration:

• Model A: The base model does not incorporate any of these
techniques. It also does not use BBs.

• Model B: This model utilizes only BBs without any of the
other techniques.

• Model C: This model utilizes the BBs, and live migration
based on failure analysis and prediction.

Figure 2 depicts the overhead of fault tolerance in percent (y-
axis) normalized to the base model A (first bar) for each application
(x-axis) compared to models B and C.

Figure 2: Reduction in Overhead with Failures from Titan
Observation 1: Application overhead is reduced by ≈20%-86%

due to (1) the reduction in checkpoint time with the assistance of
BBs (model B), (2) the reduction in failure rate given failure analysis
and prediction (3) combined with live migration (model C).

The overhead consists of three components depicted as stacked
bars. Recovery time is required to restart an application after a
node failure. Since only the new node requires to access the PFS
to recover the checkpoint without contention while others recover
from their local BB, the recovery time is insignificant and hardly
visible in the graphs for all the models except for model A. We
observe a ≈60%-99% decrease in recovery time for models B and C.

Observation 2: Checkpoint overhead is initially reduced by
≈5%-29% due to the lower residual failure rate after failure predic-
tion. While this prediction provides all the benefits to S3D (with
its ≈29% reduction), all other applications further benefit from BBs
and asynchronous checkpoint bleed-off, for an overall savings of
≈30%-82% depending on the application.

The checkpoint time is the duration during which application
execution is suspended while storing the checkpoints on permanent
storage. In model A, the PFS is the permanent storage. BBs assist
other models. We observe that due to higher latency to checkpoint
the PFS in model A, all applications except for S3D spend more time
in storing the checkpoints without BBs. For S3D and its checkpoint
size, the PFS I/O bandwidth is almost equal to the I/O bandwidth
of BBs as per our I/O performance model. For smaller applications
such as GYRO, POP, and VULCAN, the latency to write checkpoints

to PFS is higher and results in more checkpoint overhead. Also, for
larger applications such as CHIMERA and XGC, the higher latency
for PFS writes is due to larger PFS contention.

Observation 3: While re-computation time dominates the base
model, it can be reduced by ≈51%-56% for applications with large
checkpoint sizes and ≈13-85% for those with smaller checkpoints
for model C.

The re-computation time is the duration spent by an application
to re-compute the portion of execution to reach the point where
execution was interrupted when the node failed. It contributes the
largest fraction of overhead for all the applications in the basemodel.
We observe that lack of BBs in the base model A results in a larger
checkpoint interval causing more losses due to failures. With BBs,
the shorter checkpoint interval provides better fault tolerance from
non-predicted failures. This reduces the re-computation overhead
by ≈29%-83% for all applications except for S3D as its checkpoint
interval is unaffected by BBs.

For CHIMERA and XGC, with larger checkpoints, along with
S3D, the additional reduction in re-computation time is ≈13% with
live migration. For the remaining applications, the additional de-
crease is between 2% and 14%. This suggests that live migration
may not have a significant impact on smaller size applications.

Observation 4: The reduction in checkpoint time further re-
duces the amount of checkpoint data written to BBs in an appli-
cation by ≈ 29%, which increases the lifetime of BBs as they are
subject to wear-out.

Figure 3 depicts the aggregate amount of daily write traffic to the
BB (y-axis) normalized to model B across all applications (x-axis)
for the three models. Since model A excludes BBs, it is not under
consideration. It indicated a ≈29% reduction in writes for model C.
On Summit, each BB device has a daily write limit of 8 TB given
its designation to last for 5 years. Model D effectively increases the
longevity of the BBs by ≈41% assuming uniform daily writes across
all devices and assuming that BBs are used for checkpointing, only.

Figure 3: Reduction in Daily Writes to Burst Buffers

4 RELATEDWORK
A number of extensive and significant contributions have been
made to address fault resilience with C/R techniques over the past
years. C/R solutions [3, 8, 20, 23] focus on reducing checkpoint
overhead by using multiple storage devices with varying latency to

store checkpoints. These works provide a foundation for our work
but lack the integration of failure prediction into C/R models.

