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Abstract—With today’s petascale supercomputers, applica-
tions often exhibit low efficiency, such as poor communicabin
and 1/O performance, that can be diagnosed by analysis toals
However, these tools either produce extremely large traceléis
that complicate performance analysis, or sacrifice accuracto
collect high-level statistical information using crude aeraging.

This work contributes Scala-H-Trace, which features more
aggressive trace compression than any previous approach,
particularly for applications that do not show strict regul arity
in SPMD behavior. Scala-H-Trace uses histograms expresgn
the probabilistic distribution of arbitrary communicatio n and
1/0 parameters to capture variations. Yet, where other toos
fail to scale, Scala-H-Trace guarantees trace files of neaon-
stant size, even for variable communication and I/O patters,
producing trace files orders of magnitudes smaller than usig
prior approaches. We demonstrate the ability to collect traes
of applications running on thousands of processors with the
potential to scale well beyond this level. We further presen
the first approach to deterministically replay such probabilistic
traces (a) without deadlocks and (b) in a manner closely
resembling the original applications.

Our results show either near constant sized traces or only
sub-linear increases in trace file sizes irrespective of theumber
of nodes utilized. Even with the aggressively compressed
histogram-based traces, our replay times are within 12% to
15% of the runtime of original codes. Such concise traces
resembling the behavior of production-style codes closelgnd
our approach of deterministic replay of probabilistic traces are
without precedence.

As supercomputers progress in scale and capability towal
exascale levels, characterization of communication a@d 1/
behavior is becoming increasingly difficult due to system
size and complexity. The large numbers of processors/core
increased aggregate memory capacity, complex interco
nects, and increasingly larger gap between computatio
power and I/O performance create great challenges on effe
tive and scalable ways for performance study of application
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for efficient use of system resources. Challenges exist®n th

software side as well. Today, the complexity of extreme-
scale scientific applications increases rapidly. Appiaras

This work was supported in part by NSF grants 0237570 (CAREER
0546301 (CAREER), 0621470, 0937908, 0429653, 09376935 and
DOE DE-FG02-08ER25837, by the Office of Advanced Scientifamc
puting Research (U.S. Department of Energy), a joint fgcafipointment
between Oak Ridge National Laboratory (ORNL) and NC Statwéisity,
and a senior visiting scholoarship at Tsinghua Univergitysed resources
of the National Center for Computational Sciences at ORNH amas
performed in part at ORNL, managed by UT-Battelle, LLC un@entract
No. DE-AC05-000R22725.

n

often integrate multiple software components and may ex-
ercise vastly different computation/communication medel
Such codes are becoming more dynamic and diverging from
strict, regular single program, multiple data (SPMD) behav
ior. Examples include multi-physics or coupled codes, wher
partitions of nodes implement different simulation models
work on separate datasets, or even conduct analytics tasks
such as data reduction. Such applications exhibit multiple
program, multiple data (MPMD) behavior as multiple nodes
work on multiple sections of the program. For example, in
climate simulations, some nodes simulate climate changes
over land, while other nodes work on sea models. Hence,
different modules, like land and sea, use different inptia da
and algorithms resulting in different communication ar@ 1/
behavior within each module.

Many studies have investigated the communication and
I/O characteristics of applications. They are facilitaveith
three main classes of tools: tracing tools, capable of captu
ing and recording all message events at the cost of high
storage requirements; profiling tools that provide perfor-
mance summaries trading off detailed level for low storage
and runtime overhead; and communication and I/O kernels
that eliminate computation and retain only communication
and 1/0 behavior. Although application kernels are designe
to capture the exact application behavior, it is difficult to
keep these kernels up-to-date since the applications con-

ratantly evolve over time. Application traces, in contrast,

can be readily generated by re-execution of instrumented
application, to keep up with a changing code base. This
g1akes application traces a preferred vehicle for perfooman
analysis of parallel applications in practice.

The combination of job scale and application complexity,

owever, creates unique challenges for parallel tracintpto

R

©n one end of the spectrum, traditional tracing tools (sich a

Vampir [d]) record all events sequentially for each patalle
process. For large application runs on leadership-class su
percomputers, this approach generates unmanageable trace
file sizes, introducing prohibitive overheadgy., for copying
trace files from temporary to permanent storage, hitting the
maximum storage limit, and even the need for a cluster plus
another parallelized tool to perform trace analySis [2].thmn
other end of the spectrum, tools that only report statiktica
information (such as mpif][3]) may fail to deliver the level
of detail needed in performance analysis or debugging.
On-the-fly trace compressiofil [4]11[5] provides lossless



tracingand dramatically reduced trace file sizes, and it hasevents with comparable timings and communication end-
recently been extended to conduct multi-level I/O tracllg [ points. Resulting information can be useful in identifying
in addition to capturing communication calls. However, bottlenecks and also the communication pattern of a partic-
effective compression builds on the homogeneous behaviarlar application.
across processes (inter-node compression) and repetitive\We evaluated our approach with the Parallel Ocean Pro-
behavior within a process (intra-node compression). Withgram (POP) and two benchmarks from the NAS parallel
complex, irregular, or self-adjusting applications, s  benchmark suite. POP is both computational and 1/O inten-
sumptions do not hold and compression fails due to missive and thus a representative application to evaluate our
matches between traced events. tool. Our results provide one to two orders of magnitude
In this work, we propose Scala-H-Trace, a novel approaclsmaller trace files than the previous approach. We also
to collect concise traces for applications exhibitingn-  evaluated our replay tool by replaying the histogram-based
SPMD behavior by using (1) distogram-based statistical traces. The replay time only deviated 12% to 15% from
application parameter compression, and (2) a Weightethe original application’s time in most cases, even for most
Longest Common Subsequence (WLCS) based inter-nodaggressively merged histogram-based traces.
event matching algorithm. In other words, while past ap- In a nutshell, we made the following contributions:
proaches proved effective for the easier problems of trac- « We proposed a WLCS-based inter-node event matching
ing SPMD codes, this work focuses on the much harder  algorithm improving the inter-node trace compression
problems of tracing non-SPMD codes. Scala-H-Trace is  for programs that exhibit non-SPMD behavior.
motivated by the tradeoff between exact details and manage- « We designed a histogram-based statistical tracing ap-

ability of trace file size. Although having exact detailsg®el proach that features more aggressive trace compression
in root cause analysis, lossless tracing becomes incggsin based on a user-defined precision level that drives both
unaffordable on ultra-scale machines. compression efficiency and trace accuracy.

