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ABSTRACT
The increasing proliferation of cyber-physical systems in a multi-

tude of applications presents a pressing need for effective methods

of securing such devices. Many such systems are subject to tight

timing constraints, which are poorly suited to traditional security

methods due to the large runtime overhead and execution time

variation introduced. However, the regular (and well documented)

timing specifications of real-time systems open up new avenues

with which such systems can be secured.

This paper contributes T-SYS, a timed-system method of de-

tecting intrusions into real-time systems via timing anomalies. A

prototype implementation of T-SYS is integrated into a commer-

cial real-time operating system (RTOS) in order to demonstrate its

feasibility. Further, a compiler-based tool is developed to realize a

T-SYS implementation with elastic timing bounds. This tool sup-

ports integration of T-SYS protection into applications as well as the

RTOS the kernel itself. Results on an ARM hardware platform with

benchmark tasks including those drawn from an open-source UAV

code base compare T-SYS with another method of timing-based

intrusion detection and assess its effectiveness in terms of detecting

attacks as they intrude a system.
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1 INTRODUCTION
Simple networked and embedded devices have become increasingly

common throughout the wide range of applications as processors

with the necessary capabilities have become cheaper and more

plentiful. Increasingly, such systems are incorporated into critical

infrastructure (ranging from a single traffic light to a municipal

power grid) and autonomous vehicles, i.e., systems subject to hard

real-time constraints. Failing to control such systems can result

in loss of life or severe environmental damage. Meanwhile, cyber

attacks have become widespread and are penetrating embedded

systems as they are increasingly networked. Hence, it is becom-

ing crucial to protect such cyber-physical systems (CPS) from at-

tacks [7]. However, securing embedded, time-constrained systems

presents a number of unique challenges beyond those of securing

commodity compute systems [11]. Ordinary methods of protection,

particularly kernel-level protection, are insufficient by themselves

in embedded and real-time systems, since they focus on system

functionality and tend to add significant execution overhead, yet

lack the ability to ensure that a system operates within its timing

constraints. In addition, some proposed protection methods are

dependent on hypothetical specialized hardware [10], or require

significant developer effort to configure protection based on known

threats and system performance requirements. To fill this gap, meth-

ods need to be developed for implementing kernel-level protection

into the RTOS, as well as allow for easy configuration based on

elastic timing bounds.

Real-time systems require accurate timing information and pre-

dictable behavior with regards to execution time. This predictability

can be leveraged to detect attacks by identifying timing irregulari-

ties. Such irregularities are indicative of system malfunction due

to a cyber attack or excessive execution beyond specified WCET

bounds of a task or code region. We assume the former hereafter.

This work contributes T-SYS, a monitoring method for intru-

sion detection that relies on inserting time checks (instrumentation

points) along code paths with known WCET bounds. A compiler-

based tool to allow the automatic integration T-SYS protection

based on a user-defined Maximum Vulnerability Threshold is devel-

oped as well. This allows T-SYS to be configured, at compile time,

according to expected threats, security requirements, or system

performance. When T-SYS is implemented in both kernel- and user-

level code, it is capable of providing end-to-end protection across

the entire execution path. Its instrumentation complements other

conventional security techniques by integrating WCET monitoring

points along execution paths into code. Any intrusions resulting

in execution time exceeding the WCET budget between two in-

strumentation points will be detected, which limits the code of

such injections in length to a so-called “window of vulnerability”

— correlated to the longest WCET path between instrumentation

points. The Maximum Vulnerability Threshold defines the upper

bound of this “window of vulnerability”, which will be tolerated by

the compiler-based integration tool, and is determined by the user.

A number of WCET-based protection methods have been pro-

posed [10, 34, 35]. We compare T-SYS to Bellec et al. [10], as they

developed an algorithm to identify regions, for each of which tim-

ing is tracked in order to identify intrusion by detecting anomalies.

However, the criteria used to divide code into regions, as well as

the requirements for region structure, are vastly different. Where

the Bellec algorithm utilizes single-entry/single exit nested regions,

T-SYS allows for multi-exit regions; Bellec creates a hierarchy of

nested regions requiring stack maintenance of timed context data

while T-SYS neither requires regions nor a region stack. What’s

more, T-SYS supports elastic timing requirements determined prior

to compile time, facilitated by our ROSE compiler tool for placing

instrumentation points. This elasticity allows the user to choose

a desired level of protection based on application requirements

instead of Bellec’s rigid one-sized regions determined by control-

flow shape. We also develop transformations to loop structures to

further reduce overhead.

Bellec relies on a hardware monitor to track the cycle count

within a program, and thereby detect timing anomalies with zero

performance overhead. With a similar hardware design, T-SYS’

overhead could also be reduced to zero. A further description of the

requirements for T-SYS hardware is given in Section 4. However, as
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such hardware does not exist in practice, experiments in this paper

were conducted using software implementations of both T-SYS’ and

Bellec’s methods assessing overheads for instrumentation points.

This also provides an indication of cost for a realistic deployment

of such intrusion protection.

The primary contributions of this work are:

• T-SYS is developed, a novel method for timing-based protection
across user and kernel boundaries.

• A compiler-based tool for automatic integration of elastic T-

SYS instrumentation points is algorithmically developed.

• A prototype implementation of T-SYS is realized in an existing

Autosar/OSEK-compliant RTOS, as well as in a variety of existing

real-world CPS benchmark task sets.

• Experiments comparing T-SYS to existing WCET-based se-

curity methods are conducted, comparing their ability to detect

malware attacks, as well as their performance impact compared to

the unmodified kernel and previous timing-based security method.

They show clear benefits of T-SYS over prior work in terms of lower

overhead, user-configurability and elasticity.

2 RELATEDWORK
As cyber-physical systems have become increasingly important to

24/7 operations of critical infrastructure, so has the importance of

protecting them against cyberattacks [13, 23]. In response to the

increasing prevalence of and need for security in real time systems,

a number of new ideas have emerged to meet the unique challenges

of real-time security. This section aims to provide an overview

of existing contributions to security in the domain of real-time

systems, with particular focus on methods that incorporate timing

information as part of their protection. The purpose of this overview

is to determine what options currently exist for protecting real-time

systems, and what problems in the field T-SYS is best suited for.

Prior work on intrusion detection in real-time systems has taken

a variety of approaches [12]. Many of these methods are focused

on increasing security at the network level, as the increasing use

of networks in real-time systems presents an expanding attack

surface [28]. While conventional and embedded network protection

methods complement T-SYS, the most closely related methods are

based on the principle of intrusion detection via timing anomalies.

These methods leverage the unique timing constraints inherent to

real-time systems as a means to identify attacks. Designing a real-

time system inherently entails gathering timing information on the

various components that comprise it [4]. Since sufficiently complex

attacks are liable to generate timing anomalies, some protection

methods incorporate this information into their intrusion detection

strategies by identifying timing anomalies [31]. It is this category

that T-SYS falls into.

Bellec et al. [10] created a protection method that employs a

region-based approach, tracking the time spent executing regions.

Their method employs specialized hardware to monitor execution.

The regions used by Bellec are single-entry, single-exit nested re-

gions. The hardware tracks execution through these regions by

monitoring the a cycle count-down register initialized upon region

entry and tracks nested regions via a stack structure with associ-

ated timer save/restore operations. They also provide an algorithm

for automatically dividing target code into regions based on the

control-flow graph of the code, which we compare T-SYS to in Sec-

tion 7. T-SYS differs in its criteria for region selection (non-nested,

single-entry/multi-exit), as well as in providing elasticity in its

timing bounds through the MaxVuln parameter to determine the

largest allowable region size.

