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Abstract
Task scheduling and resource management are increasingly subject
to attacks exposing system vulnerabilities, particularly on multi-
core processors with an attack surface crossing cores and tasks with
different privileges. Meanwhile, modern real-time systems utilize
multi-core environments, where delay attacks can force deadline
misses.

This work proposes “Timed Threaded Execution” (T-Tex), a
method to detect such security attacks based on monitoring time
dilation induced by unexplained delays in general, and more specif-
ically for OpenMP. T-Tex extends OpenMP by exposing it to timed
monitoring of code execution. It contributes novel compilation tech-
niques for timed instrumentation exemplified for LLVM via multi-
phase profiling using OpenMP tracing (OMPT) capabilities. T-Tex
also contributes Linux kernel modifications to monitor thread-level
execution time across context switches between threads.

Experiments on a real platform demonstrate that T-Tex can detect
100% of delay-based intrusions constrained by timer granularity to
an unprecedented 60us vulnerability threshold at a performance
overhead of 11% − 72% for Parsec and Daphne benchmarks.
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1 Introduction
The use of multi-cores has significantly increased in real-time sys-
tems to meet rapidly increasing requirements for high performance
and low power consumption. In the past few years, there has been
a stagnation in processor frequencies. However, this has been re-
placed by significant increases in the number of processing cores
per chip. Sequential program performance no longer improves with
newer processors, so real-time application developers must either
arrange themselves with stagnating execution speeds or tackle the
complexities of multi-core parallel programming [8, 26].

OpenMP is a powerful and widely-used framework for paral-
lel programming, integral to general-purpose applications, ma-
chine learning, and high-performance computing [27]. With the
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increasing complexity and time-critical demands of embedded and
real-time systems, OpenMP has also emerged as a key framework
for achieving reliable, high-performance parallelism in these do-
mains [5, 6, 15, 25, 28].

Real-time support in OpenMP is especially critical, as it extends
the framework’s utility to applications where timing is paramount.
In these scenarios, predictable execution is essential, and paral-
lel workloads must be managed in a way that guarantees timely
task completion. Traditional OpenMP approaches using the task
clause allow applications to define independent tasks that can run
concurrently, scaling efficiently with the available cores [29]. How-
ever, without real-time constraints, task performance is limited by
the core count and lacks the predictability required by real-time
systems. To address these requirements, OpenMP-RT introduces a
real-time scheduling layer, (1) enabling threads to operate with real-
time priorities under fair core sharing and (2) supporting access to
shared resources within real-time tasks and even for non-real-time
tasks in a lock free and wait free manner [17]. This advancement is
crucial, as it provides a pathway for OpenMP-based applications to
meet timing constraints by controlling the execution order and pri-
ority of tasks while conforming to real-time scheduling paradigms.

This paper addresses the critical issue of security in real-time
systems that rely on implicit OpenMP parallelism, presenting a
novel approach to intrusion detection. Real-time systems with high
computational demands (e.g., video surveillance, computer vision,
radar tracking, and hybrid real-time structural testing) often depend
on parallel algorithms to meet stringent deadlines [11]. Implicit
parallelism, which enables these applications to efficiently leverage
multicore processing, becomes a powerful tool in handling com-
putationally intensive tasks under timing constraints (see Sect. 3).
In today’s technology landscape, system-level security is indis-
pensable, protecting systems across multiple layers from attacks
that target memory (e.g., buffer overflows [22]), exploit vulnerabili-
ties in value handling [10], or disrupt network resources through
denial-of-service. For real-time systems, one particularly severe
threat is the delay attack, where adversaries induce timing delays
in critical sections of code or network traffic associated with time-
sensitive events. Such attacks can degrade system performance,
and in control-based applications, the consequences of missed dead-
lines can range from environmental damage to life-threatening
outcomes [14].

The unique structure of real-time systems offers a crucial de-
fense capability against such attacks, e.g., accurate knowledge of
worst-case execution times (WCET) [33], secure clock synchroniza-
tion [20], and protected critical infrastructure of smart grids [23].
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However, as real-time systems become more complex and inter-
connected, advanced methods are essential to detect subtle, timing-
based threats, especially delay attacks.

Building on this concept, our work introduces T-Tex, an in-
novative approach that leverages timed security to detect delay
attacks specifically on multi-core systems with OpenMP implicit
parallelism. Unlike traditional methods, T-Tex leverages the timing
consistency in real-time systems to provide fine-grained monitor-
ing of task execution, accommodating preemption and resumption
of threads within protected regions. By timing individual iterations
of parallelized loops and applying a multi-phase security model,
T-Tex offers robust intrusion detection that allows users to balance
performance and security.

T-Tex makes several key contributions: (1) It introduces novel
compilation techniques for timed instrumentation in Clang/L-
LVM [1]. (2) It employs a portable multi-phase profiling approach
based on OMPT [7]. (3) It modifies the Linux kernel to enable exe-
cution time monitoring per-thread, even across context switches.
(4) Experimental results on a real platform demonstrate that T-Tex
detects 100% of delay-based intrusions within a 60us vulnerability
threshold, with an associated performance overhead of approxi-
mately 11% for less loop intensive benchmarks (parsec) and 72% for
others (Daphne).

Overall, T-Tex provides time-based analysis in real-time systems
as a defense mechanism against delay attacks. What’s more, T-Tex
combines a pathway to enhanced, adaptive security with the ease of
OpenMP parallel real-time programming, which is unprecedented.

