
Probabilistic Communication and I/O Tracing with Determin istic Replay at Scale

Xing Wu∗, Karthik Vijayakumar∗, Frank Mueller∗, Xiaosong Ma∗† and Philip C. Roth†
∗Department of Computer Science, North Carolina State University, Raleigh, NC 27695-7534

†Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Abstract—With today’s petascale supercomputers, applica-
tions often exhibit low efficiency, such as poor communication
and I/O performance, that can be diagnosed by analysis tools.
However, these tools either produce extremely large trace files
that complicate performance analysis, or sacrifice accuracy to
collect high-level statistical information using crude averaging.

This work contributes Scala-H-Trace, which features more
aggressive trace compression than any previous approach,
particularly for applications that do not show strict regul arity
in SPMD behavior. Scala-H-Trace uses histograms expressing
the probabilistic distribution of arbitrary communicatio n and
I/O parameters to capture variations. Yet, where other tools
fail to scale, Scala-H-Trace guarantees trace files of near con-
stant size, even for variable communication and I/O patterns,
producing trace files orders of magnitudes smaller than using
prior approaches. We demonstrate the ability to collect traces
of applications running on thousands of processors with the
potential to scale well beyond this level. We further present
the first approach to deterministically replay such probabilistic
traces (a) without deadlocks and (b) in a manner closely
resembling the original applications.

Our results show either near constant sized traces or only
sub-linear increases in trace file sizes irrespective of thenumber
of nodes utilized. Even with the aggressively compressed
histogram-based traces, our replay times are within 12% to
15% of the runtime of original codes. Such concise traces
resembling the behavior of production-style codes closelyand
our approach of deterministic replay of probabilistic traces are
without precedence.

I. I NTRODUCTION

As supercomputers progress in scale and capability toward
exascale levels, characterization of communication and I/O
behavior is becoming increasingly difficult due to system
size and complexity. The large numbers of processors/cores,
increased aggregate memory capacity, complex intercon-
nects, and increasingly larger gap between computation
power and I/O performance create great challenges on effec-
tive and scalable ways for performance study of applications
for efficient use of system resources. Challenges exist on the
software side as well. Today, the complexity of extreme-
scale scientific applications increases rapidly. Applications

This work was supported in part by NSF grants 0237570 (CAREER),
0546301 (CAREER), 0621470, 0937908, 0429653, 0937690, 0958311 and
DOE DE-FG02-08ER25837, by the Office of Advanced Scientific Com-
puting Research (U.S. Department of Energy), a joint faculty appointment
between Oak Ridge National Laboratory (ORNL) and NC State University,
and a senior visiting scholoarship at Tsinghua University.It used resources
of the National Center for Computational Sciences at ORNL and was
performed in part at ORNL, managed by UT-Battelle, LLC underContract
No. DE-AC05-00OR22725.

often integrate multiple software components and may ex-
ercise vastly different computation/communication models.
Such codes are becoming more dynamic and diverging from
strict, regular single program, multiple data (SPMD) behav-
ior. Examples include multi-physics or coupled codes, where
partitions of nodes implement different simulation models,
work on separate datasets, or even conduct analytics tasks
such as data reduction. Such applications exhibit multiple
program, multiple data (MPMD) behavior as multiple nodes
work on multiple sections of the program. For example, in
climate simulations, some nodes simulate climate changes
over land, while other nodes work on sea models. Hence,
different modules, like land and sea, use different input data
and algorithms resulting in different communication and I/O
behavior within each module.

Many studies have investigated the communication and
I/O characteristics of applications. They are facilitatedwith
three main classes of tools: tracing tools, capable of captur-
ing and recording all message events at the cost of high
storage requirements; profiling tools that provide perfor-
mance summaries trading off detailed level for low storage
and runtime overhead; and communication and I/O kernels
that eliminate computation and retain only communication
and I/O behavior. Although application kernels are designed
to capture the exact application behavior, it is difficult to
keep these kernels up-to-date since the applications con-
stantly evolve over time. Application traces, in contrast,
can be readily generated by re-execution of instrumented
application, to keep up with a changing code base. This
makes application traces a preferred vehicle for performance
analysis of parallel applications in practice.