Zimmer et al. [34] developed a set of methods for providing

security in an RTOS exploiting precise timing information to detect

attacks. T-Rex is a checkpoint based system that relies on fine-

grained timing information (single clock cycle resolution) to detect

buffer overflow attacks on function return and other straight-line

execution paths of application code. T-ProT is a coarser-grained

protection using synchronous checkpoints to validate for each task

that a milestone in execution in reached by some expected time.

T-AxT is integrated with the scheduler and supports asynchronous,

periodic checks of a task’s program counter value, to ensure that it

is within the appropriate range.

Of these, T-SYS is most outwardly similar to T-ProT in that both

use timers to bound a block of code. However, T-ProT implements

its timer checkpoints via scheduler invocations, while T-SYS uses

function calls to instrument code. This allows T-SYS to provide

integrated protection within both application and kernel code and
across their intersection instead of just application code, which cre-

ates novel challenges in that the control flow of a protected region

may originate in the context of one task but lead to that of another

task. T-SYS also supports elastically sized vulnerability windows as
opposed to more the rigid constant sized regions of T-ProT.

Traditionally, the effect of kernel paths in real time systems has

been estimated fairly pessimistically [22], taking the WCET of the

syscall to be that of the longest path the call could possibly take

through the kernel. Prior work [15] has modeled RTOS kernel paths

using control-flow graphs (CFGs). These CFG models were then in-

tegrated with the existing CFG of the userspace programs (crossing

the kernel-application boundary) to create a more complete CFG of

the user task. By including kernel paths, previously-independent

CFGs of different tasks could be connected, thereby creating a

whole-system CFG.

Methods of WCET analysis have been developed to tighten

bounds by incorporating system state information preceding sys-

tem calls [16]. Information about system states is combined with

prior analysis of individual kernel paths’ WCETs as well as the

conditions for taking these paths. In combination, such information

yields tighter bounds on the response time of system calls and,

transitively, application tasks.

3 ATTACK MODEL AND SCENARIO
There are a multitude of ways in which real-time systems can come

under attack. Much of the research in real-time security focuses

on identifying attacks at the network level [19, 21]. In this work, a

general model is presented for both the attack that T-SYS is designed

to detect, together with a model for the system itself, with a focus

on defining how the kernel handles interrupts and what hardware

features are made available.

We assume the existence of a high-precision monotonic counter

provided by the hardware and available to be programmed by the

kernel. This counter is write-protected and can only be modified

via a kernel call preventing an attacker from being able to modify

it without returning to the kernel.
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We further assume that the attacker has managed to compromise

the user data space. The attacker’s goal is to hijack the control flow

of the system in order to execute malicious code under elevated per-

missions, and then return undetected. We assume that the attacker

cannot modify hardware factors or protected kernel memory. An

attacker under these limitations may still be able to divert kernel

execution, e.g., by triggering a buffer overflow within kernel code.

4 DESIGN
The primary objective of T-SYS is to detect intrusions, thereby

allowing the system to respond rapidly to such an intrusion, e.g.,

by switching into a safe mode or shutting down a node entirely

— but the exact response to the attack is outside the scope of this

paper. Our approach to intrusion detection relies on tracking the

execution time of code regions during runtime, and detecting when

a region’s execution time has exceeded its statically-determined

WCET budget. Code regions are bounded by instrumentation points

(IPs). The use ofworst case execution time to construct these bounds

(over less pessimistic estimates) is paramount, as by definition a

code region’s execution time will never exceed its WCET. Thus,

we can assume that a region exceeding its WCET bound indicates

the presence of an attack. The algorithms for generating regions

(and thereby placing IPs) from a control-flow graph annotated with

WCET information and with an elastic timing bound are discussed

in Section 5.

In a software-based implementation, IPs are implemented as

system calls when inserted into application-level code, and as simple

function calls when added inside kernel paths. This provides the

necessary level of data protection to the IP code by ensuring that

important data (e.g., timing bounds or IP return addresses) reside

in a different address space than application code, reducing an

attacker’s ability to tamper with this information. In a hardware

implementation, a dedicated component tracks the program counter

and executes all the functions of the IP (setting up timer, raising

alarm) once the PC reaches an IP without extra code added to the

application or kernel path. In this paper, we focus on a software

implementation of T-SYS since it is applicable to today’s hardware

as implemented in our experimental evaluation.

4.1 Protection Model
T-SYS identifies timing anomalies along execution paths. Execution

paths are represented as regions of contiguous basic blocks within

the system’s control flow graph, having a single entry and one or

more exit points (in contrast to more constrained single-exit control

flow [10], which does not match C/C++ control flow with break
within loops). As every basic block within the CFG is associated

with exactly one region, successors of an exit point of one region

represent entry points for a subsequent regions. Execution time is

tracked via IPs placed at region boundaries. Because regions are

pairwise disjoint with an empty intersection in basic blocks (in

contrast to nested regions [10]), each IP is associated with exactly

one region. Figure 1 shows a sample CFGwith 4 IPs and color-coded

regions associated with each one.

At each IP, a timer with a deadline equal to the longest path

through the associated region region (i.e., the longest time before

reaching another IP) is set up. IPs are placed at the beginning of

the first block in a region. Notice that program profiling/tracing [6,

8, 9, 20] places instrumentation in a basic block anywhere within a

path, and often not at the top, which is one of several differences

between T-SYS and profiling/tracing). Concrete rules for dividing a

CFG into regions are discussed in Section 5.

Figure 1: CFG with WCETs per block, regions denoted by
color, with instrumented blocks labeled by letter, where
pathWCET table contains timeout deadlines for each region.

Figure 1 shows a CFG with IPs𝐴, 𝐵,𝐶 and 𝐷 , along with WCETs

per basic block. The table to the right shows the WCET bound for

each IP. On encountering point 𝐴, the next IP reached could be

either 𝐵 or 𝐶 , where it reaches in either case after 15ms (the length

of 𝐴’s basic block). Both blocks directly following 𝐴 contain IPs.

As IPs are always placed at the start of a block, the length of the

containing block is included. For 𝐵, the same case is seen with a

WCET of 35ms. At point𝐶 , however, there are two paths to 𝐷 , with

WCETs of 10ms and 25ms, respectively. The longest of the possible

paths defines the IP deadline, so the timer at 𝐶 is set to 25ms.

Consider the effect of executing injected code of an attack that

diverts from the expected control flow. Upon reaching an IP, a call is

made to set up a timer, with a deadline equal to the WCET distance

to the next IP. When the control flow is diverted off the path to

the next IP, execution continues until the timer deadline is reached.

When this happens, an interrupt is triggered, flagging an intrusion.

With no diversion, the next IP would be reached before the deadline,

and the timer would be reprogrammed with a new deadline. Also

consider an attack using a suspend-and-resume strategy, where the

attack is split up into multiple parts, suspending its own execution

and returning to the diverted region to avoid allowing the total re-

gion execution time to exceed the timer deadline. In this case, every

fragment of the attack would need to fit within the vulnerability

window for the region. Given that the size of this window changes

each time the region is executed (due to caching or control flow

differences), the attacker would need to guarantee that they are

always diverting back to the region with enough time left to finish

execution within the deadline.