Scala-H-Trace follows a lossy philosophy where most of « We provided a distributed approach to replay statistical
the advantages of the lossless approaches over profiling are traces that does not require back-channel communica-
preserved. Like the lossless approaches, Scala-H-Trace is tion to preserve causal event ordering for correctness.
able to trace a parallel application at the granularity of
every single event. It preserves the temporal ordering of
events as well as the timing information so that the “big ScaldlO]Trace [4], [3], [6] is a publicly available parallel
picture” of an application’s communication and 1/O behavio application tracing library. It uses the MPI Profiling layer
is captured. Unlike traditional approaches, Scala-H-&rac(PMPI) [{] to intercept MPI calls and to collect commu-
utilizes statistical methods to record application parmmse hication and, optionally, parallel I/O traces. It implenten
such as loop iteration count, message volume, and even tifeset of sophisticated trace compression algorithms so that
source/destination values of point-to-point communarati Only a single, concise, and lossless trace file is generated
events. A unique feature of Scala-H-Trace is that it enablefr any large-scale parallel application. In this sectior,
the user to set merge precision level during trace collection. briefly introduce the techniques used in S@&4rrace to
This user-defined value drives the compression efficiency agllow a later comparison with Scala-H-Trace.
well as th_e trace precision. If the trace pre<_:isi(_)n fallobel A. Trace Compression
the specified threshold, exact event recording is used $o tha 3
the trace fidelity is guaranteed. The size of such a trace file ScaldlO]Trace performs two types of compressianira-
then becomes a function of the desired merge precision level?de @ndinter-node. The former exploits the repetitive na-
which can be tuned to obtain a manageable size while rdure of timestep s_lmulatlon in paralle_l sc!ent|f|c applloa's.
taining trace artifacts suitable for performance analy@isr  1he latter exploits the homogeneity in behavior among
histogram-based approach also reduces the tracing oeerhedifferent processes of the SPMD codes.

as the time taken to compress smaller histogram-basedtrace At the intra-node level, loop compression is performed on-
is considerably less than the traditional lossless traces. the-fly. Repetitive events in different iterations of loog®

Histogram-based tracing creates new challenges for accgO/lected as Regular Section Descriptors (RSDs) [8]. Power
rate replay of the traced events. To ensure the correctne§oPS (PRSDs) are used to represent RSD events in nested

of the captured trace and to reproduce the communicatiol?®PS [9]- Consider the following code snippet:
for( i =0; i <10; i++) {

Il. BACKGROUND

and /0O behavior, we designed a novel replay facility. The for( j = 0; j < 100; j++) {
new replay tool replays the lossless tradés [5] or well as MPl I recv(LEFT, ...);
lossy ones. For the latter, our tool employs a distributed, MPI _I send(RIGHT, ...);
orchestrated and deterministic replay scheme. Our goal in MPI _Waitall(...);

the replay of histogram-based traces is not to capture exact

}
original events but rather the existence of a sequence of } WPI_All reduce(...);



Trace compression results in the following tuples: POP performs ocean simulation for multiple time steps.
RSD1{100, MPLlrecv, MPLIsend, MPlWaitall} rep- Each time step performs a set of computations and com-
resenting 100 iterations of MPkecv, MPl Isend and munications of an inner loop in multiple iterations. Due to
MPI_Waitall in the inner loop, PRSD1:{10, RSD1, different data-dependent convergence points in the compu-
MPI_Allreduce} denoting 10 iterations of RSD1 followed tation across different timesteps, the number of inner loop
by MPI_Allreduce in the outermost loop. The algorithm usesiterations varies from timestep to timestep. Even though
the calling context of events to match repetitious behaviorall MPI events originate from the same calling sequence
This ensures that identical MPI functions originating from (call stack), varying loop iteration counts in each timpste
different call paths are not compressed together. inhibit intra-node compression and thus negatively impact
In typical parallel applications, parallel processesdwll inter-node compression across all nodes. This behavior can
the same communication pattern but have different endalso be observed in many Adaptive Mesh Refinement (AMR)
points as a result of communication with neighboring nodesapplications in which the input set is dynamically rebaksthc
ScaldlO]Trace captures the similarities in communicationon a periodic basis.
patterns by utilizing a unique location-independent enmupd To address these problems, we propose a novel method
technique to represent communication end-points for interof tracing. We promote histogram-based trace information
node compression. The inter-node compression is performedr a predefined user-tunable merge precision level to obtai
along a radix tree among all nodes. The final compresseligher compression rates of trace events — at the expense of
trace is generated at the root nodeanklist is used to accuracy. Consider the following 3 scenarios: (1) If theruse
represent the task rank information of the participatindes  sets the merge precision level to 100%, then only events
of MPI events that are merged across multiple nodes. Awvith perfectly matching function parameters are merged.
topology-aware encoding technique is designed to keep th@) If the user sets the merge precision level to 95%,

ranklist representation concise and scalable. then events with non-matching function parameters will be
_ merged if and only if all pairs of parameters differ by no
B. Time Preservation more than 5%. Should any pair of parameters exceed the

