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Abstract—Embedded systems, particularly real-time systems common for several years in the general-purpose domain. As
with temporal constraints, are increasingly deployed in eery more embedded applications, particularly CPS application

day life. Such systems that interact with the physical worldare 1 ;
also referred to as cyber-physical systems (CPS). These fyBs utilize networks they become more susceptible to suchlatac

commonly find use in critical infrastructure from transport ation Fortunately, the design constraints of embedded real-time
to health care. While security in CPS-based real-time embated ~Systems lend themselves well to security methodologiesroth
systems has been an afterthought, it is becoming a criticabsue wise not applicable to general-purpose applications. doag
ai the:le systems are mggasfmglyl net\|/§/orkhed and w;te(rj—d.enpeent. of this work is in exploiting detailed timing bounds obtaihe
The advancement in their functionality has resulted in more 4 static analysis of application code for securitprst/
conspicuous interfaces that may be exploited to attack them . .
In this paper, we present three mechanisms for time-based CaS€ execution time (WCET) bounds lend themselves naturall
intrusion detection. More specifically, we detect the exedion of to security analysis. As WCET safely bounds the upper exe-
unauthorized instructions in real-time CPS environments.Such cution times for specific code sections, execution timevabo

analysis. For real-time CPS systems, timing bounds on code . . o .
sections are readily available as they are already determad prior Our technique is specifically designed for embedded real-

to the schedulability analysis. We demonstrate how to prode time systems where general-purpose domain protection may
micro-timings for multiple granularity levels of applicat ion code. prove ineffective: Randomization such as Address-space la

Through bounds checking of these micro-timings, we develop out randomization [21] and StackGuard [6], designed for 64-
techniques to detect intrusions (1) in a self-checking marer by i space, can be defeated more easily in embedded 8/1@/32-b

the application and (2) through the operating system schedar, . . -
which are novel contributions to the real-time/embedded sstems processors with brute-force attacks. Instruction Set Remd

domain to the best of our knowledge. ization [8] and other hardware enhancements [22], [9] nexqjui
additional hardware (with limitations due to static buffer
|. INTRODUCTION constraints) or high-overhead binary rewriting whose eost

Embedded systems have permeated every aspect of dferhead are shunned in lower-end embedded systems.
to-day life. Examples range from non-critical systemseftel  contributions: We develop three mechanisms that utilize
visions, toasters), moderately critical systems (stofit8j instrumentation and analysis from within real-time apglic
to highly critical ones (anti-lock brakes, hydro-electdam tions to detect the execution of unauthorized code and show
controls and flight control systems). The latter two cat&gor thejr effectiveness both under simulation and on a hardware
are examples of cyber-physical systems (CPS) where systg@tform. Using timing metrics and comparing them with
control affects human lives or interacts with the environine \yqorst-case bounds allows the detection of security breache
Most of these systems have real-time constraints, andi@gsuigye to intrusion within the system as well as situations wher
that such systems are secure from intrusion and tamperigg application is going to exceed its timing requirements
is a design challenge of utmost importance. Securing CPﬁ%r to an actual deadline miss. (1) T-Rex utilizes timing
dramatically deviates from security in general-purpose€o hounds to detect intrusion at a fine-grained level through
puting systems. In the latter, attacks may result in slowg{strymentation of return paths. Code injections resgliim
response or no execution at all. Imminent system failurggme dilations as small as 5-22 cycles, depending on system
if detected, can be mitigated by rebooting or re-instalati harameters, are discovered. (2) T-ProT validates insk-ta
with a temporary lapse of services to users. In safety afiticcheckpoints via synchronous scheduler invocations to wetco
real-time systems, in contrast, slower response or fadotgd coarser-grain injections between 9 and 5k cycles. (3) T-AxT
result in significant environmental damage or even in |0%§<p|oits asynchronous scheduler-triggered timing véitoes
of life, and system restarts often cannot be instant due ¢papplication code sections without requiring instrunagion.
unstable physical system state,g, during chemical and These security checks can be strategically scheduledlizeuti
thermo-dynamic reactions. otherwise idle time in the schedule. The granularity of the

While the development of real-time software for CPSs ischemes not only provides detection capabilities but also
stringent, vulnerabilities are exposed by libraries anecHT gy fficient time to transition to a fail-safe state.

embedded domain device software that enables attackers to
execute arbitrary code. Such code injection attacks haea be Il. ATTACK MODEL AND SCENARIO
_ _ Attacks on embedded systems with or without real-time
This work was supported in part by NSF grant EEC-0812121 arl U

Army Research Office (ARO) grant W911NF-08-1-0105 managetiBSU constraints can materialize in a variety of ways. In thidiseg
Secure Open Systems Initiative (SOSI). we discuss the attack and adversary models that are the



premise for our contributions. We then demonstrate a sampRi d Sun() { .
attack under these constraints. char | ocal cpy[ MAXSI ZE] ;

. . , f f(i t,"o%\n", & I ;
Past security work predominantly focused on wireless net-; zfa?i (u_ngy i f MI;XSI zg:ai ifg){

works in the domain of embedded systems, such as [28]. // search for data, increment counter,
Models range from passive packet sniffing to various actjve }
attacks, such as network traffic disruptioa.d, jamming, | // Checkpoint 1 instr. in assenbly
spoofing) and packet data t.amperlng/rewmlng. Qur apgro Coi d read_data() {
complements network-centric protection with applicatievel i nput = f open( " SomeNet wor kDevi ce”, " r+"):
intrusion detection. sum() ;

Our adversary model is one where one or more netwprk// Checkpoint 2 instr. in assenbly
nodes have been compromised or an attacker has successtully
authenticated a node under their control to the local (wired
wireless or ad-hoc) network. Such nodes can be embedded or Fig. 1. Sample Code Vulnerability
general-purpose systems, they may be mobile or stationary. Original Call