4.2 Interrupt Handling
Consider a user-level task executing in a system involving multi-

ple tasks of varying priority in a preemptively scheduled system.

The execution of application code may be interrupted and then

temporarily suspended while execution is transferred to a higher-

priority task. In general, the exact time and the location in the

application where the interrupt occurs cannot be statically deter-

mined as preemptions may be asynchronously triggered.
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To account for asynchronous actions, it is necessary for the

operating system’s interrupt handler to interface with the T-SYS

timer when interrupting a T-SYS protected task. When an interrupt

arrives during the execution of a T-SYS protected application, the

remaining time left for the current timer is recorded in kernel (i.e.,

protected) memory. The timer is then canceled before the rest of

the interrupt is processed.

Similarly, when returning execution to a protected task, the

interrupt handler must reinstate the T-SYS timer with the recorded

remaining time plus some constant to account for the overhead

associated with handling the interrupt before the timer is paused,

as well as for returning from the interrupt after resetting the timer.

However, this overhead is constant and can therefore be directly

credited to the T-SYS timer within the timer resume operation. If T-

SYS is integrated into the kernel, the interrupt handler may contain

an IP that sets up a new timer to protect a kernel region, e.g., to

handle the interrupt or to call the dispatcher. This case is discussed

further in Section 6.

4.3 Instrumentation Points
At each IP, the return address is read from the call stack and checked

for validity against a table of known valid return addresses. If

invalid, an attack is flagged by raising an alarm. Otherwise, the

return address is used to extract the IP’s unique ID by indexing

into the pathWCET table, which contains the relevant regionWCETs

(and thus relative timer deadlines) for each IP. The pathWCET table

is stored in protected kernel memory, and its contents are hard-

coded at compile time by the ROSE-based implementation tool. A

timer is then set up for this deadline. This timer setup operation

also cancels the timer for the previous IP encountered. Pseudocode

for implementation points is shown in Listing 1.

Listing 1: Instrumentation Point Pseudocode
vo id i n s t _ p o i n t ( ) :

r e t _ a d d r = g e t _ r e t u r n _ a d d r e s s ( )

i f ! i s _ v a l i d _ a d d r ( r e t _ a d d r ) {

a larm ( )

}

p o i n t _ i d = g e t _ p i d ( r e t _ a d d r )

c u r r e n t _ t ime = ge t_ t imes tamp ( )

d e a d l i n e = cu r r en t _ t ime + pathWCET [ p o i n t _ i d ]

s e t up_ t ime r ( d e a d l i n e )

IPs are represented in application code as system calls, and in

kernel code by singular function calls. The return address checking

prevents attackers from evading detection by inserting their own

IPs into malicious code. Since the return address is unique to each

IP, it can be extracted at compile time.

5 PLACEMENT OF IPS
A tool to support automatically implementing protection into ar-

bitrary code, both user and kernel, is provided. To this end, the

ROSE [27] compiler framework was utilized to create an instru-

mentation tool from a specification that incorporates previously

acquired timing information, control-flow analysis and a vulner-

ability threshold, 𝑀𝑎𝑥𝑉𝑢𝑙𝑛. This tool automatically divides the

control flow graph of a given code base into regions based on the

user-specified maximum vulnerability threshold, 𝑀𝑎𝑥𝑉𝑢𝑙𝑛, and

places IPs in desired locations throughout. Use of user-specified

𝑀𝑎𝑥𝑉𝑢𝑙𝑛 parameter supports elasticity with respect to instrumen-

tation granularity. Furthermore, this tool is capable of performing

loop transformations to reduce the overhead of instrumentation.

A prerequisite for utilizing our instrumentation tool is that the

developer has extracted worst-case execution time information

for each basic block in the system. The difficulty of this process

is largely dependent on which method is used to acquire basic

block WCETs. Extraction of timing information was performed

experimentally for this work, but other implementations of T-SYS

may use any method available, including static WCET analysis

tools [32]. T-SYS is agnostic to how basic blockWCETs are extracted

and will work with any method, so there is no need to specify a

precise method for determining the WCET of a basic block.

Our tool provides elastic instrumentation, which takes the granu-

larity of instrumentation as an input in terms of cycles to denote the

vulnerability threshold. This allows the user to directly specify the

minimum frequency of IPs rather than deriving this value indirectly

from other user parameters, as is the case in other methods [10, 34].

The tool also supports basic block instrumentation (by simply

treating every block as a separate region), which we used as a first-

order approximation of WCET bounds, later refined in a second-

order pass over regions with multiple blocks. This step achieves

much tighter bounds on the WCET of each region.

5.1 Placement Algorithm
To place IPs, all basic blocks within a CFG are assigned into contigu-

ous regions. Each region represents a section of code over which a

given timer will be active. From here on, we refer to partitioning

the CFG into regions as coloring it; blocks of the same region share

a color, which is unique to that region. Regions created must fol-

low a particular set of rules governing their structure to support

instrumentation placement for timing protection:

• A basic block must share its color with either all of its chil-

dren, or with none of them.

• A basic blockmust share its color with either all of its parents,

or with none of them.

• A region may have only one entrance block.

• The WCET of the longest path through a region must not

exceed the𝑀𝑎𝑥𝑉𝑢𝑙𝑛 threshold.

• 𝑀𝑎𝑥𝑉𝑢𝑙𝑛 must be greater than or equal to the WCET of the

longest basic block. (If finer granularity was needed, one

could even dissect a block into multiple blocks.)

By these rules, a single basic block may constitute a region.

Once the CFG is partitioned into regions, an instrumentation

point is placed at the beginning of the first basic block per region.

Such a block exists because, as per the region structure requirements

defined above, each region will have a single entry point. Placement

is always performed at the top of a basic block for two reasons:

1) Placement in the middle of a basic block would divide the

execution time between two regions, but given that timing informa-

tion is stored at the granularity of single basic blocks, it would be

unclear how this time should be divided up. 2) Placement at the end

of a basic block would be complicated due to branch instructions

whose time needs to be accounted for, yet the IP cannot be placed

after them since they affect the program counter.



T-SYS: Timed-Based System Security for Real-Time Kernels Conference’17, July 2017, Washington, DC, USA

In order to properly handle loops within a given CFG, a prepro-

cessing step is necessary during which each loop is represented

as a single (compound) block. In the event that the loop’s total

WCET is larger than𝑀𝑎𝑥𝑉𝑢𝑙𝑛, the compound block will initially

be treated as having an indefinite WCET. (We use this property in

our algorithm to force it being treated as its own region when first

creating regions.) Once the remainder of the CFG has been divided

into separate regions, the loop’s CFG will then be passed into our

algorithm as a single compound object (without further internal

analysis).

Loop bounds are expected to be statically bounded, either explic-

itly by a constant bound that can be statically evaluated at compile

time or by user hints/pragmas to provide such a constant. For such

constant number of iterations of a loop and a total WCET not ex-

ceeding𝑀𝑎𝑥𝑉𝑢𝑙𝑛, the compound block will be treated as having

the same WCET as the loop it represents. In the event that the loop

bounds are not available (and thus cannot be evaluated at compile

time), the algorithm will assume the loop’s total WCET is larger

than𝑀𝑎𝑥𝑉𝑢𝑙𝑛 and thus follow the behavior for long loops outlined

in the preceding paragraph. In addition, the loop structure may

be transformed into a semantically equivalent one to ensure low

instrumentation overhead, which is discussed in subsection 5.5.