Another important feature of Scél®|Trace is the time 5% threshold, we fall back to lossless tracing. (3) If theruse
preservation of captured traces. Instead of recordinglateso sets the merge precision level to 0%, then events with non-
timestamps, the tool records delta time of computatiormatching function parameters are also merged and the non-
durations between adjacent communication calls. Duringnatching parameters are collected in histogram bins. Note
RSD formation and inter-node compression, delta timeghat a merge precision level of 0% does not mean that the
are compressed with histograms to concisely represent thentire meaningful information is lost. Instead, the stitid
distribution of the recorded timing values. More detailsfunction parameters collected in histogram bins still capt
on collecting statistical timing information are provided the overall behavior of the application. Depending on user

elsewherel[]5]. needs, the smallest traces with high application reserblan
collected using a 0% merge precision level may be much
C. Timed Replay more useful than unmanageably large trace files. In this

ScalaReplay is a replay engine for S¢ETrace traces. section, we explain what trace information is collected
It is a parallel program that runs at the node size of theas histogram and discuss possible tradeoffs in collecting
input trace and issues MPI and /O calls according to thestatistical information versus non-lossy information.
exact parameter values recorded in the trace, yet witheut th . .
actual message payloads/file content. To capture the gaitentA Histogram Construction
impact of computation on communication performancé [10], Our approach uses histograms to collect probabilistic
ScalaReplay simulates the computational phases with timeiiformation on varying application parameters at multiple
delays between trace events based on recorded delta timdevels in the trace. Histogram-based collection employs a
technique to collect statistical information in dynamigal
balanced bins. The online balancing algorithm equalizes

Noeth et al. [4] provide trace compression techniquesthe number of items per bin while adjusting their value
resulting in an almost constant sized trace file or sublinearange constraints. We provide an option to set an interval
increases in trace file size with strong scaling (increasingfter which bins are adjusted. Two bins with the lowest
number of nodes). Yet, these results only hold for SPMD-requencies are combined and the bin with maximum fre-
style benchmarks. For production size scientific appliceti quency is split into two bins. We further store auxiliary
with non-SPMD patterns, such as the Parallel Ocean Pranformation for each bin, such as minimum/maximum/aver-
gram (POP)[[11], the inter-node compression technique magge/variance/frequency, and maximum/minimum values over
fail to obtain a near-constant sized trace file with incnegsi the entire value range (all bins) and the node ranks assolciat
number of nodes. with those. This provides statistical distribution propes

IIl. HISTOGRAM-BASED TRACE COLLECTION



and outlier information, which can be used during replay oracross nodes as well. With inter-node event compression,
by performance analysis tools to enable root cause detectiocompressed traces from different nodes are merged together

We have designed our system in a way to collect exacin applications with non-SPMD behavior, loops created
trace information as much as possible. Our compressioduring intra-node compression can have matching events
algorithm attempts to match events originating from theacross nodes, but fail to compress across nodes due to
same call stack. It compresses events only if all functiora mismatch in the loop iteration count. This prevents the
parameters match. Histogram collection is triggered onlyentire loop from being merged, increasing the trace file size
if there is a mismatch in function parameters or in thelinearly with the number of nodes. For the same example in
loop information. In such cases, the difference between twdrigure[1, assuming different nodes take different number of
values is checked against the user specified merge precisidterations to converge, the final trace is stylized as fodow
level. If the difference is within the target precision rang Nogeéi Esggii {28’ Sggii :ggl), : recv, geng: xl ::}

H ez: : : recv, sen |

events are me_rged and the non-matching parameters akgde& PRSDL.- ESOZ RSDL- <68: | recv: Send:V\ai t>§
recorded in a histogram from there on. If the differencesfall

out of the target precision range, exact event recordingstak .S.ir.1ce the per-node traces are not compressed but concate-
place and failures in compression may happen.

nated sequentially in the final trace — due to the mismatch-
B. Iteration Count Histogram ing iterationh countls — ttr:e tr?ce dsize is not scalable with
. . respect to the total number of nodes.

The loop 'te“'?‘“on count Qenoted by PRSDs can b_e Histogram-based trace collection ensures that events are
collected as a hlstogr_am. This er!abl_e_s bettef compressi ays merged both within and across nodes, despite varying
of rep_eatmg event_s in many scientific applications thatiteration counts. Hence, the resulting trace will have qrst
therW|se would fail to compress due t.o data. depen.denpRSD for the entire time-step calculation representinthall
cies. Although the exact iteration count is lost in the f'nalnodes. In addition, outliers that converge much slowerh suc

trace, the number of loop iterations directly depends on th%‘s Node3, will be captured in a particular bin so that root
computation, which, in turn, varies with different inputse cause ana{Iysis becomes possible

Hence, collecting statistical loop iteration counts onbsh
a minor impact in capturing the communication behaviorC. Function Parameter Histogram

of the application. The main advantage of this approach is Apart from collecting loop iteration counts, MPI function

the ab|!£|ty o iblta'n a tconmse ltlractg fllethb); aItIﬁwmg a smaIII arameters, such as Send/Recv volume, tag and source/des-
percentage of lossy trace cofiection that Otherwise WollGi,ation ranks, can also be recorded in histograms. The
have resulted in a trace file of unmanageable size.

for( i = 0; i < 50; i++ ) Send/Recv data volume is important to capture the net-
whil e( !converged() ) { work load. Source/destination ranks of the point-to-point
do_cal cul ation(); communication operations define the communication pattern
MPl _Irecv(...); and are thus critical for performance optimization and task
w: —\?\Zi”?g' e g mapping analysis. However, in applications with excessive