Other studies [2, 9, 17, 21, 24, 30] have investigated the use of
BBs to quantify BB capacity requirement, measure their impact
and assess how they can be used in conjunction with the PFS.
Our solution, a two-level C/R model that stores its checkpoints
efficiently, goes beyond these earlier approaches in its efficient
recovery strategy upon failures to mandate only the replacement
node to recover checkpoint from the PFS in orchestration with
failure prediction, which reduces restart time considerably.

Several failure-aware C/R mechanisms [5, 12, 14, 18, 28, 32] have
been devised. Wang et al. [32] perform live migration, Bouguerra
et al. [5] use proactive checkpoints with failure prediction. Tiwari
et al. [28] checkpoint using a temporal distribution of failures. Our
C/R model also takes a similar approach to update the optimal
checkpoint rate at a fixed point during C/R handling. However,
our C/R model differs significantly from the lazy checkpointing
solution based on the prediction techniques underlying our model,
which are unique.

5 CONCLUSION
This work contributes amulti-level C/Rmodel instantiated to resem-
ble a Summit-like large-scale HPC system. (1) It integrates failure
analysis (by analyzing system logs from three real-world HPC sys-
tems) and a prediction model, which predicts failure types and lead
time, that are subsequently used in Young’s formula. (2) It issues
live migration of an application from a faulty node to a healthy,
reserved node in face of failures. (3) It utilizes BBs to reduce PFS
contention during application execution through asynchronous
bleed off and for failure recovery by mandating only the replace-
ment node to recover from a failure. The failure analysis model
indicates that ≈ 44% of failures can be avoided using live migration
and yields a ≈ 29% reduction in checkpoint time, which increases
the lifetime of BBs. Multilevel asynchronous checkpoints supported
by BBs and proactive live migration result in ≈20%-86% reduced
application overhead.

Past work has studied failure/reliability-awareness to improve
application efficiency. However, our C/R model’s suitability for
contemporary and future large-scale HPC systems, its applicability
to wide range of applications, and its fault tolerance using advanced
failure analysis and prediction model along with live migration are
unprecedented, which gives it a significant advantage over prior
solutions.

ACKNOWLEDGMENT
This research was supported in part by NSF grants 1525609, 1813004,
and an appointment to the Oak Ridge National Laboratory ASTRO
Program, sponsored by the U.S. Department of Energy and admin-
istered by the Oak Ridge Institute for Science and Education. This
research was also supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

REFERENCES
[1] Dong Ahn, Ned Bass, Albert Chu, Jim Garlick, Mark Grondona, Stephen Her-

bein, Joseph Koning, Patki Tapasya, Thomas Scogland, Becky Springmeyer, and
Michela Taufer. 2018. Flux: Overcoming Scheduling Challenges for Exascale
Workflows. 10–19. https://doi.org/10.1109/WORKS.2018.00007

[2] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello,
Naoya Maruyama, and Satoshi Matsuoka. 2011. FTI: High Performance Fault
Tolerance Interface for Hybrid Systems (SC ’11). Association for Computing
Machinery, New York, NY, USA, Article Article 32, 32 pages. https://doi.org/10.
1145/2063384.2063427

[3] Anne Benoit, Aurélien Cavelan, Valentin Fevre, Yves Robert, and Hongyang Sun.
2017. Towards Optimal Multi-Level Checkpointing. IEEE Trans. Comput. 66, 7
(July 2017), 1212–1226. https://doi.org/10.1109/TC.2016.2643660

[4] Wahid Bhimji, Deborah Bard,Melissa Romanus, David Paul, AndreyOvsyannikov,
Brian Friesen, and Matt and Bryson. 2016. Accelerating Science with the NERSC
Burst Buffer Early User Program. https://www.nersc.gov/assets/Uploads/Nersc-
BB-EUP-CUG.pdf