Once this preprocessing step is complete, the CFG is partitioned

according to the 3-step algorithm outlined below:

(1) Regions are created delimited by dominator and post-

dominator blocks, which are uniquely colored with respect

to other regions.
1

(2) All interior blocks of a region beyond the delimiter blocks

are colored with their region color.

(3) Regions are combined within the 𝑀𝑎𝑥𝑉𝑢𝑙𝑛 threshold and

region property requirements to reduce the total number of

regions and thus instrumentation overhead.

Pseudocode of the placement algorithm is given in the appendix,

along with a proof sketch for correctness and a complexity analysis.

Figure 2 depicts the coloration of a control flow graph after

each step in the point placement process. The CFG displayed was

taken from the ext_tsk kernel path, a portion of the scheduler

within the Autosar/OSEK-compliant Toppers RTOS [33], which

was instrumented as part of the evaluation in Section 7.

5.2 Partial Regions
In the 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛𝑠 step, only some of the blocks in the CFG are

colored in; others are left uncolored, with no region membership.

The objective of this step is to generate single-entry, single exit

regions within the CFG.

A depth-first traversal of the CFG is performed. At each uncol-

ored block 𝑆 , a list of the node’s post-dominators, 𝑆𝑝𝑜𝑠𝑡 , is acquired.

Any block in 𝑆𝑝𝑜𝑠𝑡 that does not have 𝑆 as a pre-dominator is

removed from 𝑆𝑝𝑜𝑠𝑡 . The resulting pruned list is then sorted by

distance from 𝑆 (where distance represents WCET), with the fur-

thest entry first (the remaining blocks, if any, can be ordered this

way [26], as the furthest block will also be a post-dominator for

1
A dominator block in a CFG indicates a prior block execution must have passed

through to reach the current block, whereas a post-dominator indicates a block ex-

ecution will have to pass though after leaving this block, i.e., these blocks denote

must-information [5].

Figure 2: CFG after each step in coloring regions of the CFG
for the Toppers scheduler

all earlier blocks in the list). For each remaining block in 𝑆𝑝𝑜𝑠𝑡 , 𝐸,

a depth-first algorithm is used to determine the longest path (in

terms of worst case execution time) between 𝑆 and 𝐸. If the com-

puted region WCET is less than the𝑀𝑎𝑥𝑉𝑢𝑙𝑛 parameter, then all

of the blocks between 𝑆 and 𝐸 are assigned a single color, and the

depth-first traversal of the CFG continues from 𝐸.

In the event that none of the blocks in 𝑆𝑝𝑜𝑠𝑡 pass the criteria

above (i.e., 𝑆 is not a dominator for any of its post-dominators, or no

post-dominator is found with a longest path of less than𝑀𝑎𝑥𝑉𝑢𝑙𝑛)

or 𝑆 has no post-dominator, no blocks will be colored and the depth-

first traversal of the CFG continues. This process is complete once

every node in the CFG has been checked. As seen in the first graph

of Figure 2, only some blocks are colored after step 1 (here, 40% of

the blocks are colored. Uncolored nodes are shown as white, with a

black background). Listing 2 in the appendix shows the pseudocode

for the Partial Regions step.

5.3 Filling Regions
The Filling Regions step colors all remaining blocks that were left

uncolored by the previous Partial Regions step. This eventually

results in a fully cornered CFG. The methods begins with a depth-

first traversal of the CFG. When an uncolored block is encountered,

it is colored. After coloring a block, an attempt is made to grow the

new region by painting all of its successors with the same color.

This attempt can only succeed if, for every successor 𝐶 ,

• 𝐶 is uncolored,

• 𝐶 has no parents of a different color than 𝑆 (including uncol-

ored blocks), and

• adding 𝐶 to the region will not create a path through the

region that exceeds𝑀𝑎𝑥𝑉𝑢𝑙𝑛.

These rules ensure that any region created in this manner will

(1) not interfere with the regions created in the previous step, and

(2) will obey the rules for region structure defined previously. If the

growth attempt succeeds, all successors obtain the predecessor’s

color, and growth attempts start for each newly-colored block in a

breadth-first fashion. If the growth attempt fails, then the algorithm

resumes looking for uncolored blocks to start new regions.
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The second graph in Figure 2 depicts the state of the CFG after the

Filling Regions step is complete. Note that every block in the graph

has been colored at this point. The previously described process

corresponds to the pseudocode in Listing 3 within the appendix.

5.4 Region Adjustment
The final phase of loop adjustment, Region Adjustment, optimizes

the graph to reduce the number of IPs placed. This reduces the re-

quired size of the 𝑝𝑎𝑡ℎ𝑊𝐶𝐸𝑇 table, which also reduces performance

in a software implementation of T-SYS (where IPs have associated

execution time overhead).

Region Adjustment uses the same dominator/post-dominator

pair method from the Partial Regions step to identify potential re-

gions. However, only region exit blocks that do not share a color

with any sibling blocks (i.e., successors of the block’s predeces-

sor) are checked as possible new entry points. If a viable region

is identified, then a check is performed to determine if creating

the new region will reduce the total number of regions within the

CFG. If so, then all blocks within the region are repainted a new

color making them part of the new region. The check for reduction

simply involves counting the number of unique colors identified

among the prospective region’s blocks. If it is more than 3, or if the

new region contains a superset of the blocks in at least 2 regions (as

is the case in Figure 2), then the check succeeds and the region is

created. Pseudocode for this is shown in Listing 4 in the appendix.

We refer to this algorithmic approach of delimiting𝑚𝑎𝑥𝑉𝑢𝑙𝑛 as

elastically sizing regions: Our automated process allows users to call

the instrumentation tool with their preferred𝑀𝑎𝑥𝑉𝑢𝑙𝑛 threshold,

which could even differ from task to task depending on a task’s

real-time criticality.

5.5 Loop Transformation by Thresholding
The process of instrumenting loops opens up an interesting prob-

lem with regard to the cost of IPs. Specifically, how can a loop be

efficiently instrumented when multiple loop iterations can pass

within the𝑀𝑎𝑥𝑉𝑢𝑙𝑛 time limit, but the total number of iterations

makes the loop exceed 𝑀𝑎𝑥𝑉𝑢𝑙𝑛? When a single loop iteration

can be longer than𝑀𝑎𝑥𝑉𝑢𝑙𝑛, the loop’s internal structure can be

instrumented using the 3-step method from above. But the 3-step

method does not allow IPs to occur on every k-th loop iteration

due to the region constraints. Instead, each loop iteration would

trigger an IP, which increases T-SYS’ overhead.

Our solution to this problem is to transform the loop into a

nested loop with a single IP on top of the outer loop and all of

the logic of the untransformed loop placed in an inner loop. We

bound the number of inner loop iterations such that it will not

exceed𝑀𝑎𝑥𝑉𝑢𝑙𝑛. We limit loop transformations to loops with stat-

ically known iteration bounds so that the transformation can be

performed at compile time.

An example of this transformation’s effect of the loop CFG is

depicted in Figure 3. The blue segment represents the original

loop. The outer loop (orange segment) contains an additional IP

(highlighted in yellow) and a conditional branch (enclosed in green)

that determines the number of inner loop iterations to execute

on a given iteration of the outer loop. The dynamic number of

instructions increases slightly due to upper bounds calculations

for the inner loop, but this overhead is easily compensated by the

lower number of IPs.