We assume that hardware parameters are not modified during ‘ e)
read_data|

an attack,i.e, memory latencies and processor frequencies
Hijacked Return 1

are not modified by the initial attack code. In contrast to
network-level security, we take an application-centripra@ach
for protection. While past work has focused on the applicati Hijacked Return 2

layer network interface for providing protection [31], [32 Fig. 2. Diverted Control Flow

[32]’ we fo;:ui otn iﬂpllcanon-lmtrms;ct%roteé:tlon, w2|dbes 'hput routines beyond POSIX library routines that may have
not compete but rather complements the above schemes. ex'BIoits. (2) Statistical detection methods [11] can bed&fd
is based on the premise that attacks originate from apitat

. . : in such a scenario by adaptively changing sensory input
beforelth_e opgraugg sys_tem IS ﬁompr?mlged.lOu:\{)vofgﬂf]cmus&/er time, which requires multiple repetitions of attacks i
g;s(tesr;yé?trr?::gvnvageggf;ma;ttezrze::gr:wlcbaetlzﬁaﬁ\ilalaia d,o?wr they can be detected at all. .(3) Signature-based methods
can be defeated through spoofing as embedded systems have

the detection of intrusion on uncompromised nodiscode limited computational capabilities that allow only symmiet

injection. Data injection attacks are beyon.d the scope i§f t@ignatures/encryption to be employed. Stronger publicipe
work. We assume that the user data space is unsafe (paotiall ey pair signatures or encryption typically cannot be accom

fully compromised) at the time of detection but the Ope'gitir}nodated in given utilization bounds of lower-end embedded
system space is still trusted as it has not been penetrag¢d (yreal—time systems [24]

Spemﬂcally_, we sgek to _protect embedded control sqftwareOur approach, detailed in Section IV, promotes a differ-
by enhancing it with sanity checks to uncover execution of

) . 2 - ent approach. Since our focus is on real-time systems with
unauthorized code in addition to regular application code. . L . :
. - g statically analyzable timing bounds at multiple grandjari
Consider the example in Figure 1 that obtains input data (via L .
: evels, we exploit time-bound checking as means to detect
fscanf) from an array of input sensoksd, temperatures) that .

. intrusions. For the attack in Figure 1, the time from theadii
are aggregated and later analyzed to drive feedbaCk'dm”Odiverted return to the secong return from Sum accourbltts for

an actuator valve. We have implemented an attack scenario.Q -
a MIPS-ISA where a network packet supplies the sensor d%t[:gk additional cycles on the MIPS ISA. We have developed a

from a spoofed or compromised node. The initial input strinnumb(:"rOf application-centric techniques that can deteng

. ilations as small as 5-22 cycles. The above intrusion was
overruns the bound of the localcpy array to overwrite bot] : L . :
. ) nstantly detected with only minimal runtime overhead ie th
frame pointer and return address. When returning from the

. ; order of 1% of the application’s execution time.
function after the loop, control is subsequently trangférro 0 PP

the first instruction in the Sum function (see Figure 2). Upon This example llustrates just one possible code |nject|or_1
s : attack that is detected by our approach. The approach is

second execution of Sum, a second input corrects both fram )
) . orfhogonal to methods that protect against other attackd s
pointer and return address to resume execution as normal. L . : )
as data injection, timing, and denial of service attackshkH

Without ever causing a program fault, this attack results . :
g a prog L "> Hese attacks may require separate approaches for p@venti

2 x MAXSI ZE aggregations of legitimate sensor data within Co 2 e .
: or detectionj. e, it is not realistic to expect aingle method

thresholds, yet the result would be averaged incorrectbr oy,

just MAXSI ZE elements (code omitted). t_o secure against _aII of types of adversary appro_achesamver
. time-based security canomplementother security mecha-
General-purpose and network-level protection methods are o ; )
: - X nisms. While it does not categorically prevent all attadks,
insufficient for such attacks in embedded systems for a numbe, ™ A
. . : . will raise the bar for code injection attacks.
of reasons. (1) While this attack exploited a common library

routine to trigger a buffer overflow, constraining analysis I1l. TIMING ANALYSIS
a subset of vulnerable routines is insufficient in embeddedAccurate knowledge of execution time is a strict require-
systems where custom hardware devices expose non-standaedt for hard real-time systems where a missed deadline




may render the entire application incorrect. Timing anialysA. T-Rex: Timed Return Execution

determines an application’s BCET and WCET bound that T.Rex employs application-level checkpoints to detectecod
allows verification if a task's deadline can always be mefjections resulting in buffer overflow attacks. Typicaliuch
Timing analysis can be performed via dynamic [3], [25]attacks overwrite the return address of a routine whosedsam
static techniques [27], [15] or hybrids of them [2], [14]6]2  are stored on the stack. Upon return from a function, control
Dynamic timing analysis determines the effect of differens transferred to the location indicated by the overwritten
inputs on execution time to approximate the WCEIG, t0  retyrn address. Attackers often divert execution to harittem
determine that an inversely sorted list maximizes bubbtsso jysiructions intentionally placed in global/stack vatésh or

computational complexity. Static analysis bounds agdeeganey may spawn new programs. T-Rex detects the former while
costs of instructions in blocks and then compounds the Co${\xT (see below) addresses the latter.
of paths throughout the program taking architectural tgnin  T.Rex uses a pair of checkpoints that compare WCET

effects into account to a safe WCET bound at compile timgming bounds with actually elapsed wall-clock time along
In contrast to the dypamlc approach, static timing analyas 5 return (from subroutine) path (see Figure 4). The first
been shown to providsafeWCET bounds [25]. checkpoint sets a timer equal to the WCET, and the second
We utilize WCET bounds obtained from static timing analgheckpoint cancels this timer. Failure to cancel this tifoere
ysis in th_ls work. Whl_le the objective of traditional timingiq time overrun) would result in an interrupt indicating a
analysis is to determine WCET bounds along tbegest compromised system. T-Rex is equally applicable to antyitra
execution path, our work capitalizes on the ability to explogqnro| transfers, such as function pointers or large ol
timing results alongubitrary paths. Our work relies on WCET gyitch/case statements resulting in indirect jumps. If the
bounds for such paths but farecurity reasons and not for gynamically observed wall-clock delta between checkgoint
schedulability. _ ~exceeds the WCET bound then excess instructions were exe-
To conduct our study, we obtained a copy of an existingied indicating a security breach. In contrast to coarsdec
tool chain [7], [18], [16] depicted in Figure 3 that enablegections with conditional control flow, static timing arsily
us to accurately gauge the WCET bounds of an applicatigh these straight-line execution regions yields tight WCET
(macro view) as well as small groups of instructions (micrgo,nds, Return-from-subroutine code comprises a series of

view). A compiler translates the application to annotatl®#P |oa4s and stores to restore prior processor state and unwind
assembly. This intermediate code along with loop boung$s stack.