[5] Mohamed Bouguerra, Ana Gainaru, Leonardo Bautista-Gomez, Franck Cappello,
Satoshi Matsuoka, and Naoya Maruyama. 2013. Improving the Computing Effi-
ciency of HPC Systems Using a Combination of Proactive and Preventive Check-
pointing. In 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing. 501–512. https://doi.org/10.1109/IPDPS.2013.74

[6] Anwesha Das, Frank Mueller, Paul Hargrove, Eric Roman, and Scott Baden.
2018. Doomsday: Predicting Which Node Will Fail When on Supercomputers. In
Supercomputing. 9:1–9:14. https://doi.org/10.1109/SC.2018.00012

[7] Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu. 2018. Desh:
Deep Learning for System Health Prediction of Lead Times to Failure in HPC. In
Symposium on High Performance Distributed Computing. 40–51. https://doi.org/
10.1145/3208040.3208051

[8] Sheng Di, Yves Robert, Frédéric Vivien, and Franck Cappello. 2017. Toward an
Optimal Online Checkpoint Solution under a Two-Level HPC Checkpoint Model.
IEEE Transactions on Parallel and Distributed Systems 28, 1 (Jan 2017), 244–259.
https://doi.org/10.1109/TPDS.2016.2546248

[9] Aiman Fang and Andrew A. Chien. 2015. How Much SSD Is Useful for Resilience
in Supercomputers (FTXS ’15). ACM, New York, NY, USA, 47–54. https://doi.
org/10.1145/2751504.2751509

[10] Ana Gainaru, Franck Cappello, and William Kramer. 2012. Taming of the Shrew:
Modeling the Normal and Faulty Behaviour of Large-scale HPC Systems. 2012
IEEE 26th International Parallel and Distributed Processing Symposium (2012),
1168–1179.

[11] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer. 2012. Fault
Prediction under the Microscope: A Closer Look into HPC Systems (SC ’12). IEEE
Computer Society Press, Washington, DC, USA, Article Article 77, 11 pages.

[12] Rohan Garg, Tirthak Patel, Gene Cooperman, and Devesh Tiwari. 2018. Shi-
raz: Exploiting System Reliability and Application Resilience Characteristics
to Improve Large Scale System Throughput. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). 83–94.
https://doi.org/10.1109/DSN.2018.00021

[13] Al Geist and Christian Engelmann. 2003. Development of Naturally Fault Tolerant
Algorithms for Computing on 100,000 Processors. (01 2003). https://www.csm.
ornl.gov/~geist/Lyon2002-geist.pdf

[14] Cijo George and Sathish Vadhiyar. 2015. Fault Tolerance on Large Scale Systems
using Adaptive Process Replication. IEEE Trans. Comput. 64, 8 (Aug 2015), 2213–
2225. https://doi.org/10.1109/TC.2014.2360536

[15] Kamil Iskra, John W. Romein, Kazutomo Yoshii, and Pete Beckman. 2008. ZOID:
I/O-forwarding Infrastructure for Petascale Architectures (PPoPP ’08). ACM, New
York, NY, USA, 153–162. https://doi.org/10.1145/1345206.1345230

[16] Harsh Khetawat, Christopher Zimmer, Frank Mueller, Scott Atchley, Sudharshan
Vazhkudai, and Misbah Mubarak. 2019. Evaluating Burst Buffer Placement in
HPC Systems. In IEEE Cluster.