2 Related Work
Previous studies have highlighted the impact of delay attacks on
cyber-physical systems (CPS) that are subject to real-time con-
straints [14]. Denial-of-service (DoS) attacks are among the most
common types of attacks, which not only affect sequential code
but also parallel processing on shared resources of multi-core sys-
tems [3]. These attacks impact memory, process and task sched-
uling within a process of the system by over utilizing a shared
resource, thereby delaying the execution of the processes. Past
work [2] demonstrates that modifications in how the resources are
scheduled and utilized can prevent or mitigate the impact of these
attacks.

Zimmer et al. [33] developed techniques to provide micro-
timings for multiple granularity levels of the application code. Tech-
niques such as T-Rex, T-Prot and T-Axt, demonstrated an advantage
of timed analysis of code execution in constraining the window of
vulnerability for code injections within an application, from usually
tens of millions of cycles down to tens, hundreds, or thousands of cy-
cles, depending on the respective protection technique. T-Pack [18]
demonstrated how constraining the window of vulnerability for
code injections allows intrusions to be detect for communication
by timing the processing of individual packets.

T-Tex visions to extend these techniques to constrain the window
of code execution in a multi-threaded real-time application and to
time code regions executed by each thread for intrusion detection,
even when threads execute in parallel on multi-cores. T-SYS [16]
is the closest work to T-Tex, to the best of our knowledge. T-SYS
analyzes execution time of code by injecting expected timeouts

at the basic block level. However, T-SYS executes on a single core
platform using a single-threaded model without any preemption.
This eliminates the possibility of other applications running on
the system or even multiple threads within the same application
contending for execution on the same core. With preemption or
parallel execution, this method would not work or result in looser
bounds based on response time instead ofWCET. Such loose bounds
provide considerable slack to the attacker to mask potential code
injections, which then remain undetected by response timemonitor-
ing. Subsequently, some region with a given deadline would remain
unaware of on-going attacks. Basic Block level security lacks the
ability to provide a smaller vulnerability window for code regions
with a lower execution time than a single block, which results in a
larger vulnerability window. T-Tex also provides a way to identify
loop execution times by maintaining a counter for the number of
iterations at run-time without splitting the loop. It increases the
overhead by maintaining conditions at every iteration. However
unlike T-SYS, it also provides a way to protect all types of loops
instead of just simple “for loops” with trivially found inductions
variable.

In summary, T-Tex implements delay attack detection in a multi-
processor using novel techniques to protect code regions within a
given maximum vulnerability threshold (upper bound of the vul-
nerability window), carefully considering the above mentioned
intricacies and also complementing T-SYS to secure parallel regions
along with sequential regions of the code.

3 Assumptions and Attack Model
Prior work has shown that an over-subscription of user threads
beyond the number of cores across multiple OpenMP applications
may actually decrease the impact of co-runners and the performance
variability [12]. This technique can also significantly increase the
system throughput. In a real-time system, where predictable ex-
ecution is crucial, limiting the number of threads subscribed by
OpenMP to the number of cores could be a feasible solution. How-
ever, this limits the application’s ability to reap the performance
benefits of oversubscription. [30] demonstrates that thread migra-
tion within a real-time system incurs a non-negligible performance
overhead, suggesting that binding threads to a core can help avoid
non-deterministic migration times. OpenMP creates the desired
number of threads at the beginning of a parallel region and main-
tains those threads in a pool until end of execution to reduce over-
head [9].

Considering these characteristics of OpenMP, this work assumes
a real-time OpenMP model similar to OpenMP-RT [17], where real-
time priorities are assigned to the threads in this pool. Utilization of
these threads requires setting the priority value of the underlying
POSIX thread by modifying the “sched_param” structure [21]. This
enables OpenMP to execute each parallel region with a different
thread priority, e.g., one from the real-time priority band of Linux
per explicit task. Within such tasks, it supports parallel regions via
implicit task executions at the same real-time priority as its sur-
rounding parent task (see [17]), which real-time oblivious (regular)
OpenMP implementations lack.

Our model supports oversubscription, i.e., an OpenMP applica-
tion can run more threads than the number of cores and there can



be more than one application running on the system, each at a
different thread priority (which may or may not be protected by
T-Tex, e.g., as for the green thread in Fig. 1). However, we assume
that a scheduled thread only runs on the core it was originally
bound to at the operating-system (OS) level to prevent any thread
migration.

Figure 1: Analysis Model: Timed analysis of Parallel Region -
broken into finer code regions - broken into loop iterations -
analyzing context-switch time (𝑡1-𝑡7 represent the execution
times of the regions they are marked alongside)

Multiple threads provide the ability to execute code regions
(implicit tasks like OpenMP parallel region) in applications with dif-
ferent thread priorities resulting in contention of shared resources
(e.g., shared caches) and preemptions, which are reflected in their
response times. T-Tex implements a novel technique to identify
these code regions, to break them down into much finer regions
and to provide tight WCET monitoring of these regions by exclud-
ing delays due to shared resource contention or execution of other
threads due to preemption.