information is then fed into a control-flow analysis tool. \yhen such a region exceeds the path-based WCET bound
Subsequently, control-flow analysis and static cache &falyy,e gyerall program may not necessarily exceed its overall

are performed. The respective outputs are then consumed Y eT hound due to shorter paths taken during the remaining
a timing analyzer that uses the annotated assembly and I¢R.yecution. This makes T-Rex well suited for detecting at-
bounds to derive a safe WCET bound. tacks that could not easily be detected at task-level gaaityl

= — due to deadline misses. This is because violation of miatb-p
ontrol Flow imi . .. g
Source Compier and Constraiy WCET bounds is a necessary but not a sufficient condition for
violation of a task’s WCET bound or its deadline.
Stati i i H H I H H
e o Enine || oepenen T-Rex is built into the operating system as a state _machme.
Simulatoy Categorizations | Information It requires the use of two separate calls whose order isérhck
Fig. 3. Timing Analysis Tools In the motivating example, the attack would cause the timer

initiated at the first checkpoint to never be canceled asd¢he s

h devel dIV' DESr:GdN | ; . .. ond checkpoint is skipped. Upon timeout, the corresponding
We have developed a methodology for verifying t'm'ngnterrupt then indicates a potential system intrusion. desi

b_ou_nds _at checkpoints dl_mng application task gxecunoe. Vgﬁect of the state machine is that the checkpoint addresses
_dlstmgwsh two checl_<p0|_nt placement strategies, one th’ﬂ'te checked to insure that they fall within the address range
mstruments_the application and one where thg r_gal-tmatf instructions. Thus, any attack would have to return back
schedulgr triggers checks called T-AxT. qu applicatiafes to the application code to shut off the timer using the second
c_he_ckpomts, we promote &nacro and a micro _check of checkpoint. For tight WCET bounds, even the simple code
“f"'”g bounds. The former, T-I_DroT, competes with SCheehJIeH:om the attack to jump to the second checkpoint would be
triggered T-AXT checking while the Iatter_, T-Rex, Cor_npleaetected. An attacker could potentially disrupt the cdntro
ments the other two schemes. Checkpoints are reallzedﬂga/ of the application by jumping to a non-corresponding

synchronous system calls for application instrumentation second checkpoint if slack was available. However, usirg th

reside in the scheduler at preemptions. ,lt IS necessary i ot technique described in the following section, such
use system calls because user space provides insufficient ?egal control flow transitions would be detected

protection. Thus, we are using the real-time operatingesyst . ]
as our trusted computing base. Critical security data, suh T-ProT: Timed Progress Tracking

as timing bounds, reside in a different address space thad-ProT utilizes synchronous calls at security checkpoints
application code to decrease its vulnerability due to tainge to the scheduler and validates WCET bounds of longer code
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Fig. 4. Timed Return Execution (T-Rex) Fig. 5. Timed Progress Tracking (T-ProT) Fig. 6. Timed Address Execution Tracking (T-AxT)