[17] Ning Liu, Jason Cope, Philip Carns, Christopher Carothers, Robert Ross, Gary
Grider, Adam Crume, and Carlos Maltzahn. 2012. On the role of burst buffers
in leadership-class storage systems. In 2012 IEEE 28th Symposium on Mass Stor-
age Systems and Technologies (MSST). 1–11. https://doi.org/10.1109/MSST.2012.
6232369

[18] Yudan Liu, Raja Nassar, Chokchai Leangsuksun, Nichamon Naksinehaboon,
Mihaela Paun, and Stephen L. Scott. 2008. An optimal checkpoint/restart
model for a large scale high performance computing system. In 2008 IEEE
International Symposium on Parallel and Distributed Processing. 1–9. https:
//doi.org/10.1109/IPDPS.2008.4536279

[19] Robert Lucas, James Ang, Keren Bergman, Shekhar Borkar, William Carlson,
Laura Carrington, and George Chiu. 2014. DOE Advanced Scientific Computing
Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges.
(2 2014). https://doi.org/10.2172/1222713

[20] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supinski.
2010. Design, Modeling, and Evaluation of a Scalable Multi-Level Checkpoint-
ing System. In Proceedings of the 2010 ACM/IEEE International Conference for

High Performance Computing, Networking, Storage and Analysis (SC ’10). IEEE
Computer Society, USA, 1–11. https://doi.org/10.1109/SC.2010.18

[21] Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and Franck
Cappello. 2019. VeloC: Towards High Performance Adaptive Asynchronous
Checkpointing at Large Scale. In IPDPS’19: The 2019 IEEE International Parallel
and Distributed Processing Symposium. Rio de Janeiro, Brazil, 911–920. https:
//hal.archives-ouvertes.fr/hal-02184203

[22] ORNL. 2020. Spectral Library. https://www.olcf.ornl.gov/spectral-library/
[23] Kento Sato, Naoya Maruyama, Kathryn Mohror, Adam Moody, Todd Gamblin,

Bronis R. de Supinski, and Satoshi Matsuoka. 2012. Design and modeling of a
non-blocking checkpointing system. In SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
1–10. https://doi.org/10.1109/SC.2012.46

[24] Kento Sato, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R. de Supinski,
Naoya Maruyama, and Satoshi Matsuoka. 2014. A User-Level InfiniBand-Based
File System and Checkpoint Strategy for Burst Buffers. In 2014 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. 21–30. https:
//doi.org/10.1109/CCGrid.2014.24

[25] Bianca Schroeder and Garth A Gibson. 2007. Understanding failures in petascale
computers. Journal of Physics: Conference Series 78 (jul 2007), 012022. https:
//doi.org/10.1088/1742-6596/78/1/012022

[26] Bianca Schroeder and Garth A. Gibson. 2010. A Large-Scale Study of Failures in
High-Performance Computing Systems. IEEE Transactions on Dependable and
Secure Computing 7, 4 (Oct 2010), 337–350. https://doi.org/10.1109/TDSC.2009.4

[27] SimPy Team. 2020. SimPy: Discrete-Event Simulation for Python. https://pypi.
org/project/simpy/

[28] Devesh Tiwari, Saurabh Gupta, and Sudharshan S. Vazhkudai. 2014. Lazy
Checkpointing: Exploiting Temporal Locality in Failures to Mitigate Check-
pointing Overheads on Extreme-Scale Systems. In 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. 25–36. https:
//doi.org/10.1109/DSN.2014.101

[29] Sudharshan S. Vazhkudai, Bronis R. de Supinski, Arthur S. Bland, Al Geist,
James Sexton, Jim Kahle, Christopher J. Zimmer, Scott Atchley, Sarp Oral, Don E.
Maxwell, and et al. 2018. The Design, Deployment, and Evaluation of the CORAL
Pre-Exascale Systems (Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis, SC ’18). IEEE Press, 12.

[30] Lipeng Wan, Qing Cao, Feiyi Wang, and Sarp Oral. 2017. Optimizing checkpoint
data placement with guaranteed burst buffer endurance in large-scale hierarchical
storage systems. J. Parallel and Distrib. Comput. 100 (2017), 16 – 29. https:
//doi.org/10.1016/j.jpdc.2016.10.002

[31] Lipeng Wan, Matthew Wolf, Feiyi Wang, Jong Youl Choi, George Ostrouchov,
and Scott Klasky. 2017. Comprehensive Measurement and Analysis of the User-
Perceived I/O Performance in a Production Leadership-Class Storage System. In
IEEE 37th International Conference on Distributed Computing Systems (ICDCS ’17).
1022–1031.