Fig. 1 illustrates the idea of T-Tex. On the left, a protected ap-
plication consists of red (serial) and blue (parallel) code regions,
e.g., under OpenMP. T-Tex retains the objective of T-SYS [16] and
utilizes it to protect the execution of serial code (red). What’s more,
T-Tex complements it to monitor the WCET of the blue code region
executed by multiple threads. Yet, T-Tex eliminates the delays at-
tributed to any third party, thereby providing tight monitoring of
both red and blue code regions, one of the capability that T-SYS was
lacking. Blue code regions are further broken down to provide finer
timing constraints by T-Tex using novel transformation techniques
like loop monitoring. Fig. 1 demonstrates how Region 3 can be bro-
ken more finely into multiple iterations of a loop (assuming a loop
within the code region), which provides a finer analysis for tighter
security complimenting security technique in T-SYS. Contention
due to other applications or threads shown in green (right side of
Fig. 1) maintains fine-grained time inside the OS kernel between
context switches. The execution time of iteration 3, broken from
region 3 in this figure is evaluated as 𝑡 =

∑7
𝑖=1 𝑡𝑖 .

A potential delay attack in this scenario would be as follows: (1)
A delay could occur due to context-switches when a higher priority
task preempts. T-Tex maintains thread-specific times per thread,
where a context switch changes time accounting within the OS
kernel to a target thread and changes it back to the original thread
when it resumes. Without our kernel changes, such time keeping
and direct accounting of a thread’s execution time in relation to

WCET would not be feasible at fine granularity. In fact, longer ex-
ecution of other accepted applications could further increase the
response time of a protected thread, e.g., due to accessing shared
data or resources resulting in extremely loose bounds on response
time, which facilitates time-based attacks. In contrast, T-Tex nei-
ther restricts the number of context switches nor the priority of
threads contenting with one another. (2) An attacker can schedule
additional load (threads/applications) on the system delaying other
scheduled work. The attacker can update the number of threads in
the thread pool allowing a parallel region to execute with different
number of threads than expected. However, the attacker cannot
just add a new thread or remove one while executing a parallel
region as threads are acquired from a thread pool at runtime by
executing functions in the OpenMP runtime library. Nonetheless,
additional applications can be executed at any time. This could
increase the number of context switches and thereby the response
time of code regions, e.g, inflating 𝑡2, 𝑡3, 𝑡5, 𝑡6 (Fig. 1). Increased
switches could still be detected by maintaining a counter tracking
the context switch path but the impact on response time cannot be
accurately determined by the OS. Increased load could also increase
memory contention, thereby prolonging the latency of memory
accesses without affecting the number of context switches. (3) The
potential delays resulting from code injections, e.g., buffer over-
flow attacks, can be strategically coordinated to conceal the delay
during run-time. T-Tex addresses this challenge by implementing
time monitoring within the kernel, creating a secure space that
remains isolated from potential attackers operating in user-space.
This approach aims to mitigate the impact of code injection attacks
on system performance while enhancing overall security.

We assume that the maximum workload of accepted applica-
tions on the processor is known a priori. This implies that one
could bound the response time by bounding the number of context
switches, even without T-Tex. But monitoring the WCET, which
is tighter, only becomes feasible with T-Tex. We also assume that
the attacker cannot modify the OS kernel space, interfere with
scheduling or modify timers utilized for timed protection within
the kernel.

4 Design
T-Tex is a novel method for verifying the execution times of POSIX
threads in real-time OpenMP on multicore systems. It monitors
specific code regions within an OpenMP application, capturing
each thread’s execution time in these regions and triggering a
timeout if the region’s WCET is exceeded. Although WCET values
are experimentally determined in this work, T-Tex can also work
with WCET bounds derived from static analysis tools.

4.1 Identifying Code Regions
4.1.1 OpenMP Regions. Timed analysis in a multi-core system
requires identification of code regions, distinguishing them into
parallel and sequential regions. Parallel regions within OpenMP are
an implicit task. OpenMP-RT [17] provides the capability to execute
these tasks via a real-time priority thread of any priority level
(high or low). Parallel regions are further divided into sub-regions
for a broader accepted range for a given maximum vulnerability
threshold.



Past work with OpenMP has implemented various performance
monitoring capabilities that make OpenMP execution events inter-
posable, e.g., to create event tracing tools for finding inefficiencies
in parallel regions. E.g., the OMPI and POMP tools [19] allow pro-
grammers to specify and control instrumentation at well-defined
OpenMP runtime events. OMPT, yet another tool, also provides (1)
callbacks and inquiry functions that enable sampling-based per-
formance tools to attribute application performance to complete
calling contexts and (2) notifications for callback that enable con-
struction for comprehensive monitoring [7]. These OMPT callbacks
are utilized by T-Tex to identify the code regions depicted in Fig. 2
at runtime and also the instrumented function calls within these
regions. OMPT helps identify parallel regions and threads execut-
ing it, however, runtime calls require additional information to
accurately identify the sub-region/loop executed by a particular
thread for isolated protection and evaluation (via LLVM passes).

All OpenMP directives within each parallel region are detected
as sub-regions for the ease of use of the OpenMP profiler OMPT
(see Sec. 5). The abstract syntax tree (AST) of the compiler is needed
to verify these directives and relay the information to the compiler
optimizer. The LLVM [1] compiler tool chain retrieves the AST via
Clang and provides assistance in our code transformations to adapt
region sizes and in instrumenting timer calls efficiently (LLVM
pass).

Figure 2: Code Regions for Implicit Parallelism in OpenMP

4.1.2 Loop Detection in Parallel Regions of OpenMP. Loops
can either be part of an OpenMP directive (executing sequentially
or in parallel) or exist outside of these directives (executing sequen-
tially). Loops within parallel regions are difficult to associate with
specific sub-regions. T-Tex uses LLVM’s loop detection techniques
to identify such loops (see Sec. 5). Multi-processor scheduling ac-
celerates loop iteration execution, allowing T-Tex to combine some
iterations, where timer instrumentation is provided only when
needed to maintain the vulnerability window. This reduces the
performance impact compared to instrumenting each iteration.