} - R data dependencies and non-SPMD behavior, the Send/Recv

volumes and end-point patterns often vary across different
hetime-steps and across nodes. To reduce compression fail-
ures caused by small deviations in communication param-

while loop takes the same number of iterations to converg&'€rs. the traditional (lossless) approach records tepest
in each time-step, the resulting PRSD will be of the forminconsistent parameter values in a vector, which is further

PRSD1{50, RSD%, where RSD1 represents the inméiile associated with a ranklist for inter-node compression. As a
loop with ;\API Ire(’:v MPI Send. and MPMWait as the €Xample, the trace snippet below shows the vector represen-

loop body. However, due to mismatching convergence pointi&tion of theCOUNT parameter of an MPBend called by

; A ; ; : 10 nodes:
across different time-steps, the strict match on iteratmmt COUNT: (90B, 92B, 87B)[ranks: 2, 7, 8]

required by lossless compression will lead to traces such a . .
RSDL: <39, MPl_Irecv, MPI_Send, NPI_\it> m’;;ﬁ: Ejgg' 238, ggg“ggtz; L5, % o]
RSD2: <40, MPI_Irecv, MPI_Send, MPI_Vait> ’ ’ ’ R

Figure 1. Loop with Convergence Check
Consider the code snippet shown in Figlide 1. If t
iteration count matches across time-steps, the inner

o Although this compression results in a more concise rep-
RSD49: <38, MPI Irecv, MPI_Send, MPI_\ait> resentation than its uncompressed equivalent, it stifiessif
RSD50: <42, MPI _lrecv, MPI_Send, MPI_Wait>, from increases in the trace size proportional to the number
Here, the expected PRSD is not formed due to mismatchingf timesteps and nodes, especially when no regularity for
RSDs across time steps. As a result, the per-node trace sizenklists could be deduced.

is non-scalable with respect to the number of time-steps. Using histograms to collect data volume allows better
The same problem leads to cascading compression failuremmpression of repeating events originating from the same



call stack. For this example, let histograms have bins othe receiver will perform a communication operation with
values around 90 bytes and 40 bytes along with theimatching message volume. To achieve this, we designed a
frequencies. In addition to binning data volume, we alsofully distributed algorithm. At initialization, all nodeselect
collect participating ranks in a bitmap and encode it inthe same random seed. During replay, all nodes use the same
the trace file. This provides information on exact valuessequence of random numbers to interpret each histogram-
that is missing from the histograms and aids post-mortemecorded parameter so that all nodes agree on the random
analysis tools. In the above example, an analysis tool mayalue upon each selection of a replay parameter within
choose data volume of either around 90 bytes or 40 bytethe range of 0 and the total number of elements in the
according to the frequency and bitmap information, whilehistogram. Nonetheless, a given node issues MPI calls only
volumes other than these are excluded from the pseuddf it is a participant of the recorded events. In this way, no

random selection. coordination via back-channel communication is required
and the communication overhead that would otherwise be
IV. DETERMINISTIC REPLAY required to coordinate random parameter value selection is

While histogram-based trace collection is powerful inavoided.
compressing irregular or dynamically changing events, the
collected traces themselves create challenges for reywjayi B. Replay the Histogram-recorded Point-to-Point Messages
and subsequent performance analysis. Since Scala-H-Tracep unique challenge for our Scala-H-Trace replay al-
collects statistical values for communication volumestag gorithm is the replay of the point-to-point communica-
and end-points, the conventional ScalaTrace replay desigiion when the source/destination ranks are recorded with
for lossless traces, which takes an independent, uncoordiistograms. Conventional ScalaTrace replay design suffer
nated approach among nodes, can lead to potential deadlockgm deadlock problems under such scenario. Consider

due to stafistical uncertainty, or may fail to re-create they histogram-recorded point-to-point communication event
original communication or I/O pattern with reasonable prox petween a sendetl and a receiveR1:

imity. Hence, the core challenge of histogram-based replagsbi: <MPl _Send, Range: { R1- X, . ., Rl+x} >[ r ank: S1]
is to ensure that events are issued in a deterministic mann&D2: <MPI _Recv, Range: { S1-y, . ., S1+y}>[rank: R1]
across nodes and with coordinated parameter value sele@ithout the coordinated random parameter value selection,
tions for common communication end-points, data volumethe sending nod&l may randomly choose nod® (R1—
etc., of sends and receives. X < R2 < R1+Xx) as the destination, while the receiving node
Before we discuss the design of our new Scala-H-Tracé&kl may randomly choos& (S1-y < 2 < Sl+YVY) as the
replay tool, we first review the conventional design of rgpla source. As a result, this point-to-point communicationl wil
for lossless traces in ScalaTradé [4]. For lossless tracesleadlock because the send and receive operations (or the
all participating nodes parse the trace file amlly act on  corresponding wait operations) cannot proceed due to end-
events if the current node is a member of the participant ~ point mismatch.
list. Then all nodes reissue MPI events one by one by This problem is addressed with our Scala-H-Trace re-
identifying loops using the PRSD information and extragtin play design by always coordinating the random parameter
individual MPI function parameters from the recorded trace value selection across nodes and generating receive oper-
This replay tool also simulates the computation time byations on-the-fly. During the random selection of replay
sleeping according to the recorded delta times. This essur@arameters, end-points of MEBend/MPlIsend events are
that the time-sensitive performance characteristicsh @&  selected. Upon encountering a send event, once a node
network and 1/0O contention, and the original applicationidentifies itself as a receiver, the receiver node issues a
runtime are preserved. In addition, the replay tool alsp$iel receive call (MPlIrecv) instead of a send. Hence, all receive
to verify the correctness of the trace. By design, it ensuresommunication events like MPRecv and MPllrecv are
absence of deadlocks if the input trace is deadlock-free. ignored. Since a particular receiver can also be a sender,
only MPI_Irecv calls are internally issued followed by
A. Scala-H-Trace Replay an internal MPIWait call. Such internal MPMWait calls
With the histogram-based trace, the existing parallel reare issued last, after all ranks have been parsed and all
play functionality requires a complete overhaul to copéwit MPI_Send/MPlIsend/MPlIrecv calls have been issued.
statistical data instead of precise data. In our Scala#tdr Any MPI_Wait/MPI_Waitall for receive operations in the
approach, all participating nodes parse the entire traee filoriginal recorded trace are subsequently ignored (wait op-
during replay. In contrast to ScalaTraca] nodes read  erations for non-blocking sends are preserved). Hence, for
and interpret all MPI events. We ensure that the trace isthe same example above, RSD2 is ignored during replay. As-
interpreted in such a way that all nodes will agree on eaclsuming nodesl randomly choose’3 (R1—x < R3 < R1+X)
specific random value selected from each histogram in thas the destination, because of the coordinated parameter
trace. This guarantees that, for example, the sender andlue selection, nod&3 identifies itself as the receiver,