[32] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott. 2008.
Proactive Process-Level Live Migration in HPC Environments. In SC ’08: Pro-
ceedings of the 2008 ACM/IEEE Conference on Supercomputing. https://doi.org/10.
1145/1413370.1413414

[33] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott. 2012.
Proactive Process-Level LiveMigration and BackMigration inHPC Environments.
Journal of Parallel Distributed Computing 72, 2 (Feb. 2012), 254–267. https:
//doi.org/10.1016/j.jpdc.2011.10.009

[34] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux
Utility for Resource Management. In Job Scheduling Strategies for Parallel Pro-
cessing, Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 44–60.

[35] John W. Young. 1974. A first order approximation to the optimum checkpoint
interval. Commun. ACM 17, 9 (1974), 530–531. https://doi.org/10.1145/361147.
361115

https://doi.org/10.1109/WORKS.2018.00007
https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1109/TC.2016.2643660
https://www.nersc.gov/assets/Uploads/Nersc-BB-EUP-CUG.pdf
https://www.nersc.gov/assets/Uploads/Nersc-BB-EUP-CUG.pdf
https://doi.org/10.1109/IPDPS.2013.74
https://doi.org/10.1109/SC.2018.00012
https://doi.org/10.1145/3208040.3208051
https://doi.org/10.1145/3208040.3208051
https://doi.org/10.1109/TPDS.2016.2546248
https://doi.org/10.1145/2751504.2751509
https://doi.org/10.1145/2751504.2751509
https://doi.org/10.1109/DSN.2018.00021
https://www.csm.ornl.gov/~geist/Lyon2002-geist.pdf
https://www.csm.ornl.gov/~geist/Lyon2002-geist.pdf
https://doi.org/10.1109/TC.2014.2360536
https://doi.org/10.1145/1345206.1345230
https://doi.org/10.1109/MSST.2012.6232369
https://doi.org/10.1109/MSST.2012.6232369
https://doi.org/10.1109/IPDPS.2008.4536279
https://doi.org/10.1109/IPDPS.2008.4536279
https://doi.org/10.2172/1222713
https://doi.org/10.1109/SC.2010.18
https://hal.archives-ouvertes.fr/hal-02184203
https://hal.archives-ouvertes.fr/hal-02184203
https://www.olcf.ornl.gov/spectral-library/
https://doi.org/10.1109/SC.2012.46
https://doi.org/10.1109/CCGrid.2014.24
https://doi.org/10.1109/CCGrid.2014.24
https://doi.org/10.1088/1742-6596/78/1/012022
https://doi.org/10.1088/1742-6596/78/1/012022
https://doi.org/10.1109/TDSC.2009.4
https://pypi.org/project/simpy/
https://pypi.org/project/simpy/
https://doi.org/10.1109/DSN.2014.101
https://doi.org/10.1109/DSN.2014.101
https://doi.org/10.1016/j.jpdc.2016.10.002
https://doi.org/10.1016/j.jpdc.2016.10.002
https://doi.org/10.1145/1413370.1413414
https://doi.org/10.1145/1413370.1413414
https://doi.org/10.1016/j.jpdc.2011.10.009
https://doi.org/10.1016/j.jpdc.2011.10.009
https://doi.org/10.1145/361147.361115
https://doi.org/10.1145/361147.361115

	Abstract
	1 Introduction
	2 System Design
	2.1 Checkpoint Model
	2.2 BB Utilization
	2.3 Proactive Live Migration
	2.4 Failure Analysis Model

	3 Evaluation
	3.1 Simulation Framework
	3.2 C/R Model Evaluation

	4 Related Work
	5 Conclusion
	References