4.1.3 Monitoring Executing Threads. As discussed in Sec. 3,
an attacker in the user space has the ability to modify the number
of threads in the thread pool of an application. This allows the
attacker to add malicious code and hide it from WCET monitoring.
T-Tex evaluates the WCET of regions based on a given number of

threads executing it. OpenMP also provides flexibility to users to
execute code regions with variable number of threads, which would
result in an incorrect timed analysis. To counter this problem, T-Tex
constrains the number of threads executing a code region at the
time of program analysis to a constant, which is strictly enforced
during runtime as a modification to OpenMP.
4.2 Timers
T-Tex implements a multi-timer model (Appendix A:A.1) to avoid
synchronization overheads. Each thread’s timer activates upon
entering a protected code region (Sect. 3). T-Tex operates in multiple
phases. In Phase 1, T-Tex determines WCETs for protected regions
and feeds this data back to the compiler. Phase 1 uses broad bounds
for code restructuring, resulting in low performance overhead but
higher vulnerability. Phase 2 refines security by dividing code into
finer regions based on a set threshold, creating tighter bounds.
Additional restructuring iterations subsequently provide finer and
more accurate time protection (Sect. 5). Each phase tracks execution
times andmaintains timers based on theWCET per region, resetting
and recalibrating at a region’s completion.

4.3 Accurate Analysis via Maintaining Timers
at Context-Switch

In a multi-processor framework (see Sec. 3), multiple threads exe-
cute one or more applications known a priori while competing for
a limited number of cores on the system.

Each user-space thread is mapped to a Linux kernel thread, and
kernel scheduling may preempt a real-time application thread with
another, higher-priority thread with similar protections (see Sec. 3).
This preemption can arise from oversubscription or explicit core
sharing across different priorities in multi-tasking real-time sched-
uling.

The execution time for each thread includes preemption time
from context switches, which leads to a pessimistic WCET for
identified code regions during static analysis in phase 1. T-Tex
aims to perform finer execution time analysis of OpenMP code,
but inflated timing without considering kernel preemptions would
create extra slack, allowing attackers to mask delays and remain
undetected. To address this, T-Tex modifies the Linux kernel to
update timers during context switches, pausing a thread’s timer
when it’s preempted and resuming it upon reactivation.

5 Implementation
Figure 3 shows the T-Tex workflow, which includes modifications
to the Clang compiler, LLVM linker optimizations, runtime sys-
tem updates (profiler and OpenMP runtime), an interpositioning
framework, and T-Tex data structures. A new Linux kernel module
manages timers and monitors context switches. Yellow boxes indi-
cate code modifications while red boxes represent new modules, all
contributing to the T-Tex framework. The blue and green arrows
in Fig. 3 show T-Tex’s two phases. In Phase 1, T-Tex uses code re-
gion data for automated dynamic timing analysis, determining the
WCET for each region during parallel execution with prioritized
threads. Timing information is collected at the region/sub-region
level. For a more precise vulnerability window, the WCET values
from this analysis are fed back into the T-Tex data structure for



Phase 2 during linker optimization. Multiple iterations can refine
the WCET values for timing analysis.

Figure 3: T-Tex Workflow

5.1 Compiler Modifications: Clang Frontend
Clang [1] is a compiler front-end for C, C++ and other programming
languages. It is used both for compilation and high-level language
specifications, such as OpenMP. As shown in Fig. 3, T-Tex modifies
Clang (yellow box—Clang Compilation) to (1) add an option to
enable/disable T-Tex security, (2) traverse the application code to
identify OpenMP regions using Clang’s RecursiveASTVisitor API,
mapping each region to a unique ID, and (3) relay this information
to the compiler back-end (Detected Regions Line in Fig.3). T-Tex
identifies all OpenMP parallel regions, using the region IDs to pro-
tect them from delay attacks. The vectors generated for all such
parallel regions are stored as metadata (associated with the func-
tion created for parallel region by LLVM/Clang). Each value in the
vector represents a reference ID to denote the respective OpenMP
sub-regions (see Sec. 4). Consider Listing 1 (see Appendix). Clang
generates two arrays, [2,-1] & [-1], to denote two parallel regions
starting with two omp sections followed by two omp for regions.
The encoding of -1 represents an omp for whereas 𝑛 ≥ 1 repre-
sents 𝑛 sections within the omp section scope. These IDs are not
unique but rather reference IDs to identify the type of a sub-region.
(3) Calls made to the OpenMP runtime library for these sub-regions
are modified to accept an additional parameter, namely a unique
ID. These IDs are passed as parameters for dynamic identification
(see Sec. 4). In Listing 1, for the first parallel region, IDs 1,2 are fed
to OpenMP runtime calls Sections and For, respectively. These
IDs are subsequently used to identify regions within a Parallel
section to arm timers in the respective callbacks (see Sec. 4 & Fig. 2).
5.2 Compiler Modifications: Linker

Optimization (LLVM Pass)
LLVM is a compiler toolchain used to develop front-ends and back-
ends for various languages and architectures. T-Tex utilizes LLVM
as the backend to process information fromClang. During the linker
optimization phase, LLVM executes a pass on the global module, ap-
plying several T-Tex transformations. (1) The LLVM pass identifies
all code regions and retrieves metadata for parallel regions/sub-
regions initializing the T-Tex data structure. This information is
stored in a 2-D vector and sent to the profiler tool. (2) OpenMP
defines code regions in parallel constructs (Fig. 2) with two call-
backs (start and end of a region). However, finer analysis is required
to minimize slack time and prevent attacks from masking delays

Listing 1: OpenMP Sample Code

#pragma omp parallel num_threads(4)

{

#pragma omp sections nowait

{

#pragma omp section

{ code section 1; }

#pragma omp section

{ code section 2; }

#pragma omp parallel for num_threads(2)

{ code section 3; }

#pragma omp for
{ code section 4; }

}

(Sec. 4). T-Tex refines these regions for more accurate WCET analy-
sis by further breaking them down, including loops and sub-regions
with custom callbacks. This analysis is integrated into the LLVM
linker for a global view of the control flow supporting application
code crossing multiple files.