and a corresponding receive fro8i is therefore posted. trace merging technique. This algorithm traverses trades o
Again, the histogram-based tracing and probabilisticagpl two nodes,T; and Ty, to identify the matching event pairs.
inevitably involve the tradeoff between accuracy and effi-Stand-alone events are compared by their MPI parameter
ciency. In this example, the Scala-H-Trace replay tool carvalues with the functioPARAM_MATCH. If two events start
only approximately reproduce the original communicationstructurally identical loop nests, i.e., loop nests witlualq
pattern. depth and equal iteration counts at each nest level, the func
We further addressed replay challenges due to collectivetion MATCH_LOOP is called. MATCH_LOOP then matches
via event reordering and proved that deterministic replaythe loop bodies at each level starting from the innermost
after reordering is deadlock free. Due to space constraintsiest and recursively call itself if new matching loop heads
this work is beyond the scope of this paper][12]. are found. When a pair of matching events is identified,
the preceding unmatched sequences are sequentially linked
by DO_MERGE. Since we forward the cursors for both input
Beyond the histogram-based tracing technique, we havgequences when a match is found, this algorithm, in practice

also designed a novel inter-node trace compression aigorit has a complexity 0O(n), wheren is the length of the input
to fU”y exploit the SPMD nature of the scientific codes. traces given that two input traces are similar.

While the histogram-based approach focuses on improvin
the compression of the application parameters, includieg t

MPI parameters and the loop iteration count, the inter-nodg
compression algorithm discussed in this section aims at an
even higher level, namely the compression of two sequences: procedure MATCH_TRACE(Ty, Ty)
of events, which is not addressed by the histogram-based ap2:  for iterl < Ty.head, Ty tail do

V. INTER-NODE TRACE COMPRESSION

%Igorithm 1 Recursive Trace Matching Algorithm

recondition: Ty and T,: input per node traces
ostcondition: T; and Ty: recursively merged trace

proach. Note that, although they solve orthogonal probjems 3 for iter2 « Tp.head, To.tail do
inter-node compression actually benefits from the histogra ' i 't;roiﬂd :t(;e(rjzp(?tt;r{ |?t(;?;|czlelot?]gfn§:§§n
based approach as parameter matching is accomplished by else - ’ + GepRoL-
histogram merging (instead of requiring exact parameter7: if PARAM_MATCH(iterd, iter2)then
matches for a merge). 8: DO_MERGE(iterl, iter2)

The SPMD nature of the scientific codes causes par-95_ end if
ticipants of a parallel application to produce similar peri(l)j ende;:)(: i

node traces. E.g., if we treat a trace as a sequence of MBb.  end for

events, traces from different nodes tend to have similans: end procedure

subsequences that contains most of MPI events. In addition,

loop structures captures by PRSDs in ScalaTrace facilitaté® procedure MATCH_LOOR(loop1, loop2, depth)

compression as traces from different nodes tend to havég for flgirilu;zlg) ?gég;ak?éellgoﬁ)c}étsgi?aﬂio

similar PRSD nests. ScalaTrace originally required not jus;7. if iterl == loop1.head && iter2 == loop2.head &&
similar but ratheridentical patterns, i.e., it failed to fully PARAM_MATCH (iterd, iter2)then

exploit similarities for inter-node trace compression.#lo 18: DO_MERGE(iterl, iter2)

specifically, identical loop structures, i.e., PRSDs withri- 19 end if _ _

tical length, iteration count, and MPI event sequence weré® PARAM M,L:'CI:t(eitr(:-rl aitr::rlz)t'thgg are single events  &&
required. While this approach works well with the perfect ;. B DO_MElRGE(iterl, iter2)

SPMD-style codes, it is subject to scalability problems whe 22: end if

traces slightly diverge between nodes. For the example3: if iterl and iter2 start identical loop negteen
below, letT; be traces where each letter in a trace “string” 24 MATCH_LOORiterl, iter2, depthof_nest)
represents an MPI event and the pair of parentheses reprégj ende;:)(: i

sent the loop structures. The coarse-grained trace matchinn;.  aond for
algorithm may merge the per-node tradgsand T, to Ts. 28: if depth>1 then
Yet, an ideal compression would instead be trage 29: MATCH_LOOR(iterl, iter2, depth-1)
Ti:a(b(bch)db)a T, : a(b(beb) fb)a - degfoge dure
T;: a(b(bchb)db)(b(beb)fb)a T4 :a(b(bceb)dfb)a

Only if the inter-node trace matching algorithm does not Algorithm [ may still fail to generate the best inter-
miss the structural similarities can the probabilistic com ~ node compression because traversing two sequences with the
nication parameter compression (discussed below) be fulljouble-nested loop structure does not guarantee idemgifyi
utilized. Hence, we have designed a novel, fine-grainedteverthe longest common subsequence. As an example, consider
matching algorithm that recursively compares and merge$1 and T, below. Algorithm. will return the sequendg:
the nested loop structures. Algoritifiin 1 outlines the recers T, :abbbbb  T,:bbbbba Tz : bbbbbabbbbb
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Trace. We conducted experiments by varying the maximum
number of blocks assigned to each node.