The combination of job scale and application complexity,
however, creates unique challenges for parallel tracing tools.
On one end of the spectrum, traditional tracing tools (such as
Vampir [1]) record all events sequentially for each parallel
process. For large application runs on leadership-class su-
percomputers, this approach generates unmanageable trace
file sizes, introducing prohibitive overheads,e.g., for copying
trace files from temporary to permanent storage, hitting the
maximum storage limit, and even the need for a cluster plus
another parallelized tool to perform trace analysis [2]. Onthe
other end of the spectrum, tools that only report statistical
information (such as mpiP [3]) may fail to deliver the level
of detail needed in performance analysis or debugging.

On-the-fly trace compression [4], [5] provides lossless

tracingand dramatically reduced trace file sizes, and it has
recently been extended to conduct multi-level I/O tracing [6]
in addition to capturing communication calls. However,
effective compression builds on the homogeneous behavior
across processes (inter-node compression) and repetitive
behavior within a process (intra-node compression). With
complex, irregular, or self-adjusting applications, suchas-
sumptions do not hold and compression fails due to mis-
matches between traced events.

In this work, we propose Scala-H-Trace, a novel approach
to collect concise traces for applications exhibitingnon-
SPMD behavior by using (1) ahistogram-based statistical
application parameter compression, and (2) a Weighted
Longest Common Subsequence (WLCS) based inter-node
event matching algorithm. In other words, while past ap-
proaches proved effective for the easier problems of trac-
ing SPMD codes, this work focuses on the much harder
problems of tracing non-SPMD codes. Scala-H-Trace is
motivated by the tradeoff between exact details and manage-
ability of trace file size. Although having exact details helps
in root cause analysis, lossless tracing becomes increasingly
unaffordable on ultra-scale machines.

Scala-H-Trace follows a lossy philosophy where most of
the advantages of the lossless approaches over profiling are
preserved. Like the lossless approaches, Scala-H-Trace is
able to trace a parallel application at the granularity of
every single event. It preserves the temporal ordering of
events as well as the timing information so that the “big
picture” of an application’s communication and I/O behavior
is captured. Unlike traditional approaches, Scala-H-Trace
utilizes statistical methods to record application parameters
such as loop iteration count, message volume, and even the
source/destination values of point-to-point communication
events. A unique feature of Scala-H-Trace is that it enables
the user to set amerge precision level during trace collection.
This user-defined value drives the compression efficiency as
well as the trace precision. If the trace precision falls below
the specified threshold, exact event recording is used so that
the trace fidelity is guaranteed. The size of such a trace file
then becomes a function of the desired merge precision level,
which can be tuned to obtain a manageable size while re-
taining trace artifacts suitable for performance analysis. Our
histogram-based approach also reduces the tracing overhead
as the time taken to compress smaller histogram-based traces
is considerably less than the traditional lossless traces.

Histogram-based tracing creates new challenges for accu-
rate replay of the traced events. To ensure the correctness
of the captured trace and to reproduce the communication
and I/O behavior, we designed a novel replay facility. The
new replay tool replays the lossless traces [5] or well as
lossy ones. For the latter, our tool employs a distributed,
orchestrated and deterministic replay scheme. Our goal in
the replay of histogram-based traces is not to capture exact
original events but rather the existence of a sequence of

events with comparable timings and communication end-
points. Resulting information can be useful in identifying
bottlenecks and also the communication pattern of a partic-
ular application.

We evaluated our approach with the Parallel Ocean Pro-
gram (POP) and two benchmarks from the NAS parallel
benchmark suite. POP is both computational and I/O inten-
sive and thus a representative application to evaluate our
tool. Our results provide one to two orders of magnitude
smaller trace files than the previous approach. We also
evaluated our replay tool by replaying the histogram-based
traces. The replay time only deviated 12% to 15% from
the original application’s time in most cases, even for most
aggressively merged histogram-based traces.

In a nutshell, we made the following contributions:
• We proposed a WLCS-based inter-node event matching

algorithm improving the inter-node trace compression
for programs that exhibit non-SPMD behavior.

• We designed a histogram-based statistical tracing ap-
proach that features more aggressive trace compression
based on a user-defined precision level that drives both
compression efficiency and trace accuracy.

• We provided a distributed approach to replay statistical
traces that does not require back-channel communica-
tion to preserve causal event ordering for correctness.