5.2.1 Securing Loops within a Parallel Region. During the
LLVM pass, T-Tex identifies parallel regions (by identifying wrapper
functions) and their loops using LLVM’s loop analysis pass, which
does not consider nested loops. T-Tex enhances this pass to detect
sub-loops up to 𝑛 levels of nesting (𝑛 ≥ 1). It also parses functions
within these loops to find additional loops while skipping repeated
loops (& functions) within a single parallel region, as they all adhere
to the same WCET vulnerability (executed at the same priority).

Figure 4: Loop Control Flow Graph: Red Arrow = possible
edges, Black Arrow = 100% existing edge, Blue Box = one or
more basic blocks, Green condition = may or may not be in
the given block a) Loop before T-Tex; b) Loop after T-Tex

In Phase 1, T-Tex instruments each loop with a custom callback
called after every 𝑥-th iteration allowing the profiler to handle
timers via the kernel module. Fig. 4 shows the updated loop control
flow graph from a) to b). The header is updated with a phi-node
(instruction used to select a value depending on the predecessor



of the current basic block), which initializes a value 𝑐𝑡𝑟 . For every
incoming edge to the loop header, 𝑐𝑡𝑟 is initialized with 0. In the
latch block (where the back edge to the header originates), the con-
ditional or unconditional jump to the header is updated to instead
jump to an added block. This block retrieves the 𝑐𝑡𝑟 value to check
for 𝑥 iterations (split), where on every 𝑥𝑡ℎ iteration, a custom call
is executed. For nested loops, the first execution of the outermost
loop is always timed to eliminate inner loop delays.

T-Tex handles all loops, regardless of optimizations, and elim-
inates the need for timer calls in each loop block if the iteration
time is below the vulnerability threshold. If the time exceeds the
threshold, 𝑥 is reduced in subsequent phases. In case of a higher
WCET with even a single iteration, T-Tex further secures the loop
by splitting at the instruction level (instead of basic block) in later
phases based on the vulnerability threshold. Similarly, other sub-
regions outside the loops are identified and divided at instruction
level.

5.3 T-Tex Data Structure and Subsequent Phases
The profiler needs information about parallel region identification,
loop splitting after 𝑥 iterations, and sub-region IDs. T-Tex provides
this via a 2-D vector for loops and sub-regions, with each entry
containingWCET, parallel region ID, sub-region/loop ID, split factor
(for loops), reference number (for sub-regions), and split metrics
(for finer division) (see Listing 1 in Appendix A).

The first level of the vector lists parallel regions, while the sec-
ond level tracks sub-regions or loops (each with a separate 2-D
vector). After Phase 1, these vectors are initialized with high WCET
values from fine-grained profiling and stored in a file. Repeated
loops or sequential code are recorded separately under their re-
spective parallel regions. Each loop/sub-region is assigned a unique
ID (e.g., a unique loop ID), which differs from both loop ID and
sub-region ID for identification of the region invoked that resulted
in the highest WCET of all invocations. This information helps with
further splitting in subsequent phases. Call paths resulting in any
lower WCET will automatically be accurately split based on given
maximum vulnerability, albeit in a pessimistic way (i.e., more splits
in the call path are inserted than potentially needed for this shorter
WCET, but they are needed for the highest WCET).

If theWCET exceeds the vulnerability threshold, regions are split
with custom callbacks. Each iteration of a loop is further divided
based on the sequential split factor (seq_split), determined by the
maximum vulnerability threshold. This ensures that instructions
in the loop body are segmented into seq_split regions. Further
splitting into finer regions does not add entries to the 2-D vector as
regions within the same parallel region have similar WCETs. Sub-
regions are split similarly. This process helps T-Tex protect both
sequential and parallel code (which compliments T-SYS). Multiple
phases refine the split structure, minimizing callback overhead once
the desired protection level is achieved.

5.4 Runtime Modifications: OpenMP & OMPT
The OpenMP runtime library functions (see Fig. 3) are updated to
accept region IDs as parameters, which are then passed as argu-
ments to the OMPT callback functions in the profiler. This allows
correlation of execution regions with time values in the T-Tex data
structure.

The T-Tex data structure initialized by the LLVM pass is first
parsed to extract the execution time per region. As seen in Fig. 3,
executions of these regions are identified by triggering a callback
function. To this end, T-Tex utilizes thread-specific data to store
execution information along with thread IDs during OMPT sam-
pling. Thread begin callbacks initialize unique thread data and IDs
for each thread. The thread data here is a vector list, later used to
store time information of each executed code region. Each thread
also arms a timer in the respective thread context. These timers
are created via ioctl calls to the kernel maintaining time within
the kernel (for all the threads), both for protection and for updates
along context switches inside the kernel (see Sec. 4). At the next
callback, a thread cancels its timer, evaluates the executed time and
stores it as the actual execution time of the previous region. This
timekeeping is implemented as high-resolution timers (HRT) within
Linux, which are also stopped/started again across preemptions,
i.e., they have become thread specific due to our modifications.