Figure 3: CFG of a loop before and after the loop threshold-
ing transformation

Consider an untransformed loop with 𝑁 iterations, where at

least 𝐾 iterations can execute within the𝑀𝑎𝑥𝑉𝑢𝑙𝑛 time limit. After

the loop transformation, the resulting outer loop will iterate 𝑁𝑜𝑢𝑡

times, where 𝑁𝑜𝑢𝑡 =
⌊
𝑁
𝐾

⌋
+ 1.

The inner loop will iterate 𝑁𝑖𝑛 = 𝐾 times, except for the final

iteration of the outer loop, where 𝑁𝑖𝑛 = 𝑁 − 𝐾 × (𝑁𝑜𝑢𝑡 − 1) .
The value of 𝑁𝑖𝑛 on the final outer loop iteration may be lower

than during others to account for the case 𝑁 is not an integer

multiple of 𝐾 . Handling this case is the reason for including the

conditional statement within the outer loop.

Note that the calculation for 𝐾 must take into account the addi-

tional time spent calling the IP and executing the branch statement

as well as the outer loop return, and so will be smaller than the

exact value of𝑀𝑎𝑥𝑉𝑢𝑙𝑛 divided by the iteration WCET.

5.6 Generation of IPs
Once the process of transforming loops and partitioning the CFG

into regions has completed, we may begin actually placing in-

strumentation points into the code. First, the completed CFG is

re-formed by expanding any loops that were reduced to a single

compound block and instrumented separately back into their orig-

inal form. Subsequently, a single function call is inserted to the

IP function at the beginning of every basic block that does not

share a color with its parents (i.e., the beginning of each colored

region). In addition, a table is generated relating each IP to its as-

sociated region’s WCET. This WCET data is then populated into

the 𝑝𝑎𝑡ℎ𝑊𝐶𝐸𝑇 table (see Section 4), which is stored in protected

kernel memory.

6 IMPLEMENTATION
We implemented the design using the ROSE [27] compiler to gener-

ate a T-SYS instrumentation for user/kernel source code and subject

it to timing experiments with different 𝑀𝑎𝑥𝑉𝑢𝑙𝑛 parameters ex-

ploiting the elasticity of our tool.

We utilized an Autosar/OSEK-compliant [2, 3] RTOS, Top-

per [1, 29], that is commercially deployed by Suzuki (among others)
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for automotive systems adhering to ISO 26262 [18] and MISRA-

C [24] requirements. In particular, we employ the Toppers RTOS

(EV3RT) version with available source code targeting a 32-bit ARM

9 processor clocked at 300 MHz featuring 16 KB instruction and 16

KB data caches in experiments [30].

We created a software implementation of T-SYS within Toppers,

including all of the components outlined in Section 4. Syscalls for

application-embedded IPs were added, along with reserved space

for the pathWCET table. Modifications to the interrupt handler

were made in order to handle pausing and resuming timers for

interrupted tasks.

Actual tool-based integration of instrumentation points was per-

formed on several CPS benchmark applications as well as within the

Toppers kernel itself in order to ensure protection across the user-

kernel boundary. Implementations were performed using various

𝑀𝑎𝑥𝑉𝑢𝑙𝑛 levels. The task sets instrumented included a selection of

tasks from PapaBench [14, 17, 25] with benchmarks from the open-

source Paparazzi UAV codebase and selected Malardalen WCET

Benchmarks. All instrumentation of IPs in kernel and application

code was performed using our ROSE-based placement tool.

A high-precision, write-protectedmonotonic counter is a require-

ment for T-SYS, as discussed in Section 3. Most existing hardware

platforms provide components that meet this need [12]. Toppers

does not innately provide such a device, however, the AM1808

processor of the hardware platform used for testing features an

eCAP (enhanced CAPture) module, which can be configured to act

as a monotonic counter to generate an interrupt upon reaching a

programmable deadline [30]. This device was used in our implemen-

tation of T-SYS within Toppers. In the general case, the difficulty

of adding support for the T-SYS timer will depend on the precise

details of the system being modified. In particular, if the timer hard-

ware is already employed by the RTOS for another purpose, then

additional modifications will be needed to multiplex it so as to add

T-SYS support while retaining existing OS timers. In the Toppers

case, the eCAP module was not being used, so modifications were

straightforward.

Modifications to the Toppers interrupt handler were made to

handle preemptions of T-SYS protected tasks. The task control block

(TCB) structure was extended with a field to store the remaining

timer budget at time of interruption. The timer is reinstated upon

task resumption, using the remaining budget time plus a constant

amount of additional time to account for the overhead associated

with the interrupt handler diverting execution before processing

the timer pause. The additional time required was measured at 25

cycles in our implementation. Using the TCB to store T-SYS related

data is safe as the TCB is part of kernel (i.e., protected) memory.

In case that an interrupt initiated an instrumented kernel path,

the T-SYS timer is recorded, and the diverted execution reaches an

instrumentation point within the handler marking the entry into

the protected section of kernel code. By recording the timer, we

can credit the known execution time of the kernel path back to the

task upon returning from the interrupt.

In the event that a context switch occurs during the kernel path

(as would be likely during a scheduler interrupt), everything up to

the dispatcher is considered part of the interrupted task’s execution.

Once the dispatcher is invoked, the timer’s budget is recorded

again, in order to be replaced (and credited with the needed extra

time) once we return from the dispatched task. Another crediting

operation is issued upon return from the interrupt back into the

interrupted user task, using the recorded timer value from when

the interrupt first arrived.

In addition to the minimum support required for handling pro-

tected applications (i.e. syscalls for instrumentation points & other

modifications mentioned above), kernel paths related to mutex han-

dling and those related to context switching were instrumented by

applying T-SYS protection across the kernel/user boundary to en-

sure end-to-end protection across the runtime of an entire task set.

The instrumented kernel paths constituted task entry/exit, mutex

lock/unlock operations, and scheduler interrupts.

7 EXPERIMENTAL EVALUATION
The elasticity of the placement algorithm described in Section 5

supports experiments for a variety of applications with different

timing requirements to be instrumented using a varying𝑀𝑎𝑥𝑉𝑢𝑙𝑛

parameter to conform to the timing bound requirements of each

application. Our experiments focus on demonstrating the ability

of T-SYS to detect timing anomalies using simulated intrusions.

These experiments were performed using benchmark task sets and

feature detection at both user and kernel levels.

We select benchmarks from the CPS PapaBench suite with mi-

nor modifications to adhere to the Toppers kernel API, and addi-

tional benchmarks from the Malardalen set. PapaBench is based

on the real-world Paparazzi code base, an open-source framework

for UAVs (e.g., quad-copters). It provides a good testing ground

for emulating the protection methods’ behavior in a realistic envi-

ronment, particularly in the realm of cyber-physical systems. We

modified PapaBench to make it compatible with the Toppers RTOS.

PapaBench features precedence constraints, data exchange, syn-

chronization and context switches between tasks, which allowed

us to test the effectiveness of T-SYS’ protection inside the kernel,

as well as within user tasks. The Malardalen tasks were used for

comparison to the Bellec algorithm (as it was tested using the same

Benchmarks). PapaBench tasks were run together as a real-time

task set, as they share mutex-protected data, while tasks from the

Malardalen benchmark set were run separately (i.e., one task in the

system at a time).