II. BACKGROUND

Scala[IO]Trace [4], [5], [6] is a publicly available parallel
application tracing library. It uses the MPI Profiling layer
(PMPI) [7] to intercept MPI calls and to collect commu-
nication and, optionally, parallel I/O traces. It implements
a set of sophisticated trace compression algorithms so that
only a single, concise, and lossless trace file is generated
for any large-scale parallel application. In this section,we
briefly introduce the techniques used in Scala[IO]Trace to
allow a later comparison with Scala-H-Trace.

A. Trace Compression

Scala[IO]Trace performs two types of compression:intra-
node and inter-node. The former exploits the repetitive na-
ture of timestep simulation in parallel scientific applications.
The latter exploits the homogeneity in behavior among
different processes of the SPMD codes.

At the intra-node level, loop compression is performed on-
the-fly. Repetitive events in different iterations of loopsare
collected as Regular Section Descriptors (RSDs) [8]. Power-
RSDs (PRSDs) are used to represent RSD events in nested
loops [9]. Consider the following code snippet:

for(i = 0; i < 10; i++) {
for(j = 0; j < 100; j++) {

MPI_Irecv(LEFT, ...);
MPI_Isend(RIGHT, ...);
MPI_Waitall(...);

}
MPI_Allreduce(...);

}

Trace compression results in the following tuples:
RSD1:{100, MPI Irecv, MPI Isend, MPI Waitall} rep-
resenting 100 iterations of MPIIrecv, MPI Isend and
MPI Waitall in the inner loop, PRSD1:{10, RSD1,
MPI Allreduce} denoting 10 iterations of RSD1 followed
by MPI Allreduce in the outermost loop. The algorithm uses
the calling context of events to match repetitious behavior.
This ensures that identical MPI functions originating from
different call paths are not compressed together.

In typical parallel applications, parallel processes follow
the same communication pattern but have different end-
points as a result of communication with neighboring nodes.
Scala[IO]Trace captures the similarities in communication
patterns by utilizing a unique location-independent encoding
technique to represent communication end-points for inter-
node compression. The inter-node compression is performed
along a radix tree among all nodes. The final compressed
trace is generated at the root node.Ranklist is used to
represent the task rank information of the participating nodes
of MPI events that are merged across multiple nodes. A
topology-aware encoding technique is designed to keep the
ranklist representation concise and scalable.

B. Time Preservation

Another important feature of Scala[IO]Trace is the time
preservation of captured traces. Instead of recording absolute
timestamps, the tool records delta time of computation
durations between adjacent communication calls. During
RSD formation and inter-node compression, delta times
are compressed with histograms to concisely represent the
distribution of the recorded timing values. More details
on collecting statistical timing information are provided
elsewhere [5].

C. Timed Replay

ScalaReplay is a replay engine for Scala[IO]Trace traces.
It is a parallel program that runs at the node size of the
input trace and issues MPI and I/O calls according to the
exact parameter values recorded in the trace, yet without the
actual message payloads/file content. To capture the potential
impact of computation on communication performance [10],
ScalaReplay simulates the computational phases with timed
delays between trace events based on recorded delta times.

III. H ISTOGRAM-BASED TRACE COLLECTION

Noeth et al. [4] provide trace compression techniques
resulting in an almost constant sized trace file or sublinear
increases in trace file size with strong scaling (increasing
number of nodes). Yet, these results only hold for SPMD-
style benchmarks. For production size scientific applications
with non-SPMD patterns, such as the Parallel Ocean Pro-
gram (POP) [11], the inter-node compression technique may
fail to obtain a near-constant sized trace file with increasing
number of nodes.

POP performs ocean simulation for multiple time steps.
Each time step performs a set of computations and com-
munications of an inner loop in multiple iterations. Due to
different data-dependent convergence points in the compu-
tation across different timesteps, the number of inner loop
iterations varies from timestep to timestep. Even though
all MPI events originate from the same calling sequence
(call stack), varying loop iteration counts in each timestep
inhibit intra-node compression and thus negatively impact
inter-node compression across all nodes. This behavior can
also be observed in many Adaptive Mesh Refinement (AMR)
applications in which the input set is dynamically rebalanced
on a periodic basis.