sections than T-Rex (see Figure 5). The scheduler assumesa¥en though such bypasses are non-trivial to construcirwith
job of checking these bounds against actual elapsed timegigen timeout bounds. To overcome this weakness, we de-
provide separation between protected application andecorsigned T-AXT as an asynchronous checkpoint technique co-
sponding timing data as the latter resides within the opegat existing with unmodified application code. T-AxT excludive
system,i.e, at a higher privilege level and in an addresstilizes the scheduler and timing bounds information piledi
domain disjoint from the application’s domain. Hence, ouwat system start to maintain timed security.
timed security does not rely on data / knowledge embeddedn T-AxT, the scheduler preempts the application upon time-
within an application, which can potentially be compromiise outs. It then probes the PC value of the preempted applitatio
T-ProT detects several intrusion scenarios that divernfroand compares execution progress to WCET bounds associated
the expected control flow, such as large sections of apjgitatwith the code section between the previous and current PC
code that are skipped or failure to return control to the baselues of consecutive preemptions. As T-AxT operates witho
applicationg.g, by replacing the executable of a real-time taskynchronous calls, it presents an alternative to T-ProT.
(through “exec” system calls). Upon encountering a timing With this technique, bounding the WCET of loops presents
checkpoint, instrumentation forces a synchronous sckedud challenge. As PC values are agnostic towards the progress
call. The scheduler subsequently checks timing bounds fof loops, the current iteration point within nests of loops
the code section between the previous and this checkpoindeds to be known. We probe actual values of induction
It then activates a timeout equal to the WCET distance untiriables whose locations (registers/memory) are obdaie
the next checkpoint. If no checkpoint is encountered hiblef static analysis (offline, prior to system start). The schedu
this timer elapses, an intrusion is flagged. dynamically evaluates polynomial functions parametribgd
Placing checkpoints in control-flow blocks guaranteed tactual iteration points to determine if the WCET bound of
be traversed during executios.§, using post-dominator in- a code section has been exceeded. Such sections may span
formation [1]), we ensure that these checkpoints are alwayfultiple loop nests and iterations. Any loops lacking intitue
traversed when a job completes or its deadline expires variables are supplemented statically during code arsalyish
assuming that the application was not aborted prematutedy dan induction variable.
to an attack. In our experiments, WCET comparison bounds are deter-
Determining the instrumentation points (checkpoints)-comnined in either absolute or relative time. We utilize WCET
trols the sensitivity of protection. In some algorithmse thhoundsrelative to task activation when multiple execution
best-case execution time may deviate significantly from thgths exist. This allows us to eliminate path-aggregate-ove
worst-case execution time. For instance, insertion s@o-al estimations of WCET bounds due to conservative static imin
rithm has a best-/worst-case complexities ofj04nd O@*), analysis. In contrast, we utilize absolute WCET bounds for
respectively. The difference between these bounds prevadesequential straight-line code for finer granularity of tms.
substantial margin to orchestrate code injection. To @& This duality is tailored to tighten WCET bounds checks in
this problem, checkpoints need to be inserted such that tifg@ps since scheduler preemption tends to occur in hot code
distribution is divided in a (uniform) manner to minimizé®t regions,i.e., predominantly within loop execution.
time between two consecutive checkpoints. An example ef thi | practice, we mostly rely on checks of WCET bounds
would be checkpoints within the loops of the insertion soBetween two checkpoints at the highest nesting level. This
that fire everyk iterations, where the choice é&fdetermines interaction is depicted in Figure 6. The first check in the
the strength in protection while assuring sufficient slatkhie |oop is calculated as an absolute checkpoint since no prsvio
task schedule to accommodate the timing checks via schediigeckpoints exist. The second checkpoint is measured as a
Invocations. delta from the previous checkpoint, which tightens boumik a
This also meshes well with code obfuscation techniqugengthens timed security as a means of intrusion detectio
employing multi-version binaries where we can instrumént a Two of the timed security techniques rely on application
disjoint points for otherwise functionally equivalent Bites jnstrumentation. After instrumentation, the overall rtale
of the same application to increase the difficulty for ateek task set has to be reanalyzed to obtain WCET bounds that
to systematically defeat our timed security approach. include the instrumentation code. Timing checks by the dehe
C. T-AxT: Timed Address Execution Tracking uler have to be accounted for as well before the real-time
T-Rex and T-ProT both require application instrumentatiosthedulability is reassessed. To avoid that such overheads
for checkpoint placement. An attacker could exploit thistfabecomes excessive, which might render task sets infedsible
through application-specific checkpoint bypass techriguaéerms of real-time scheduling, checkpoints are selectegda



on profiled frequencies that are representative task easut T-ProT on an actual embedded hardware platform, namely
in our experiments. the DSK6713 kit from Spectrum Digital. This board has a
Any detected timing bounds violation indicating intrusioffexas Instruments C6 (TMS320C6713) DSP chip running at
further needs to result in evasive actions, such as transitj 150MHz featuring a 32-bit processor with Very Long Instruc-
to fail-safe statese.g, through a mode change that replaceson Word (VLIW) architecture, 2 levels of caching and up to
all existing tasks with a new task set governing a shut-dov@s6KB of on-chip SRAM programmed under Code Composer
sequence and network isolation. The focus of this paper is 8tudio v3.1. This board is also utilized in a CPS project
time-based intrusion detection while such evasive actames for controlling power devices (solid state transformers)ai
beyond the scope of this work. renewable energy project (solar and wind power generation
V. IMPLEMENTATION & EXPERIMENTAL FRAMEWORK in microgrids). Software security is deemed critical in [eow
The mechanisms discussed in Section IV were implement@dds as malicious attacks could potentially damage egeim
in two different experimental frameworks, one that combind/PStream affecting entire suburbs.
static timing analysis with architectural simulation ambther ~ In the experiments on the embedded platform, WCET

that combines dynamic timing analysis with an embedd&@unds are determined by dynamically timing executiongath
system hardware platform. under worst-case scenarios while running the program on a

cycle-accurate simulator from Texas Instruments that Eites
the C6713 processor along with its on-chip peripherals. Ex-
ecuting the actual code segment repeatedly on this simulato
Timing Analyze . . . .
using worst-case inputs and hardware settings provides the
observed maximum number of CPU clock cycles for a given
— WCETs for code segment. We configured the platform for maximum
€ Source Files task se dictability: (1) Cach disabled. (2) We utilize SRA
Files Security Datal binaries LoopsiTasks| ~ Predictability: (1) Caches are disabled. (2) We utilize 3R
. instead of SDRAM to avoid spikes in memory access times
during SDRAM self refreshes that last for several microsec-
onds. Bounding refresh overhead is an orthogonal challenge
Figure 8 depicts our layered system architecture used.

) . ) o We ported a commonly used real-time operating system,
The overall experimental framework is depicted in Figure {si.roc OS |1 [10], which supports fixed-priority preemptive

We enhanced a static analy;is_ frarnework_ as discussed in ieduling. We then implemented a scheduler based on rate-
tlo_n I_II tq suppqrt check-pointing mstr_uctlons. These dhe monotonic analysis (RMA) [13] on top of MicroC OS II.
pointing instructions allow us to determine the worst CasBeC g scheduler supports threads of arbitrary periods ifnpos
time at which a particular instruction finishes executiohisT gyjet execution time control. Failure to complete by a diead
information IS essential to determining the WCETSs betweqg,jts jn preemption and rescheduling during the nexoperi
two consecutive checkpoints under T-ProT. We also provide synchronous application checkpoint cailts f

We further utilize a custom Si_mple_ScaIar processor SimUIﬁﬁplementing T-ProT and monitoring of aggregate execution
tor [4] enhanced to support multitasking and schedulesttise time per task since with a one microsecond precision.
/ tasks, which we exploited to implement earliest deadlirs fi