We further compare our T-SYS implementation with Bellec et

al. [10]. Our analysis compares intrusion detection capabilities as

well as number of instrumentation points executed at runtime for a

software instrumentation of both. Notice that the Bellec algorithm

is rigid while T-SYS supports elasticity in the maximum allowed

vulnerability. Because of this, we use the rigid Maximum Attack

Width (MAW) value by Bellec as a base 𝑀𝑎𝑥𝑉𝑢𝑙𝑛 value for each

benchmark. We then present additional data for multiples of this

value to demonstrate benefits of T-SYS’ elastic nature.

Tasks from PapaBench which were instrumented include

servo_transmit, send_data_to_autopilot (shortened to autopilot), and
navigation. These modified PapaBench tasks incorporate context

switches and mutual exclusion locks to facilitate task communica-

tion. These properties were used to assess T-SYS’ ability to detect

intrusions to the kernel. Benchmark tasks from the Malardalen set

were fft, cnt, lms, st, edn, statemate, and qsort-exam and adpcm. For

both benchmark sets, we also assessed the sensitivity to timing
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Figure 4: Minimum attack vulnerability vs. 𝑀𝑎𝑥𝑉𝑢𝑙𝑛 for
Malardalen tasks.

Figure 5: Minimum attack vulnerability vs. 𝑀𝑎𝑥𝑉𝑢𝑙𝑛 for Pa-
paBench tasks.

overhead induced by T-SYS analyzing performance under different

𝑀𝑎𝑥𝑉𝑢𝑙𝑛 levels.

7.1 Attack Detection Experiments
These experiments demonstrate T-SYS’ efficacy in detecting attacks

while monitoring the time of protected regions under execution,

both within and outside the kernel. As𝑀𝑎𝑥𝑉𝑢𝑙𝑛 defines the upper

bound on T-SYS timer deadlines, it is impossible for an attack with

an execution time greater than 𝑀𝑎𝑥𝑉𝑢𝑙𝑛 to go undetected (see

Section 4). These experiments focus on determining the longest

attack that 𝑖𝑠 capable of bypassing T-SYS for a given 𝑀𝑎𝑥𝑉𝑢𝑙𝑛

level. Simulated attacks were conducted against T-SYS protected

tasks using various𝑀𝑎𝑥𝑉𝑢𝑙𝑛 values. These simulated attacks were

conducted by inserting function calls with known execution times

into the tasks after instrumentation. Attacks were always placed

immediately after the IP at the top of the longest region in the

tested task or kernel path. This is the worst case for an attack to

occur, as it gives the longest time window for the attacker.

By varying the length of the intruding function calls, we simulate

attacks of different lengths. This was leveraged to assess how the

𝑀𝑎𝑥𝑉𝑢𝑙𝑛 parameter affects attack detection. Thus, for each value

of 𝑀𝑎𝑥𝑉𝑢𝑙𝑛 shown in the table, the simulated attack length was

increased in 5𝜇secs increments until an attack length was found that

always resulted in intrusion detection after 100 attack attempts. The

simulation of kernel attacks (Figure 6) followed the same principle.

The results of this experiment are depicted in Figures 4 and 5.

The results show that increasing𝑀𝑎𝑥𝑉𝑢𝑙𝑛 leads to an increase in

the minimum observed detectable attack in most cases. This reflects

an increase in the size of protected regions and their variability

in execution time. If the gap between BCET and WCET is large,

attackers have an easier time intruding as less time spent inside

the loop provides more slack for the attacker to exploit: As long

as the execution time of the original code plus that of the attack

does not exceed the region’s WCET, the attack will not trigger any

alarms. As 𝑀𝑎𝑥𝑉𝑢𝑙𝑛 is increased, regions encompass more basic

blocks with larger differences between BCET and WCET.

Sometimes, the minimum observed detectable attack stagnates

after a certain𝑀𝑎𝑥𝑉𝑢𝑙𝑛 value. This occurs once the entire task is

contained within one region; increasing𝑀𝑎𝑥𝑉𝑢𝑙𝑛 does not lead to

an increase in region length after that, i.e., there is no further loosen-

ing of timing bounds as𝑀𝑎𝑥𝑉𝑢𝑙𝑛 increases. This is seen in Figure 6,

which details the maximum observed vulnerability for attacks that

occur within the kernel, particularly during mutex releases/acquisi-

tion, and context switches as a result of task completion. Results

for these kernel paths were obtained from the modified PapaBench

task set representing protected user code. The kernel path attacks

are graphed separately to indicate that they occur within the kernel

(and not user code as previously for PapaBench attacks).

Figure 6: Minimum attack vulnerability vs. 𝑀𝑎𝑥𝑉𝑢𝑙𝑛 for se-
lected kernel paths.

We also remark that one could establish a minimum guaranteed

vulnerability if attach vectors were placed in each region and then

gradually increased as in our experiment. Such an approach as linear

complexity if the BCET can be triggered within a given region and

would results in a tighter bound than a given𝑀𝑎𝑥𝑉𝑢𝑙𝑛 value.

7.2 Performance Impact
The elastic nature of𝑀𝑎𝑥𝑉𝑢𝑙𝑛 provides a customizeable tradeoff

between vulnerability and performance for a software implementa-

tion of T-SYS. Raising𝑀𝑎𝑥𝑉𝑢𝑙𝑛 allows for reduced overhead due to
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less frequent IPs — at the cost of increased vulnerability due to laxer

timing bounds. Similarly, lowering𝑀𝑎𝑥𝑉𝑢𝑙𝑛 reduces the vulnera-

bility of the system — at the cost of introducing more frequent IPs,

and thus greater execution time overhead. In the case of hardware

support for T-SYS, time overhead is zero (see Section 4). Execution

times reported in Tables 1 and 2 were gathered experimentally and

averaged over 50 runs.

As can be seen in Table 1, integrating T-SYS does induce some

overhead in execution time as the unprotected control group always

has the lowest execution time. The overhead is highest for the

smallest𝑀𝑎𝑥𝑉𝑢𝑙𝑛. It consistently drops as𝑀𝑎𝑥𝑉𝑢𝑙𝑛 is increased.

An exception is cnt, which stays leveled for values of 𝑀𝑎𝑥𝑉𝑢𝑙𝑛

above 2,000. As cnt has a WCET less than 2,000, for all values

above that, it still has only one IP at the start of the program, and

thus has nearly no overhead. Table 2 displays similar behavior in

most entries (for kernel and user tasks). It should be noted that,

even for the lowest value of𝑀𝑎𝑥𝑉𝑢𝑙𝑛 tested (corresponding to the

highest overhead), all PapaBench tasks still completed before their

deadlines, indicating that enough slack existed with in the original,

unprotected code base to accommodate significant protection.

𝑀𝑎𝑥𝑉𝑢𝑙𝑛 (𝜇sec) unprotected 1000 2000 3000 4000 5000

adpcm 321079 613574 484969 458921 423463 362904

lms 518362 989697 782991 741223 684509 585666

fft 68315 130266 103367 97615 90156 76695

cnt 1981 2601 2226 1991 1992 1990

statemate 295433 563840 446305 422211 390409 334027

edn 147086 280464 221775 209940 193686 166191

qsort-exam 6518 12180 9848 9659 8603 6871

st 426710 813607 642774 609665 562184 481264

Table 1: Average execution time (in 𝜇sec) of Malardalen
benchmarks for different values of𝑀𝑎𝑥𝑉𝑢𝑙𝑛.