At the end of execution for all the threads, OMPT evaluates the
WCET based on the recorded execution time values. Recorded IDs
for the executed code are utilized to identify the regions for which
the time is evaluated. For executed code regions with the same
parallel region IDs and same sub-region IDs or loop IDs, the value
with the highest execution time is considered as the WCET of the
region and stored in the 2-D T-Tex data structure.

5.5 Kernel Implementation of T-Tex
T-Tex timers are implemented within the Linux kernel and are cru-
cial for accurate per-thread time monitoring and reducing exploitable
slack during context switches (Sect. 4). Preemption delays, caused by
higher-priority tasks or interrupts, can be detected by monitoring
context-switch counts. Timer crediting helps minimize the attack
vulnerability window. Prior work [31] suggests that interrupt ac-
counting enables accurate timing analysis. Real-time monitoring of
interrupts for response-time analysis complicates attack detection
requiring prior knowledge of all interrupts and delays. It adds fur-
ther overhead of storing interrupt execution time and adding it to
the timer — further requiring information to identify the timer as-
sociated to the thread. Additional overheads would result in higher
vulnerability windows for the attacker.

T-Tex utilizes a loadable kernel module in Linux to implement
ioctl calls using a virtual device driver to establish user-to-kernel
space communication. Three ioctl calls are established: (1) A call
to setup timers for each new thread resulting in a time_set call
establishing a unique timer for each thread (t_id); (2) a call to reset
a timer, frequently made by T-Tex monitoring after completion of
a region without WCET violation, to prepare for the next region;
(3) a call to receive the current time from the kernel to evaluate
execution time of the completed region; and (4) a call to evaluate
execution time within the kernel.

Listing 2 (see Appendix) depicts the code of the OMPT profiler
functions invoking the respective ioctl calls. Create_timer registers
a thread ID from the user and initializes a timer data structure. This
structure is populated by setting timer values and activating the
timer. A hashmap is maintained to store all active timers across all
threads (irrespective of the number of applications). Without loss
of generality, T-Tex assumes a MaxThread value to create a hash
map associated with a given hash function. Similarly, hashmaps are



searched in case of a modified timer call (mod_timer) to retrieve the
timer data structure of the thread and to set themodified timer value
to true. Other calls are handled in a similar manner as demonstrated
in Listing 2.

Timer calls within the kernel acquire spin locks held until com-
pletion. Updates to this timer are constrained to the context switch
code itself for a given target thread, thereby avoiding possible race
conditions. When T-Tex sets the modified timer variable for the
thread (to inform the context switch of a required update of the
timer), the kernel stops the timer of the task being switched out
and modifies the timer of the task being switched in by assigning
more slack time (as an extension of the context switch code). Once
the context switch updates the timer, it sets the switch variable of
the thread timer data structure to true. This assures that the timer
of target process of the context switch has been modified, where
the value was modified before the task was switched out. However,
if a task was switched out in the middle of the ioctl modify call, the
timer would not be reset, in which case the switch variable of the
timer data structure would be false. If it is false, T-Tex executes a
schedule() kernel call to reschedule the task so as to reset the timer
when the task is reactivated upon a subsequent context switch. Sim-
ilarly, the T-Tex timer data structure in the kernel also maintains
a pending timer. It is updated for a switched out task right after
the timer is stopped. (In Linux, the only way to stop a kernel timer
is by deleting/deactivating it). If the timer is not to be modified
when switching back in, T-Tex re-assigns the pending time to the
timer; otherwise, an updated time is calculated using the task’s
reactivation time. When a thread is deleted, a delete timer call is
issued. Since, we assume each thread is bound to a core, we can
issue the del_timer call without activity checking, i.e., the timer
can no longer be active on any core.

Listing 2: ioctl calls: kernel timer implementation

ioctl call(ref):

switch(ref):
case "create timer":

t_id <- copy_from_user ()

t_data <- thread data structure

t_data <- {timer_value , time_set}

map[t_id % MaxThread] <- t_data

case "mod timer" :

time , t_id <- copy_from_user ()

t_data <- map[t_id % MaxThread]

t_data.timer_val <- time

t_data.timer_mod <- true

case "delete timer":

tid <- copy_from_user ()

t_data.timer_set <- false

delete map[t_id % MaxThread]

case "receive timer":

time <- ktime_get_ns ()

time -> copy_to_user ()

case "retrieve time"

time_s <- copy_from_user ()

time_f <- ktime_get_ns ()

return ktime_sub(time_f ,time_s)

6 Experiments and Evaluation
6.1 Experiments
Real-time systems, e.g., for autonomous vehicles, rely on real-time
sensors to detect nearby objects to navigate safely and avoid colli-
sions. Object detection is often performed through nearest neigh-
bor evaluations, with the Iterative Closest Point (ICP) algorithm
helping vehicles interpret surroundings accurately. The OpenMP
API is essential in optimizing performance-critical sections of au-
tonomous driving software on embedded systems. Platforms such
as Autoware [13] and Apollo AI [32] illustrate OpenMP’s role in
autonomous driving and embedded systems.