(EDF) scheduling. The scheduler is customized to support VI. RESULTS
relative time for each thread aggregated during preemptioh. Common Attack Cycles

and at security checks of a task to most accurately trackTiming values of actual attacks for embedded systems are
execution progress. sparse in literature, at best. To determine typical costs, w
For T-Rex, SimpleScalar enhancements include two syst@@hsider common shell codes used on Linux systems. Metas-
calls to query timing information (a) before a return from Bloit, a repository for such attacks, contains approxifyate
function / method, and (b) at the destinations of a functiongl gifferent Linux/Unix shell code examples of the same
method return and compare the difference to static bounds. YWgamental structure. A jump in the first line of the shetlieo
utilize a timer and also verify correct sequential orderofg transfers to another location within the shell code. Thisai
these calls. If call one was issued without the other, a obntr;, determining the relative offset for addressing. An “éxec
flow violation (intrusion) is detected, that would resulit a system call then invokes a command of the attacker’s choice.
buffer overflow attack that returns control flow past the $&c0 The most common examples found on Metasploit are useradd,
caI_I. Call_sites are identified by their_ca_\ll stack / PC andrfea ghe| and tcp open directives. Figure 9 provides measured
pointer signature so that calls from injected attacker @®@e tjming values for common portions of attack code. We measure
easily identified. We tested our implementation using a et @e average cost of execution from the hijacked return to the
C-Lab benchmarks [5]. first instruction in the shell code (“Start”) and the averéigee
B. Embedded Hardware Framework of an execution system call (“Execpl”) with null arguments.
Our second set of experiments was conducted by combinilfigactual values are passed, measurements are significantly
dynamic timing analysis with implementations of T-Rex anthrger.E.g., passing “Chmod”, a common attack to modify file

A. Simulation Framework

SimpleScalar Simulator

Fig. 7. Framework
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Fig. 8. System Architecture Fig. 10. T-Rex WCET and Sensitivity cycles

permissions, dramatically increases the cycle overhelagsd  Timed Progress Tracking (T-ProT) Result$able 11 as-
are examples of common shell code attacks to indicate tiealisesses the effectiveness of T-ProT, which relies on synclus
timings to consider the effectiveness of our methods. scheduler checkpoints to dynamically detect intrusions by
B. Simulation Results WCET bounds violations. The table reports checkpoints be-

T-Rex utilizes anabsolute task timer to determine the tWeen adjacent instrumentation points in the control flow fo
total time since the simulation start. T-ProT and T-AxT ar8ach applicatione.g, checkpoint 0-1 denotes execution from
exercised in a modified preemptive real-time scheduler und@ty of main() to a later basic block in CNT, 2-3 and 3-4
the SimpleScalar environment to keep aggregatetimer for denote loop entry and exit, respectively, while 3-2 denotes
each of the executing job. This aggregate timer is compardd?@ck-edge within the outer and inner loops, respectively
against WCET bounds from static timing analysis. It is ferth (S€€ Figure 12). Corresponding WCET bounds (column 3) and
saved in the scheduler-maintained thread control block $gnSitivities (column 4) are reported in cycles for theseeco
preemption and restored at reactivation. The value is rsefS€ctions. We instrumented several checkpoints in bendtemar
thread / task completion to prepare for the execution of t@ illustrated for CNT in Figure 12:

task’s next periodic job. 1) immediately after the original variable declarations bu
Timed Return Execution (T-Rex) ResuliBRex success- prior to the invocation of loop 1;

fully detected the buffer overflow attack depicted in Fighres ~ 2) within the outer loop just prior to the inner loop invo-

the injected code accounts for 14k cycles, which far excésds cation;

detection granularity of 5-22 cycles. Under legitimatessen  3) in the inner loop with logic surrounding it to only
inputs, the sample program produces the correct output with ~ perform the check during half way through the total
an additional 40 cycles relative to the application itself. iterations of the inner loop; and

Figure 10 shows the sensitivity results of T-Rex for varying 4) in the final block of the application just prior to exiting.
benchmarks and their respective functions. In this expamin ~ The results of Table 11 indicate that T-ProT has a coarser
the attack code, after executing its injected code, retirtise  granularity in that the reported bounds on undetectab&rin;j
exact spot in the code that the original return for a call woukions range up to nearly 5k cycles at the upper end. Hence,
have jumped to. The table then reports the WCET in cycles fecheduler callbacks result in less sensitivity than repath
the return sequence as reported by timing analysis (WCETimstrumentation. This lower sensitivity is a result of more
column 3) and the number of slack cycles that would remagimmplex control flow than just straight-line code as in T-Rex
undetected (sensitivity in column 4), both without considg Checkpoints may cross loop levels and are scattered through
caches, while the next two columns show the correspondiagt the application. This reduces the tightness of WCET
results for a 4KB instruction cache. The slack amounts tmunds. WCET bounds of a loop iteration are generally less
the difference between WCET and actual execution time, tlight than straight-line code due to fluctuations in the namb
latter of which is observed from SimpleScalar simulatioheT of iterations or conditionals inside the loop body. To obtai
WCET bound is extremely tight since T-Rex assesses time safe worst-case results, we have to conservatively caéctiia
a straight-line path of the control flow. Hence, the window ofiorst case scenario (upper bound on loop iterations, longer
vulnerability is restricted to a sensitivity of 5 cycles dgut path for conditional execution) in our static analysis lizitig
and 8-22 with caches. This limits the amount of code that maystruction caches as depicted in the second half of Table 11
be injected without being detected. has an impact on the overestimation. This is due to the fact

These results provide a lower bound. The upper boutitht relative checkpoints tend to not incur cache misses as
for undetectable injections is given by the T-ProT or T-AxTnost cold misses occur prior to the first checkpoint hit.
methods, which address larger injections and omission@é co Overall, security is elevated by these scheduler checks.
sections in favor of injected code. However, disguising thdoreover, T-ProT is quite versatile in that it may be used to
side effects of polluting stacks and registers is nondtivi instrument code sections at arbitrary points in the apfitina
Overall, the results in Figure 10 illustrate that the timinghis makes T-ProT suitable to detect compromised subresitin
bounds and subsequent security checks for straight-lide can a targeted manner. There are additional security beriefits
are very precise, thus leaving little room for injected cod@sing T-ProT. Timing bounds preemption requires a look4up o
Instruction cache effects loosen these bounds propotljonahe previous checkpoint and a comparison of the currenbgmi
to the cache miss penalty of 10 cycles (as seen for ADPCMhRlues with the corresponding WCET bounds. When factored