We further utilize the CG and MG benchmarks from the
NAS Parallel Benchmark (NPB) suite of inputs sizes C
to study the efficacy of Scala-H-Trace for different types
application behavior. Both CG and MG mostly exhibit
MD behavior but differ significantly in the communica-

n pattern impacting the compression effectivenessnduri
trace collection. These two benchmarks are selected frem th
NAS benchmarks also because they were the challenging
VI. EXPERIMENTAL RESULTS cases for ScalaTrace’s lossless compression: Both were

We evaluated Scala-H-Trace in three aspects: (1) its eﬁe(;_eported to result in sub-linear increases in the traceifike s

tiveness of trace compression, (2) its statistical trapéaye or ScalaTr_aceI]4]. We have also tested. Scala-H-Trace with
feature, and (3) its trace compression sensitivity to mergéhe remaining NPB codes. They result in nearly constantly
precision level settings. Experiments (1) and (2) utilinehb sized traces. In fact, Scala—H—T_race performs at least ds we
the histogram compression approach and the WLCS-bas the original ScalaTrace, yvhlch has bee_n shown to handle
recursive inter-node compression algorithm. Most of our PB codes very well — with the exception CG and MG
experiments were conducted on Jaguar, the Cray XT4 systeFﬁhe focus of this paper).
at ORNL. Each of compute node features a 2.1 GHz quad- . .
core AMD Opteron 1354 processor and 8GB of DDR2A' Trace Compression Effectiveness
memory. The login nodes run a full-featured Linux version We collected traces based on two different compression
while the compute nodes run the Compute Node Linuxtechniques. First, the original ScalaTrace is used, in whic
microkernel. Due to unavailability of Jaguar in the final loop details and parameter values are captured losslasgdly a
experimentation phase, the MG experiments were conductadter-node trace compression is performed with the coarse-
on Jugene, an IBMBIlue Gene/P system with 73,728 computgrained matching scheme. Second, our novel histogram-
nodes and 294,912 cores, 2 GB memory per node, and tHeased trace compression featuring Scala-H-Trace is used, i
3D torus and global tree interconnection networks. which trace information is collected in histograms for egen
We analyze the efficacy of Scala-H-Trace using aand parameters that otherwise would not have compressed
production-scale application, the Parallel Ocean Progranwith the lossless trace compression, and inter-node canpre
(POP) [13], as the main challenge. The Parallel Oceasion is performed recursively. Trace file sizes are assessed
Program (POP) is an ocean circulation model developed ainder strong scaling, where we vary the number of nodes
Los Alamos National Laboratory. Our experiments exercisavhile keeping the overall problem size fixed.
a one degree grid resolution in which the problem size Figure[2 depicts the trace file size for both lossless and
is 320x384 blocks and the individual block size is 5x6 histogram-based traces when varying the number of nodes.
resulting in a total of 4096 (64x64) blocks distributed to Note that the y axis is in log scale. Since POP exhibits
individual nodes. POP exhibits non-SPMD behavior, whichnon-SPMD behavior, we observe a linear increase in the
leads to trace file size increases with the number of nodesace file size in the case of lossless trace collection up
for conventional trace tools, including ScalaTrace. POP igo 256 nodes. The trace file size then stabilizes for 512
a large-scale application with challenging communicationnodes and even declines for 1024 nodes. We identified that
patterns. There five different dominant patterns equivdten the timestep behavior becomes more regular at these levels,
five micro-benchmarks, yet in combined complexity. Hence resulting in more effective inter-node compression. But we
this application provides an opportunity to show-case theagain observed an increasing trend in the case of 2048 nodes.
effectiveness of histogram-based trace collection ofé&8ehl  For 2048 nodes and above, we could not even collect traces

Matching eventa is found before the longer subsequence
bbbbb. To solve this problem, we integrated \&ighted
Longest Common Subsequence (WLCS) algorithm into Al-
gorithm. WLCS is adapted from the claskiongest Com-
mon Subsequence (LCS) algorithm. Since the loop structures
in the trace should be treated as a whole, we enhanced LC
such that the matching loop structures are evaluated with o
weight that equal to the length of their LCS. This results in
compressindgbbbb first in the example above.
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anymore as the trace file size was growing unmanageabligiled to merge across communication groups. This caused

fast and the time taken to merge hundreds of megabytesace sizes to increases linearly with the number of nodes.

of per-node traces became prohibitive. With the histogramin contrast, with our novel fine-grained recursive approach

based approach, there is a sub-linear increase in the thace fsimilar PRSDs are merged and the trace size grows sub-

size. Moreover, histogram-based trace files are two orders dinearly, i.e., by a factor of two as the number of nodes is

magnitude smaller than the lossless traces. This consigera increased by a factor of 64.

reduction is obtained by aggressive compression of events

and their function parameters in histograms. This clearlyB. Histogram-based Trace Replay

shows the efficacy of Scala-H-Trace to collect concise trace

files even with applications exhibiting irregular behavior
Figures[B depicts trace file size for the CG benchmark

We observe an interesting trend in CG in which the trac ecorded events. For these experiments, we always set the

file size for lossless traces is consistently 50% less thaﬂqerge precision level to 0%, which is the most aggressive
that of the histogram traces up to 1024 nodes, yet sizeé f

. Y ~“Compression possible with Scala-H-Trace. More accurate
match at 2048 node. Even though lossless traces are yntlallr P P

ller than hist ‘ h ) tent | eplay may result from higher precision levels at the cost
smaller than histogram traces, there IS a consistent iserea ¢ larger traces, as will be discussed in SecfionVI-C.