To address these problems, we propose a novel method
of tracing. We promote histogram-based trace information
for a predefined user-tunable merge precision level to obtain
higher compression rates of trace events — at the expense of
accuracy. Consider the following 3 scenarios: (1) If the user
sets the merge precision level to 100%, then only events
with perfectly matching function parameters are merged.
(2) If the user sets the merge precision level to 95%,
then events with non-matching function parameters will be
merged if and only if all pairs of parameters differ by no
more than 5%. Should any pair of parameters exceed the
5% threshold, we fall back to lossless tracing. (3) If the user
sets the merge precision level to 0%, then events with non-
matching function parameters are also merged and the non-
matching parameters are collected in histogram bins. Note
that a merge precision level of 0% does not mean that the
entire meaningful information is lost. Instead, the statistical
function parameters collected in histogram bins still capture
the overall behavior of the application. Depending on user
needs, the smallest traces with high application resemblance
collected using a 0% merge precision level may be much
more useful than unmanageably large trace files. In this
section, we explain what trace information is collected
as histogram and discuss possible tradeoffs in collecting
statistical information versus non-lossy information.

A. Histogram Construction

Our approach uses histograms to collect probabilistic
information on varying application parameters at multiple
levels in the trace. Histogram-based collection employs a
technique to collect statistical information in dynamically
balanced bins. The online balancing algorithm equalizes
the number of items per bin while adjusting their value
range constraints. We provide an option to set an interval
after which bins are adjusted. Two bins with the lowest
frequencies are combined and the bin with maximum fre-
quency is split into two bins. We further store auxiliary
information for each bin, such as minimum/maximum/aver-
age/variance/frequency, and maximum/minimum values over
the entire value range (all bins) and the node ranks associated
with those. This provides statistical distribution properties

and outlier information, which can be used during replay or
by performance analysis tools to enable root cause detection.

We have designed our system in a way to collect exact
trace information as much as possible. Our compression
algorithm attempts to match events originating from the
same call stack. It compresses events only if all function
parameters match. Histogram collection is triggered only
if there is a mismatch in function parameters or in the
loop information. In such cases, the difference between two
values is checked against the user specified merge precision
level. If the difference is within the target precision range,
events are merged and the non-matching parameters are
recorded in a histogram from there on. If the difference falls
out of the target precision range, exact event recording takes
place and failures in compression may happen.

B. Iteration Count Histogram

The loop iteration count denoted by PRSDs can be
collected as a histogram. This enables better compression
of repeating events in many scientific applications that
otherwise would fail to compress due to data dependen-
cies. Although the exact iteration count is lost in the final
trace, the number of loop iterations directly depends on the
computation, which, in turn, varies with different input sets.
Hence, collecting statistical loop iteration counts only has
a minor impact in capturing the communication behavior
of the application. The main advantage of this approach is
the ability to obtain a concise trace file by allowing a small
percentage of lossy trace collection that otherwise would
have resulted in a trace file of unmanageable size.

for(i = 0; i < 50; i++)
while(!converged()) {

do_calculation();
MPI_Irecv(...);
MPI_Send(...);
MPI_Wait(...);

}

Figure 1. Loop with Convergence Check

Consider the code snippet shown in Figure 1. If the
iteration count matches across time-steps,i.e., the inner
while loop takes the same number of iterations to converge
in each time-step, the resulting PRSD will be of the form
PRSD1:{50, RSD1}, where RSD1 represents the innerwhile
loop with MPI Irecv, MPI Send, and MPIWait as the
loop body. However, due to mismatching convergence points
across different time-steps, the strict match on iterationcount
required by lossless compression will lead to traces such as:
RSD1: <39, MPI_Irecv, MPI_Send, MPI_Wait>
RSD2: <40, MPI_Irecv, MPI_Send, MPI_Wait>
...
RSD49: <38, MPI_Irecv, MPI_Send, MPI_Wait>
RSD50: <42, MPI_Irecv, MPI_Send, MPI_Wait>,

Here, the expected PRSD is not formed due to mismatching
RSDs across time steps. As a result, the per-node trace size
is non-scalable with respect to the number of time-steps.
The same problem leads to cascading compression failures

across nodes as well. With inter-node event compression,
compressed traces from different nodes are merged together.
In applications with non-SPMD behavior, loops created
during intra-node compression can have matching events
across nodes, but fail to compress across nodes due to
a mismatch in the loop iteration count. This prevents the
entire loop from being merged, increasing the trace file size
linearly with the number of nodes. For the same example in
Figure 1, assuming different nodes take different number of
iterations to converge, the final trace is stylized as follows:
Node1: PRSD1:{50, RSD1:<41,Irecv,Send,Wait>}
Node2: PRSD1:{50, RSD1:<39,Irecv,Send,Wait>}
Node3: PRSD1:{50, RSD1:<68,Irecv,Send,Wait>}
...