No Caches | 4KB I-Cache Start - .
Program|Checkpoint| WCET |Sensit/WCET |Sensit] Checkpoint 1—{_Main [ Program | Period | WCET | Sensit |
R LR
LMS 1-2| 5975 65| 3279 774 Checkpoint ' ' '
LMS 2-2| 17199 259 8699 2120 CNT 20,0001 27,750| 7,750
LMS 2-3| 11330 210 5549 1430 CNT 20,000 27,225| 7,225
FFT 1-2| 950 54| 697 220 : : '
FFT 2 -2 19,283 2,787 13,955 5,334 Checkpoint 3— '-'V'g 38’888 52’43;1 %432
FFT 2-3 12,709 1,997 9,451 3,831 tmg o 28’318 18';"18
FFT 3-3| 5084 460 3,150 659 i prnpeod I I
FRT 3-4) 208 48 120 49 SRT 20000 | 23.400| 3.400
CNT 0-1 1814 120 786 147 oRT 20000 | 24128| 3198
CNT 1-2 69 9 46 14 SRT 20,000| 22,701| 2,701
CNT 2-3| 14083 283 4341 1493 oRT 20000 | 52573 | 5472
CNT 3-2| 13599 239] 4199 1481 Checkpoint 4—| End SRT 20’000 22’701 2’701
CNT 3-4] 13726 266 2760 1534 v ’ ’ '
Fig. 11. T-ProT WCET and Sensitivity cycles Fig. 12. CNT Control Flow Fig. 13. Timed Address Execution Tracking

into the application execution, this cost is hardly notiWlea themselves add only negligible overhead. We used “assert
and requires only insignificant additional slack in the reaktatements at checkpoints to check timing bounds. Thedteste
time schedule of the task set at the benefitnudre secure assertion here is given by the comparison of the actual time

cyber-physical systen{see Section VIII). elapsed since obtaining the first clock value and the exgecte
Tab. | T-PROT CHECKPOINTHITS WCET bound. Figure 14(a) depicts the output of assertions
[ Program | Total Checkpoints | Total Hits ] that were added for trace visualization purposes. The finstiw
LMS 3 203 in every output line indicates the ADPCM function instru-
FFT 4 114 mented, followed by the result of the assertion indicatinig) i
CNT 4 132 passed or failed. The number before’ indicates the WCET

Timed Address Execution Tracking (T-AxT) Result#éxT  bound in microseconds for the corresponding function retur
has the coarsest granularity of our mechanisms. It is also #ind the number after>’ indicates the actually measured
most difficult to attack directly because it resides withie t time for the same in microseconds. Assertions compare these
kernel and is not triggered by checkpoints from tasks. Thignes with predetermined WCET bounds, which in this case is
periodic timer for these results was set at 20k cycles on a 18€termined to be about 3/secs (rounded up conservatively
MHz processor clock in simulation. This value was chosen to 4) for all functions using the C6713 device cycle-accarat
balance overhea@.g, SRT required 2051 checkpoints duringsimulator. The output shows that all timed return path &lue
job execution (see Table 13). The coarser granularity of dre within a range of 1-2secs. Hence, all the assertions pass,
AXT is due to aggregation of conservative bounds duringcstat.e., no timing violations (due to intrusion) were detected.
timing analysis and approximate matching of PC values with
WCET bounds. WCET values were associated with the nexﬁﬁ?'zgégggiggéggiz“z > 3%?'}2'5@335%}5?333‘14& >1
smaller blocks of code relative to a PC value to conserv ppol2; ASSERTPASSED 4 > | uppol2: ASSERT PASSED 4 >
storage overhead for WCET bounds. The LMS benchmarkppol1: ASSERT PASSED 4 > | uppoll: ASSERTPASSED 4 > :
generally retained the highest difference in cycle measureencode: ASSERT PASSED 4: | encode: ASSERT FAILED 4 > :
menisus. actual time. Thi is due 1o the complexiy and sizef ez ASSERT PASSED 42 | fler ASSERT ASSED S 3
of multiple inner loops within LMS. The overestimation of Fig. 14. (a) All Asserts Pass (b) Some Asserts Fail
WCET could be decreased using a finer granular configuration
but at a larger storage cost. The benefit of T-AXT is its abilit The second experiment consists of calls to a dummy func-
to bound the WCET of PC-constrained code sections withijon after obtaining the first clock value but before a return
or across loops and to verify that the job’s execution meei®m a function,i.e, we created a code injection scenario.
these bounds. Bounds violations are a sufficient indicadion This dummy function simply executes an empty loop (no-
intrusion for a given code section. op) for 100 iterations before returning to the caller. This
C. Measurements on an Embedded Hardware Platform  simulates code injection that returns to the original ocmintr

We also implemented T-Rex and T-ProT on the DSP harflew without harming stack values.e. the only noticeable
ware platform discussed in the last section and conductefflect is time dilation. Results of this experiment are diga
multiple experiments. The first experiment features thechen in Figure 14(b). As illustrated by the results, code injewcti
mark ADPCM deployed as a single periodic task. The code thfrough the dummy function resulted in a large deviation in
this task is enhanced by T-Rex to provide timed security. Tledbapsed time between obtaining clock values on the return
single-task constraint allows us to control the experimmsnt path. Notice that even ten iterations accounting for jisécs
eliminating additional preemptions between first and sdcomwould suffice for detection a3.0 + 1.4 > 3.1.
calls that obtain clock values. We determined that the callsWe next created a set of periodic tasks with mixed period-



icities (containing smaller and larger periods than ADPAM) accounting and power control subsystems [17]. Further dam-
co-exist with the ADPCM task. We further experimented witlage was only contained by reconfiguring servers between the
explicit sleep statements prior to obtaining the first armbad two subsystems to prevent the virus to spread uncontraited i
clock values in order to force preemptions. As expectethe power control subsystem. As these are just two examples
assertions indicated intrusions in all these cases. Sinee ilustrating the urgency of providing guards against cyber
results resemble those reported in the previous figurey, thatacks in the CPS realm. Our timed security is one such
are omitted here. technique readily deployable to complement existing sibn