't?] th? trac]:cehfllte slz€ f[or the_losTIesst case.t Int Cq?;r?ﬁt, Figure[® depicts the replay time of histogram-based trace
the size ot ‘histogram ftraces IS aimost constant wi %vents compared to that of the application’s original execu
increase in number of nodes. For lossless traces, no

tching functi ters f ts with th ion time. The compressed traces are fully forced histogram
maiching function parameters for events with the Same Cay, .o eyents where any non-matching function parameters or
stack are collected in vectors associated with a partitipar

Klist. Thi tation i ise than hi oop iterations are collected as histograms. Even withethes
rank ist. This representation is more concise than IShogr traces, we see that the replay time for traces collectedZor 3
for smaller number of nodes. With thousands of nodes, th

- . . . 1812 number of nodes are within 5% of the original execution
vgctor—partlupant .I'St pair for _each_ event has mcreaseq 'time (with the exception of replay time for 128 nodes).
size 1o wh_e_re i IS at par with histogram tface.s- UnllkeReplay time accuracy drops to 12% for 1024 and 2048
vgctor-pa_rtlupant I|_sts, histogram representation isstant odes. Due to our experiment with strong scaling for POP,
W.Ith _the_ increase in numb_er qf hodes as the number_ Othe original execution time for both 1024 and 2048 nodes
bins is fixed during the application run and even the outl|er( 30 seconds) is much lower than that for fewer nodesa0
participant rank information is absorbed as constantsris.bi seconds) so that even small deviations in absolute values
It should also be noted that the trace file size for CG is in theduring replay increase the error percentage. We conjecture
order of hundreds of kilobytes. For larger applicationswit that such deviations are unrealistic as POP for this pdaticu
a similar communication behavior as CG yet with trace ﬁle'nput does not scale beyond 512 nodes so that such short
Sizes In hundreds of megabytes, such a linear (or even su mes are unrealistic. Similarly, this problem would notoc
linear) grovvth for lossless traces may 5|mply not be scalablunder weak scaling as runtimes would not decrease with
dulf. to mtg-r&odg [netrfg];e overrlltea?s, al\ngSKAuGssedh'b't larger number of nodes. We observe a deviation of over

\gure epicts the results for M&. EXNIDIS - @ 3004 in the case of 128 nodes. We found that when the inter-
double nested 7-point stencil communication pattern in th

o ode merge fails, the RSDs for events that happen roughl
3D space. Due to the regular communication pattern an ¢ PP gnty

. . ! e same time will be recorded far apart in the trace. Since
data-independent program behavior, compressing the Mgt e new replay approach requires all nodes to interpreyever
pgrameter values of MG works well for both lossless 8NGventin the trace, these unmerged events introduce irezteas
h!stogram—based approaches. Howgver, QUg to the Sllghtlé’ynchronization, which forces some nodes to wait for other
diverged per-node program behavior within a loop, thenooles to join in a particular send event.

original inter-node compression algorithm of ScalaTrace Figure[® depicts the replay time for the CG benchmark.

In the second set of experiments, we studied the replay
effectiveness of histogram-based traces by comparing the
original application runtime with the time taken to replagt



In the majority of cases, the replay time is with 10% to sensitivity experiments for merge precision levels shoat th
15% of the original application runtime. This inaccuracy small reductions in precision can significantly reduce the
is mainly caused by the random selection of applicatioroverall trace sizes. This particularly aids productioatsc
parameters such as the iteration count. This inaccuracy isodes like POP, which otherwise cannot be feasibly traced
further magnified by the fact that the input stops scaling atvithout loss of information for thousands of nodes.
512 nodes such that even a small absolute error increases the
error percentage considerably. Again, this is a fundanhenta VII. RELATED WORK
tradeoff between accuracy and trace size. There are several tools, such as TAU|[14], Vamigir [1], Par-

The replay time for MG under strong scaling is depictedaver [15] and SCALASCA[16], that capture communication
in FigurelT. The averaged inaccuracy is 8.2%. We observe uagnd/or 1/O trace events using library instrumentation Emi
to 34.2% inaccuracy for 2,048 nodes, which is due to an exto Scala-H-Trace. But only a few employ trace compression
cessively short runtime of 3.8s with an absolute error of justechniques to control the trace file size. Many of these
1.3s. For 1,024 nodes, this decreases to 12.5% and for 5%@ols depend on zlib for compression, which compresses
to 5.3% and so on indicating that the problem is only due tdblocks of data without preserving the structure of the trace
excessively short runtimes. After discarding this outlee i.e, post-processing/analysis only becomes feasible after de
to strong scaling limitations, the replay timing accuraoy f compression. This also increases the memory requirements,
MG is high. As discussed before, with the recursive inter-effectively rendering trace analysis infeasible on comityod
node trace compression, we are able to achieve a nearfjesktops or laptops and sometimes even high-end worksta-
constant trace sizes for MG even without the histogramtions, depending on the uncompressed trace size. Unlike
based probabilistic approach. Due to the elimination of thehese techniques, ScalaTra¢é [4] compresses traces while
imprecision, the timing behavior of the trace replay highly preserving the trace structure in terms of order of evengs. A
resembles that of the original MG benchmark. a result, post-processing/analysis can be performed utitho
C. Trace Sensitivity Study Qecompression. We utilize this concept of strgcture pxeser