We test T-Tex on the Daphne benchmarks [24], which mirror key
modules of the Autoware platform, including PointsToImage and
EuclideanClustering. Our focus is on EuclideanClustering, used for
object detection — a time-sensitive task crucial for vehicle safety.
T-Tex is assessed on the following aspects:

(1) Does T-Tex’s multi-phase approach reduce the vulnerability
window for code regions below the security threshold? (2) What is
T-Tex’s accuracy under various attack intensities simulating buffer
overflow attacks? (3) How does T-Tex compare to basic block level
security of T-SYS? (4) What is the performance overhead of T-Tex?

We further evaluate T-Tex on the freqmine application in the
Parsec benchmark suite [4]. Parsec is widely used to assess multi-
threaded applications, and freqmine’s data-parallel structure with
medium-level granularity offers an ideal scenario to test T-Tex (see
Tab. 1 in Appendix A).

6.2 Evaluation
Figure 5 illustrates T-Tex’s method of instrumenting timer calls by
dividing code regions to keep execution times below the security
threshold. This example assumes a 4-threaded application running
on 2 cores (oversubscribed) of an x86_64 Intel i7-9750H processor
at 2.60GHz with real-time thread capabilities (see "sched_param"
in Sec. 3).

The results show that T-Tex’s multi-phase approach reduces
all code regions near the 60us security threshold, further dividing
regions that exceed this limit. T-Tex does not aim to remove outliers
with shorter-than-threshold times but rather reduces all those above
the threshold. Outliers exceeding 60us (y-axis) are brought within
the threshold for the Daphne benchmark running with 4 threads.
This multi-phase refinement provides dynamic timed analysis and
protection for code regions, achieving a level of timed security
never achieved before to the best of our knowledge.

T-Tex maintains the execution time of each thread and elimi-
nates any time spent between context switches (see Sect. 4). The
experimental evaluation shows that ioctl calls (see Sect. 5) incur a
varied overhead. Hence, a security threshold high enough is set to
factor in this cost. Compared to prior state-of-the-art protection
methods, T-Tex provides a much finer security threshold (>≈ 10𝑋
finer than the most closely related T-SYS, which provides a ≈ 600us
threshold).

Each phase of T-Tex security evaluates an estimated division
of a code region higher than the threshold. Each division of the
code region incurs an added overhead of the instrumented code
for time keeping. This results in an increase in the total execution
time of all the regions. However, since higher time values of certain



Figure 5: Phase 1-5 of T-Tex (further division of code regions
to reduce WCET of each region) : Execution Time (ns) (black
line: 60us security threshold)

Figure 6: Attack Detection and Vulnerability 1) T-Tex (No
Attack) 2) 10us Delay 3) 20us Delay 4) 40us Delay 5) 500us
Delay 6) Basic Block Protection (T-SYS: No Attack)

regions reduce into 2 or more halves, this narrows the box plot
whiskers by reducing the outliers within the box (see Fig 5). The
median of the distribution increases because certain code regions
are divided into finer sub-regions whenever a high WCET exceeds
the threshold. This division accounts for cases where some regions,
such as loops with many iterations, temporarily exceed the thresh-
old, even though in other executions they fall well below it. This
finer division adds a slight overhead to each region, which impacts
the time-keeping metric for loops. As the code is further divided
closer to the threshold, box plot size starts decreasing so that a few
more values become outliers. However, each of these regions still
follows the security threshold forWCET. It is important to note that
T-Tex ensures each region to execute within the defined threshold.
However, for certain regions with consistently shorter execution
times, T-Tex sets a WCET below this threshold, based on execution
time evaluations performed during each phase of T-Tex security.
This additional constraint further reduces the vulnerability window
for potential attackers.

Fig. 6 assesses the accuracy and vulnerability of T-Tex to detect
delay attacks within the code regions. To simulate delay attacks,

spin delays are injected into each code region, which resemble a
chain of delay attacks due to denial of service or buffer overflow
attacks (Sect. 3). T-Tex secures the application by dividing it into
finer code regions, detecting delays in each region independently.
To provide maximum security within the given threshold, T-Tex ef-
fectively creates 100,000 monitored instances by analyzing 6 unique
regions (see Sec. 4). To assess T-Tex’s responsiveness to delays, we
simulate an attack in each monitored instance. For example, a 40us
delay attack would translate to a sequence of 100,000 individual
40us delays.

Fig. 6 shows box plots of execution time values for the Daphne
benchmark protected by T-Tex and its distribution under various
attack intensities. From the lower black/dotted line we can observe
that 100% of the code regions protected via T-Tex will detect an
attack delay of ≥ 40𝑢𝑠 seconds as none of theWCET values overlaps
with the execution time distribution under the 40us attack intensity.
Hence, even a single attack of 40us delay would be detected by
T-Tex as no code region has a vulnerability threshold ≥ 40𝑢𝑠 .

To assess the limits of T-Tex, we visually assess if an overlap
exists between the execution times of T-Tex (no attack) and T-Tex
under a 10us delay attack (see Fig. 7 in Appendix A:?? ). From
the prior Fig. 6, we observe overlapping outliers in test cases 1
with 2. Fig. 7 elaborates this using frequency distribution graphs
(T-Tex in red and 10us delay in purple). 0.7% of the executed regions
by T-Tex overlap with the attack delay (see zoomed in image in
Fig. 7: black dotted rectangle represents the zoomed region). If an
attacker initiated a 10us delay within these regions, it would remain
undetected. The WCET of these regions affects 22K out of the 100K
regions analyzed by T-Tex (higher timer set). For an attacker tomask
such a delay, one would have to predict these 22K regions to induce
an attack. To take over an entire kernel, millions of instructions
are typically required. We can limit an attack to ≈ 10K instructions
here assuming, e.g., a CPU clock of 1GHz at an instruction per
cycle rate of one. For an undetected intrusion under T-Tex, 100
such attacks of 10K instructions (adding up to 1M instructions)
need to be executed given that the attacker can identify those 22K
regions correctly. However, a subset of 22K regions may be close to
the WCET, uncovering such an attack (as per-region prediction is
infeasible at this fine granularity).