We also implemented T-ProT on the embedded hardwaletection techniques. The rationale of such deploymert is t
platform. As before, the WCET bounds between variodgrther strengthen security as a single protection meshani
checkpoints are obtained as the maximum cycle count foan often be defeated by itself, yet a set of mechanisms
executing the program in a loop on the C6713 cycle-accurasemuch harder to circumvent. Hence, the inherent cost of
simulator under worst-case conditions and inputs plus cosecurity are well justified in practice.
plete path coverage. This cycle bound is then converted intoFurthermore, many real-time systems provide sufficient
executiontime by adjusting for the CPU clock speed beforslack in a task schedule so that security mechanisms could be
comparing with measured time on the hardware at a che@ecommodated under feasible schedulability. After algl-re
point. Our RMA scheduler provides a built-in mechanism téme systems only have to ensure timeliness in the sense that
remember the previous checkpoint and assert the validity @dgadlines are met. As long as deployed security methods, suc
the latest checkpoint. Table 1l shows the calculated WCESS timed security, impose overhead within deadline bounds,
bounds and observed runtimes for FFT on the embeddedcDirectness is guaranteed. Conversely, systems withsigti
DSP hardware platform. Without code injection (columns 2nay limit the level of security that can be realized. Depagdi
4), all checkpoints pass in this experiment, thus indigaan on vulnerability and criticality assessment, such netwdrk

safe execution. systems may need to be redesigned for more powerful hard-
Tab. Il CHECKPOINTS OFT-PROT FORFFTON TI DSP ware targets, or a paradigm is needed to provide the ahbility t
No Injection Code Tnjection selectively augment code with security measures. Seigctiv
Chkpt. # |WCET |Actual |Chkpt || WCET | Actual | Chkpt amounts to a tradeoff between safety and vulnerability icbns
Chkpt0-1 3 2 | pass|| 3 2 | pass erations of code sections on one end and availability okslac
Chkpt1-1 5 3 | pass| 5 3 | pass to meet deadlines on the other end.
Chkpt1-2 7 5 |pass| 7 5 | pass More concretely, T-Rex increases the execution time of an
gﬂtg: g i g g 2 gzzi g 136 Ff);?s application due to its inherent instrumentation. Our ressun

Section VIII assess this overhead. In many embedded applica
Columns 5-7 of Table 1l show results for experiments whe#ns, return-path instrumentation results in the invimrabf
additional injected code executes between checkpointsd2 #ly few checking instances at execution time since the bulk
3. A small loop is introduced between these two checkpoiréthe work is performed in loops whose bodies do not contain
to simulate code injection. Results of Table Il indicatetthdunction calls, thus resulting in negligible timing ovedtk In
all tests between checkpoints 2 and 3 fail implying a detkctéodes containing hot spots in tight inner loops with funetio
intrusion. calls, in contrast, security checks impose a significantroead
Overall, we have shown that our mechanisms facilitate intrthat may easily exceed the available slack. In such cases,
sion detection in both preemptive and non-preemptive mul@iPplication code should be refactored based on transfamat
tasking real-time environments, which makes them univigrsatéchniques such as inlining, single caller function specia

suitable to CPS applications. ization, which avoids allocating a new stack frame in place
_ (commonly performed by the Intel compiler), or reduction of
VII. TRADE-OFF: SECURITY VS. TIMELINESS function call frequencies through restructuring. The baéa

The objective of providing security in systems in generdletween such transformations and security overhead ofxT-Re
is to increase the level of protection against attacks at ttetarget given slack margins is subject to future work.
cost of executing additional routines that monitor and &hec T-ProT inflicts overhead through synchronous upcalls and
the system behavior. In cyber-physical systems with riead-t timeout preemptions that activate the scheduler to subse-
constraints these instrumentation and time validatiorckéie quently check if the application operates within expected
affect system utilization and thus real-time schedulgbi@ur timing bounds, where the former overhead is more significant
sample attack in Section Il shows that embedded systems vilthn the latter as it is only triggered upon an intrusion.sThi
network connections, such as CPSs, are vulnerable to cyberthod should be used in conjunction with selective placgéme
attacks. Reports in practice reinforce this fact. Most bigta of checkpoints using strategic and statistical meagg, (
worms have entered monitoring equipment and disabledrandom placement and random activation). Random activatio
safety system at a nuclear power plant [12]. In anothalso strengthen security as attacks become more difficult.
incident, a virus reportedly spread past firewalls into the a T-AxT has easily controlled overhead since it is scheduler
counting system of the main Australian power company, whidattivated. Should frequent checks be required, timer ripds
did not implement proper physical network separation betwewould have to be triggered in shorter intervals adding to the



overhead of interrupt service routines. The overall olpject at a dynamic overhead comparable to that of T-ProT with a
is to provide adequate coverage of checkpoints to maximizenstant default overhead of approximately 16% . The last
overall security within the given timing constraints. Whthe column of the table shows the scaled overhead of about 8%
details of such placements and their trade-offs are beylead for a 40,000 cycle instrumentation period.
scope of this paper, all methods are designed to allow sedect These results show that overhead scales linearly withunstr
instrumentation subject to future work. mentation frequency for all of our techniques. Such scaikng
Overall, our security-enhancing methods with their oveeasily controlled (a) for T-AxT through selection of persyd
heads have acceptable costs when properly tuned for pngvid{b) for T-ProT through rate control and (c) for T-Rex through
security without compromising timeliness. By adjusting thinlining, rate control or a combination of both.