. ) _ing compression in Scala-H-Trace. Yet while ScalaTrace

Finally, we study the effect of varying merge precision anq any of the aforementioned tracing tools record loss-
levels on trace file sizes. This experiment serves as apgs traces with a subset or all event parameters, Scala-H-
illustration for the benefits of user—spe_cified merge pienis Trace establishes a different methodology. Parametezst ev
levels as a means to steer compression. ~ frequencies and participant lists of nodes are recorded as

Figure[d depicts the impact of varying merge precisionpistograms when lossless compressing cannot be establishe
levels on the final trace file size. We fixed the.num_ber ofwithin a user-specified merge precision level. Employing
nodes to 512 for POP and measured trace file sizes fajiatistical methods results in more concise traces even for
varying merge precision levels. We observe that even with,5,_spmD programs at the expense of loss of information.
a small decrease in the merge precision from 100% to 95%g),r replay tool uses an algorithm to issue events on-the-
the trace size reduced by more than a factor of three. Thiﬁy using the compressed traces, much like ScalaTrace.
significant reduction is due to merging events with varyingvet recorded parameters are replayed in a probabilistic

numbers of LOC(’)E iterations for the timestep in POP. manner, which creates novel challenges that are met by our
e+

g distributed approach to coordinate event replay acrosesiod

g oe08 The mpiP tool, a lightweight profiling library for MPI

@ des08 | applications, collects statistical information about Méc-

L seso7 | ] tions [3]. It collects aggregate metrics like number of MPI

g o HHH HAAAAA.. events issued by the application and average executios time
2% 2% 0% %% %0 %00 This is useful to provide high-level information on commu-

Trace Precision Level (%) nication and I/O calls. In contrast, Scala-H-Trace castatk
Figure 8. POP Trace Sensitivity for 512 nodes events in traces and employs more sophisticated histogram

The trace file size is constant up to a 70% merge precisiobins only when the need arises for applications exhibiting
level. At 60% precision, sizes drop again by almost 50%.non-SPMD behavior. Beside the histogram information, we
This second reduction has been attributed to function paramalso record outlier information associated with each bin to
eters collected as histograms — in contrast to compressiotietect communication bottlenecks and to provide a “big
failures or non-scalable vector style compression of tes-lo picture” of communication and 1/0O events in applications.
less approach. Finally, another three-fold reduction acer Kluge et al. [[4] employ pattern matching techniques sim-
sizes is observed for forced histograms (0% merge precisioitar to ours to capture POSIX 1/O calls in parallel programs.
level). At the 0% merge precision level, all non-matchingUnlike our approach, they perform post-mortem pattern
values are represented as histograms, which results in threatching only after collecting the application traces. yrhe
most concise trace possible with Scala-H-Trace. Overallfead the collected trace and create an I/O dependency graph



thereby preserving the event order to do pattern matching.3] J. Vetter and M. McCracken, “Statistical scalabilityadysis
Even though post mortem pattern matching reduces the
trace volume, this approach limits its usefulness in memory
constrained systems like the IBM BlueGene family. Without [4]
online compression, either the memory footprint increases
by holding the recorded trace or trace events are frequently

written to disk, which affects the application execution
behavior. They also do not employ pattern matching across
nodes so that a trace file per node is required. This limits

their approach in that they struggle with applicationsiz#il

ing thousands of nodes due to parallel file system cons$raint

5]

Our approach is immune to such limitations as a single [6]
trace file captures the behavior of all nodes with statiktica

information on a per-event and per-parameter basis.

[7]

Gao et al. [18] developed an event trace compression
technique that performs static analysis on the application

binary and collects loops and functions as structures. d\lon

of communication operations in distributed applicatidiis,
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2001.

M. Noeth, F. Mueller, M. Schulz, and B. de Supinski, “Sca-
latrace: Scalable compression and replay of communication
traces in high performance computinglidurnal of Parallel
Distributed Computing, vol. 69, no. 8, pp. 969-710, Aug.
20009.

P. Ratn, F. Mueller, B. R. de Supinski, and M. Schulz,
“Preserving time in large-scale communication traces,” in
International Conference on Supercomputing, Jun. 2008, pp.
46-55.

K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth, “Scalab
i/o tracing and analysis,” if\orkshop on Petascale Data
Sorage, 2009, pp. 26-31.

“MPI-2: Extensions to the message-passing
interface,” July 1997. [Online]. Available:
http://www.mpi-forum.org/docs/docs.html

] P. Havlak and K. Kennedy, “An implementation of interpro

with these structure, a path grammar is constructed on-
the-fly. Path grammars are then utilized to encode paths
taken during execution. These structures are compressefP] J. Marathe and F. Mueller, “Detecting memory performanc
individually and stored. Even the iteration count is stored

along with the compressed structure traces. This IooseIY
resembles the RSD and PRSD technique used in relatec]i

work [8], [9], [L9], [5]. But unlike Gacet al.’s work, our tool

does not require the construction of grammars for individua

0]

applications separately. Our work employs a generalizeélll]
trace compression approach based on call path stacks apﬁ]

records parameters exploiting statistical means. It ii-suf
cient to link the tool library along with the application to
collect traces. This generalization also enables comiparat

trace studies between two different applications.
VIIl. CONCLUSION

We presented the design and implementation of Scala-
Trace, which provides novel capabilities for more aggressi

(13]

Mgy

trace compression than any previous approach. Scala-H-
Trace utilizes histograms based on a user-specified merdé5]

precision level. It features a distributed approach to rdete

ministically replay statistical histogram traces wherereg

are reissued without decompressing the original trace file.
Experimental results demonstrate the ability to obtain g16]
single, near constant sized trace file, even for production-
scale scientific applications such as POP with non-SPMD
behavior. Results also show that replay time for tracedtsven 17]

are within 12%-15% of the original application runtime in
majority of the cases, even for the fully forced histograms.
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