𝑀𝑎𝑥𝑉𝑢𝑙𝑛 (𝜇sec) unprotected 100 200 300 400 500

navigation 614 1162 921 863 821 685

servo_transmit 186 262 199 201 197 198

autopilot 292 426 385 342 301 305

context_switch 157 197 176 157 158 156

mutex_acquire 245 297 278 246 244 245

mutex_release 221 271 245 223 221 220

Table 2: Average execution time (in 𝜇sec) of PapaBench tasks
and kernel paths for different values of𝑀𝑎𝑥𝑉𝑢𝑙𝑛.

7.3 Comparison with Bellec
We compare T-SYS to Bellec in terms of number of regions created

during instrumentation and number of regions entered during exe-

cution, analogous to instrumentation points executed. For purposes

of comparison, the𝑀𝑎𝑥𝑉𝑢𝑙𝑛 parameter used was the correspond-

ing maximum attack width (MAW) determined by Bellec. For each

task, we use this value as a baseline for four separate T-SYS in-

strumentations: (1) base𝑀𝑎𝑥𝑉𝑢𝑙𝑛 (T-SYS), (2)
1

2
of base𝑀𝑎𝑥𝑉𝑢𝑙𝑛

(T-SYS(0.5x)), (3) 2X base 𝑀𝑎𝑥𝑉𝑢𝑙𝑛 (T-SYS(2x)), and (4) 5X base

𝑀𝑎𝑥𝑉𝑢𝑙𝑛 (T-SYS(5x)). This allows us to analyze how T-SYS com-

pares when taking advantage of its elasticity.

Table 3 reports the number of regions created per algorithm.

T-SYS creates fewer regions than Bellec for Malardalen tasks for an

equivalent 𝑀𝑎𝑥𝑉𝑢𝑙𝑛 (baseline), ranging from ≈ 3%-28% depending

on code shape. When𝑀𝑎𝑥𝑉𝑢𝑙𝑛 is cut in half (T-SYS(0.5x)), signifi-

cantly more regions are created than for base T-SYS or for Bellec.

This is expected, as reducing𝑀𝑎𝑥𝑉𝑢𝑙𝑛 limits the length of regions.

Task

Base

MAW

Bellec T-SYS

T-SYS

(0.5x)

T-SYS

(2x)

T-SYS

(5x)

adpcm 9007 36 31 74 23 6

lms 1210 47 34 68 17 11

fft 1117 41 38 72 19 12

cnt 274 15 9 17 5 2

statemate 2970 21 19 34 13 7

edn 3155 32 26 49 18 10

qsort-exam 614 25 23 62 14 9

st 8001 18 16 28 9 5

navigation 121 5 5 9 3 1

servo_transmit 93 3 3 5 1 1

autopilot 134 7 6 10 4 1

Table 3: Comparison of Bellec vs T-SYS algorithms, by num-
ber of regions created.

When𝑀𝑎𝑥𝑉𝑢𝑙𝑛 is increased above the base value, the number

of regions created drops compared to base instrumentation of both

Bellec and T-SYS.With 2X𝑀𝑎𝑥𝑉𝑢𝑙𝑛, the drop in region count varies

widely (between 23% and 50%) as T-SYS has more rules for region

structure than maximum length requirements. Thus, granularity

does not always scale linearly with 𝑀𝑎𝑥𝑉𝑢𝑙𝑛. When increasing

𝑀𝑎𝑥𝑉𝑢𝑙𝑛 to 5X, a consistently large drop is observed in most cases.

Notice that smaller tasks from PapaBench are entirely contained

within a single region at 5X.

Next, the number of regions encountered dynamically during

execution is compared, each of which corresponds to a timer update

for the software implementation of both algorithms. In experiments,

the Malardalen benchmarks were run to completion while the Pa-

paBench task set ran for 3 seconds, constituting 6 hyperperiods.

Task

Base

MAW

Bellec T-SYS

T-SYS

(0.5x)

T-SYS

(2x)

T-SYS

(5x)

adpcm 9007 14256 12275 24912 6240 1504

lms 1210 407 351 906 241 191

fft 1117 2017 1736 3302 960 580

cnt 274 534 498 1011 278 101

statemate 2970 791 754 1294 452 239

edn 3155 1125 1052 1926 618 348

qsort-exam 614 971 956 1835 572 320

st 8001 640 601 1209 384 198

navigation 121 521 513 1017 221 71

servo_transmit 93 312 254 531 61 61

autopilot 134 548 457 1102 246 87

Table 4: Comparison of Bellec vs T-SYS algorithms, by num-
ber of regions entered during execution.

The results of this experiment are depicted in Table 4. T-SYS

was observed to have an equivalent or lower number of regions

encountered dynamically than Bellec for all benchmarks. Note that

the percentage difference between T-SYS and Bellec is lower in

runtime than in the static case. This is due to T-SYS incorporat-

ing code paths into adjacent regions in some cases that are less

frequently executed. Bellec sometimes creates separate regions for

such paths, but since they are hardly executed, the dynamic counts

remain nearly the same. Overall, the dynamic region count follows

the same trend as the static one — reducing𝑀𝑎𝑥𝑉𝑢𝑙𝑛 increases it

while increasing𝑀𝑎𝑥𝑉𝑢𝑙𝑛 reduces it. Note that the dynamic region

count also stagnates for servo_transmit once the number of regions

hits 1, as there is no difference between instrumentation under

T-SYS(2x) and T-SYS(5x) for that task.
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Overall, the elasticity of our T-SYS approach provides significant

savings over Bellec as 𝑀𝑎𝑥𝑉𝑢𝑙𝑛 is increased, which makes T-SYS

far more flexible and user-configurable.

8 CONCLUSION
This work has contributed T-SYS, a method for securing real-time

applications via monitoring execution time.We have implemented a

compiler-based tool for integrating T-SYS into user and kernel code.

Timestamp checks are automatically placed at specific locations

according to an elastic, user-specified MaxVuln parameter. We have

implemented support for T-SYS into a commercial operating system

and used the compiler tool to implement protection for benchmark

tasks as well as the kernel itself, crossing the user/kernel boundary.

We have compared T-SYS with another state-of-the-art timing-

based security method and found that T-SYS is competitive in terms

of regions created, as well as in terms of region entry operations

executed during runtime, while providing the unique ability of uni-

fied protection outside and inside the kernel as well when crossing

kernel boundaries. Overall, T-SYS provides a versatile, user-friendly

and elastic environment for enhancing real-time tasks with timed

protection, which can complement conventional security means in

safety-critical environments with lower overhead than prior work.
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A FUTUREWORK
Future work on T-SYS will focus on expanding support for addi-

tional platforms. In particular, the current T-SYS models restricted

to single-core systems. However, multicore processors are increas-

ingly common in embedded systems, making expanding the T-SYS

model to multicore systems a valuable prospect. The difficulty of

doing so is dependent on the particular hardware available, par-

ticularly the timer module used to keep track of region execution

time. If there is a separate module available for each core and tasks

are pinned to cores, then expansion is relatively straightforward

with the main challenge being the complexity of WCET analysis

on multicore systems. Difficulties arise with a single timer shared

amongst all cores, as this would require a timer queue to ensure

the shortest deadline amongst all currently-executing regions is

tracked by the timer. Handling this queue would add some overhead

to instrumentation points, as well as interrupts where the timer is

accessed.