frequency of dynamic checks, particularly for less critica Tab. Il DYNAMIC PERFORMANCEOVERHEADS
sections, one can trade off overheads for an increase [Method #[Benchmark[Default OverheadgScaled Overhead$
vulnerability level. The trade-off between overhead andlle [T-Rex SRT 0.22% N/A
of security is common in general-purpose computing, yeét LMS 1.54% N/A
the implications on timeliness add another equation to thjs A?ZIIDZ(':FM (1)8022? ON?)/,ZA%
. . . 0
tra_u_je-(_)ff. Our te_zchnlques target real-time CPS yvhere By_st TProT VS — 5505 3 68%
criticality outweighs performance concerns making seyai EET 16.17% 7.920%
mandate rather than an option. CNT 10.05% 4.92%
VIII. | NSTRUMENTATION OVERHEAD T-AXT LMS 15.89% 7.94%
We assessed the overall benchmark overheads relative to the SRT 15.89% 7.94%
. CNT 15.89% 7.94%
performance costs of each of our methods. Table Il depicts
these overheads in percent relative to the applicationd ba IX. RELATED WORK

execution time without the security methods. We distinguis Much of past work has focused on the evaluation of generic
the “default overhead” corresponding to the experiments sécurity features in the context of scheduling real-timgliap
Section VI and “scaled overhead” with variations on theations. Often, certain out-of-the-box security mechasisire
frequency of intrusion checks. applied at the cost of ensuring timeliness while arguind tha

For T-Rex, the default overheads range from 0.22% s®curity is improved [23], [29]. Past work on embedded sys-
1.54% for three of the four benchmarks. Such overheads &eens security has focused on sensor networks includingteemo
negligible assuming just minimal slack in a real-time taskhemory verification, network-related anomaly detectiothat
schedule. The higher overhead of 18.71% for ADPCM is dymacket or application level [20], [31], [32], [30], [28]. ming
to its modular structure compared to other benchmarks.dhalysis is considered in literature as a means to reverse-
consists of several small functions that are called witHmo@. engineer encryption techniques [19] instead of utilizinépr
Thus, T-Rex checks are invoked more frequently at a deegotection. The emphasis of this work is on utilizing timing
nesting level than in other benchmarks. Code restructuriranalysis bounds to detect code injection attacks.
such as inlining, reduces this overhead to that of the otherThe most closely related work uses a hardware/software
benchmarks. For example, after inlining calls at the innecombination to detect attacks [22]. In a first technique, a
most loop levels for ADPCM, the T-Rex scaled overheatew stage is added to the processor pipeline to check on an
was reduced to just 0.32%, as depicted in the last coluraddress before data is written to it. If the value is gredtant
of table Ill. For the remaining benchmarks, default ovedseathat of a special register delimiting vulnerable stack oegi
did not justify any inlining so no scaled overheads are riggabr then write is denied. In the second technique, a new “sjmp”
for T-Rex. The performance impact of T-Rex after occasionaistruction XORs the write address with the value stored
code restructuring is low. in the special register to assess validity of the jump target

The overheads for T-ProT vary depending on the appldther approaches rely on hardware buffers to store return
cations instrumentation frequency. The default overhead faddresses [9] when buffer space is available. These tasbsiq
the experiments in Section VI ranges between about 7% ahal provide security with negligible performance overheatl b
16%. Such instrumentation with a high level of coveragat the cost of specialized modifications to hardware. Oukwor
incurs a sizable performance penalty in performing fineingradoes not require special hardware support.
security checks. The scaled overheads in last column ofBuffer overflow may be detected in general-purpose systems
table Il of about 3%-8% correspond to a reduction in thBy placing canaries adjacent to the return address on stack,
number of instrumentation checkpoints by half relativehte t which may be overwritten in an attack [6]. If a tampered
default method. This is accomplished by selective activati canary is detected prior transferring control at a retuine, t
of instrumentation checkpoints but could alternativelsoabe program aborts itself. Yet, even pseudo-randomized casari
realized by selective placement. can be exploited in systematic repeated attacks.

T-AXT also supports a tunable performance overhead de-Another protection mechanism employed in general-purpose
pending on the frequency of the periodic wake up that iEfatsystems is to utilize address-space layout randomization
the intrusion check. We used a periodic wake up of 20,00BSLR) [21]. The stack is placed in a hard-to-guess location
cycles, which provides a reasonably frequent security kchein the memory. If an attacker attempts to jump to code



placed on the stack, it becomes difficult to infer absolutel]

stack addresses where attack code may have been injected.

This method is best suited for systems that employ 64-@'5]
addressing spaceisg., where ample room for stack placement
exists such that repeated brute-force attempts are &taliigt (13
ineffective. However, in a space-constrained embeddeld rea
time system with 8/16/32-bit address spaces, such tecbsiq4]
may be circumvented by repeated attacks [21].

X. CONCLUSION [15]

We developed three novel software methodologies that pro-
vide enhanced security in deeply embedded real-time sgstem
We attain elevated security assurance through two levels i
instrumentation that enable us to detect anomalies, such as
timing dilations exceeding WCET bounds. (1) T-Rex: Tight
timing bounds of selected code sections are obtained durld
static timing analysis at no extra cost during the requirgg
schedulability analysis and are subsequently utilized tm-m
itor execution during run-time. Buffer overflow attacks ar€®!
detected due to exceeded WCET bounds upon return path in-
strumentation for code injections as small as 5-22 cycBsI-  [20]
ProT: Application instrumentation issues synchronousdeh
uler calls to assess timing bounds validity for precisellnie
ited sections of code. T-ProT by itself uncovers coarsairgr
injections between 9 and 5k cycles at controllable overhead
and complements T-Rex. (3) T-AXT: Asynchronous schedulgsy;
triggered validations of timing bounds are performed for
approximated sections of code, which, compared to T-ProT,
obviates application instrumentation, results in low tead
and complements T-Rex. Attacks uncovered by T-AxT alorigs]
are consequently the coarsest grained. These securitkshec
can be strategically scheduled to utilize otherwise idigetin 4
the schedule. Such detection of system compromises through
micro-timing information is a novel contribution to reate
systems to the best of our knowledge.
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