We compare T-Tex to the state of the art T-SYS. We partially
replicate T-SYS by implementing code region distribution at a basic
block granularity over instructions. However, we still identify all
loops and provide iteration-based security, which T-SYS lacks. Code
regions, which were cut at instruction level under T-Tex, are instead
divided at basic block level for T-SYS resulting in larger slack for
the attacker to hide the delay, i.e., allow longer injected attacks. Box
plot 6 in Fig. 6 shows overlapping execution times for code regions
protected by basic block protection compared to a 40us delay attack
(upper black/dotted line). Fig. 7 further explains the overlapping
outliers. 0.05% of the code regions in basic block protection (green),
effecting the WCET of 800 regions in total, overlap with the delay
attack (blue). In contrast, T-Tex (red) overlaps with the delay (blue).
This demonstrates better accuracy for T-Tex resulting in 800 fewer
attack vulnerability windows for same security threshold. We also
observe from Figures 5 and 6 that basic block protection fails to
constrain all outliers within the security threshold.



Figure 7: Time Distribution from Fig 6 — Image inside is a zoomed in image of the black rectangular box (Frequency Density of
0.001%): 1) 0.7% of red overlaps with purple 2) 0.05% of green overlaps with blue.

Figure 8: Benefit of Kernel Timer Crediting 1) T-Tex without
kernel time crediting 2) T-Tex with kernel time crediting

We demonstrate the effectiveness of kernel timer crediting in
T-Tex by pausing the timer at each context switch. Running the
Daphne benchmark alongside a high-priority task increases context
switches, showcasing T-Tex’s compatibility with tasks at varying
priority levels. Figure 8 shows execution time distributions with T-
Tex protection: (1) without kernel timer crediting and (2) with timer
crediting. Red outliers in the non-credited case (at 106 and 109)

indicate regions with higher WCETs, creating longer vulnerability
windows where attackers could potentially evade detection.

We also analyze T-Tex’s overhead for various security levels
(Fig. 5). For maximum security (Phase 6), T-Tex incurs a 72% over-
head but offers the option to adjust security via a compiler argument.
Phase 2 security, with a 35% overhead, limits execution times to
≈ 400us per code region, creating a higher vulnerability window.
Nonetheless, T-Tex detects 100% of delay attacks with a 500us delay
intensity, reducing the vulnerability window by 100us compared to
T-SYS.

Figure 9 illustrates T-Tex’s compatibility with various real-time
multi-threaded applications. For the Parsec frequency mining ap-
plication, T-Tex identifies 220 code regions to maintain a security
threshold of 60us, with fewer nested loops contributing to a lower
11% performance overhead. This setup achieves 100% detection
accuracy even for a single 60us delay attack.We conclude that T-Tex
incurs only a marginal overhead for less loop intensive applications.

7 Conclusion
This work presents the design and implementation of T-Tex, a novel
timed analysis and attack detection technique for real-time multi-
processor applications using OpenMP. T-Tex leverages the LLVM
compiler and OMPT profiler to implement a multi-timer approach
that supports dynamic timed analysis. It successfully detects 100%



Figure 9: T-Tex security on parsec — frequency mining ap-
plication: 1-4) Number of T-Tex iterations to reach security
threshold of 60us 5) Attack: 60us Delay

of attacks by segmenting code regions to keep execution times
below delay intensities of an unprecedented 40–60us, with an over-
head of 11% − 72% for benchmark applications. Additionally, a new
kernel time-crediting technique reduces false positives, thereby
improving accuracy.
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A Appendix
A.1 Multiple Timers (T-Tex) vs. Single Timers

Figure 10: Single Timer: Custom Callbacks are instrumented
timer calls for further dividing OpenMP recognized re-
gions for finer analysis. More synchronizations needed for
a smaller vulnerability window (resulting in more custom
callbacks) defeating the purpose of multi-threaded model

T-SYS features timed code executions within the kernel using
a single timer for anomaly detection. A single timer in case of a
uni-processor is feasible. However, implementing a single timer in
a multi-processor for monitoring the execution of all the threads
poses several challenges.

The implications of this approach are as follows. (1) A single
timer under OpenMP and with multicores would require multiple
barriers to synchronize each thread with the timer, leading to per-
formance degradation and limiting the benefit of multi-threaded
programming. As Fig. 10 shows,𝑇1 waits for𝑇2 to complete the Sync
before executing the next code region (vertical blue line aligned at
the end of the first Sync). (2) The OpenMP nowait clause allows
threads to proceed beyond a sub-region within parallel region with-
out a barrier. A single timer would either randomly indicate region
termination for some thread or, if only the last thread resets the
time, would cause the attack window of the next regions to increase
(as it is not strictly timer protected) for all other threads. In contrast,
multiple timers support detection of timing anomalies of OpenMP
tasks for all these cases.

Figure 11: Multiple Timers: Timers armed at 𝑇𝑥 are canceled
(𝑋 ) before being triggered, and a parallel region is partitioned
into multiple sub-regions protected by finer-grained call-
backs, which are not synchronized between threads until a
final barrier.

Table 1: Parsec Benchmark Suite
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