B POINT PLACEMENT ALGORITHMIC
COMPLEXITY

The three steps in the IP placement process are performed sequen-

tially. Therefore, its complexity is bounded by the most complex

step. As each step is a graph traversal process, we determine the

complexity in terms of the number of basic blocks (i.e., nodes) in

the control flow graph.

The Partial Regions step has a worst-case complexity of 𝑂 (𝑛2).
The step1_dfs() function is recursively called on all basic blocks,

however, it is possible for basic blocks to be visited multiple times.

All cycles in the CFG have been eliminated by the preprocessing

step, so the CFG is now a directed acyclic graph. Therefore, even

if we assume the worst case, where the current node has all other

nodes as children (and thus the loop will iterate 𝑛 − 1 times), each

recursive call can iterate at most 𝑛 − 2 times, and so on. Thus, the

total complexity is the sum of integers 1 to 𝑛, which is bounded by

𝑂 (𝑛2).
The Region Filling step has a worst-case complexity of

𝑂 (𝑛2). The outer step2() function is 𝑂 (𝑛2) (for similar reasons

as step1_dfs()). The expandRegion() function’s recursion is

bounded by the MaxVuln parameter (a constant), which is 𝑂 (1),
giving us a total complexity bound of 𝑂 (𝑛2).

The Region Adjustment step has a worst-case complexity of

𝑂 (𝑛2), as it is structurally identical to the Partial Regions algorithm,

with additional constant-time operations.

Thus, as the IP placement algorithm is comprised of three𝑂 (𝑛2)
algorithms run sequentially, with an overall complexity of 𝑂 (𝑛2)
as well.

C POINT PLACEMENT PSEUDOCODE

Listing 2: Instrumentation Placement Partial Regions Step
s t e p 1 _ d f s ( P ) : f o r S in P . c h i l d r e n

sk i p = f a l s e

i f S . h a s c o l o r == f a l s e

S_pos t = S . postDoms

f o r E in S_pos t

i f S not in E . Doms

S_pos t . remove ( E )

sortByDom ( S_pos t )

f o r E in S_pos t

rWCET = l ong e s t P a t h ( S , E )

i f rWCET < MaxVuln

pa in tReg i on ( S , E )

s k i p = t r u e

sk ipToB lock = E

break

i f s k i p == t r u e

s t e p 1 _ d f s ( sk ipToB lock )

e l s e

s t e p 1 _ d f s ( S )

Listing 3: Instrumentation Placement Filling Regions
s t e p 2 ( P ) : f o r S in P . c h i l d r e n

i f ! S . ha sCo lo r

p a i n t ( S , newcolor ( ) )

expandRegion ( S )

s t e p 2 ( S )

expandRegion ( P ) :

f o r S in P . c h i l d r e n

i f S . c o l o r != P . c o l o r

r e t u r n

i f l o n g e s t P a t h ( P , S ) > MaxVuln

r e t u r n

f o r S_p in S . p a r en t s

i f S_p . c o l o r != P . c o l o r

r e t u r n

f o r S in P . c h i l d r e n

p a i n t ( S , P . c o l o r )

f o r S in P . c h i l d r e n

expandRegion ( S )

Listing 4: Instrumentation Placement Region Adjustment
s t e p 3 _ d f s ( P ) : f o r S in P . c h i l d r e n

sk i p = f a l s e

i f S . c h i l d r e n [ 0 ] . c o l o r != S . c o l o r

S_pos t = S . postDoms

f o r E in S_pos t

i f S not in E . Doms

S_pos t . remove ( E )

sortByDom ( S_pos t )

f o r E in S_pos t

rWCET = l ong e s t P a t h ( S , E )

i f rWCET < MaxVuln

pa in tReg i on ( S , E )

s k i p = t r u e

sk ipToB lock = E

break

i f s k i p == t r u e

s t e p 3 _ d f s ( sk ipToB lock )

e l s e

s t e p 3 _ d f s ( S )



Conference’17, July 2017, Washington, DC, USA McDonald and Mueller

D SKETCHED CORRECTNESS PROOF
We establish the correctness of several components of the placement

algorithm.

Lemma D.1. Regions created via pre/post dominator pairs are cor-
rectly formed.

There are three ways in which a region can be incorrectly formed:

• By having aWCET that exceeds𝑀𝑎𝑥𝑉𝑢𝑙𝑛. This cannot happen

as𝑀𝑎𝑥𝑉𝑢𝑙𝑛 compliance is explicitly checked at region formation.

• A block in the region shares a color with a successor and has a

successor that it does not share a color with. This cannot happen:

As the region’s exit is a post-dominator for the entry point, all

paths from the entry must eventually reach the exit block, and

every block included in one of these paths is colored for the region.

If a block within the region has a successor outside the region and

a successor inside the region, then this would imply that there is

an execution path from the start that does not lead to the exit. This

is a contradiction, as the exit is a post-dominator for the start block.

Therefore, this case cannot happen.

• A block in the region shares a color with a predecessor and

has a predecessor that it does not share a color with. This is also im-

possible, with a proof similar to the previous one, this time relying

on the fact that the start is also a dominator for the end block.

Given this, we have shown that regions built using the pre/-

post dominator algorithm used in the Partial Regions and Region

Adjustment steps are correctly formed.

Lemma D.2. Regions created via the Filling Regions step are cor-
rectly formed.

The correctness of the Filling Regions algorithm is not fully

proven due to space concerns. It can be shown that the regions

generated are correct by noting that the correctness of the region

is checked at each stage of growth (analyzing the new predecessors

and successors created after each change), and growth only occurs

if no rules were violated.

Based on these assumptions, we can show that the Region Ad-

justment step will also produce correctly-formed regions, provided

the regions it starts with are correctly formed, as they should be

according to Lemmas D.1 and D.2.

There are 4 ways in which the Region Adjustment step can

violate the rules for region structure laid out in Section 5:

• By creating a region with a WCET exceeding𝑀𝑎𝑥𝑉𝑢𝑙𝑛. This

cannot happen as the region’s WCET is checked against𝑀𝑎𝑥𝑉𝑢𝑙𝑛

before creation.

• By creating a region that violates the structural rules for re-

gion shape. This does not happen, as the regions are generated via

pre/post dominator pairs, which generate correctly shaped regions,

according to the Lemma D.1.

• Recoloring nodes causes the regions they were previously a

part of to no longer obey the shape rules. This cannot happen: For

the new region to break existing regions, the old regions would

need to have at least one block with a successor that was recol-

ored, and a successor that was not recolored (or likewise for a

pair of predecessors). However, for this to be true, the recolored

block, part of the new region, would need to have a predecessor or

successor color violation as well. Because we know that the new

region is properly formed, we can infer that regions with blocks

removed (due to being recolored and added to the new region) are

still properly formed.

• Recoloring nodes causes the WCET of the regions they were

previously a part of to exceed𝑀𝑎𝑥𝑉𝑢𝑙𝑛. This will not happen: The

region WCET is calculated as the sum of block WCETs along the

longest path through the region. Assuming absence of hardware

anomalies, removing a block can only reduce WCET (if the block

was on the longest path), or leave it unaffected (if the block was

not).

Based on these proof steps, the algorithms described in Section 5

properly generates regions according to the region shape assump-

tions that our protection is based on.
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