Since the per-node traces are not compressed but concate-
nated sequentially in the final trace — due to the mismatch-
ing iteration counts — the trace size is not scalable with
respect to the total number of nodes.

Histogram-based trace collection ensures that events are
always merged both within and across nodes, despite varying
iteration counts. Hence, the resulting trace will have justone
PRSD for the entire time-step calculation representing allthe
nodes. In addition, outliers that converge much slower, such
as Node3, will be captured in a particular bin so that root
cause analysis becomes possible.

C. Function Parameter Histogram

Apart from collecting loop iteration counts, MPI function
parameters, such as Send/Recv volume, tag and source/des-
tination ranks, can also be recorded in histograms. The
Send/Recv data volume is important to capture the net-
work load. Source/destination ranks of the point-to-point
communication operations define the communication pattern
and are thus critical for performance optimization and task
mapping analysis. However, in applications with excessive
data dependencies and non-SPMD behavior, the Send/Recv
volumes and end-point patterns often vary across different
time-steps and across nodes. To reduce compression fail-
ures caused by small deviations in communication param-
eters, the traditional (lossless) approach records timestep-
inconsistent parameter values in a vector, which is further
associated with a ranklist for inter-node compression. As an
example, the trace snippet below shows the vector represen-
tation of theCOUNT parameter of an MPISend called by
10 nodes:
COUNT: (90B, 92B, 87B)[ranks: 2, 7, 8]
COUNT: (89B, 93B, 90B)[ranks: 1, 5, 6, 9]
COUNT: (43B, 41B, 38B)[ranks: 0, 3, 4]

Although this compression results in a more concise rep-
resentation than its uncompressed equivalent, it still suffers
from increases in the trace size proportional to the number
of timesteps and nodes, especially when no regularity for
ranklists could be deduced.

Using histograms to collect data volume allows better
compression of repeating events originating from the same

call stack. For this example, let histograms have bins of
values around 90 bytes and 40 bytes along with their
frequencies. In addition to binning data volume, we also
collect participating ranks in a bitmap and encode it in
the trace file. This provides information on exact values
that is missing from the histograms and aids post-mortem
analysis tools. In the above example, an analysis tool may
choose data volume of either around 90 bytes or 40 bytes
according to the frequency and bitmap information, while
volumes other than these are excluded from the pseudo-
random selection.

IV. D ETERMINISTIC REPLAY

While histogram-based trace collection is powerful in
compressing irregular or dynamically changing events, the
collected traces themselves create challenges for replaying
and subsequent performance analysis. Since Scala-H-Trace
collects statistical values for communication volume, tags,
and end-points, the conventional ScalaTrace replay design
for lossless traces, which takes an independent, uncoordi-
nated approach among nodes, can lead to potential deadlocks
due to statistical uncertainty, or may fail to re-create the
original communication or I/O pattern with reasonable prox-
imity. Hence, the core challenge of histogram-based replay
is to ensure that events are issued in a deterministic manner
across nodes and with coordinated parameter value selec-
tions for common communication end-points, data volume,
etc., of sends and receives.

Before we discuss the design of our new Scala-H-Trace
replay tool, we first review the conventional design of replay
for lossless traces in ScalaTrace [4]. For lossless traces,
all participating nodes parse the trace file andonly act on
events if the current node is a member of the participant
list. Then all nodes reissue MPI events one by one by
identifying loops using the PRSD information and extracting
individual MPI function parameters from the recorded trace.
This replay tool also simulates the computation time by
sleeping according to the recorded delta times. This ensures
that the time-sensitive performance characteristics, such as
network and I/O contention, and the original application
runtime are preserved. In addition, the replay tool also helps
to verify the correctness of the trace. By design, it ensures
absence of deadlocks if the input trace is deadlock-free.

A. Scala-H-Trace Replay

With the histogram-based trace, the existing parallel re-
play functionality requires a complete overhaul to cope with
statistical data instead of precise data. In our Scala-H-Trace
approach, all participating nodes parse the entire trace file
during replay. In contrast to ScalaTrace,all nodes read
and interpret all MPI events. We ensure that the trace is
interpreted in such a way that all nodes will agree on each
specific random value selected from each histogram in the
trace. This guarantees that, for example, the sender and

the receiver will perform a communication operation with
matching message volume. To achieve this, we designed a
fully distributed algorithm. At initialization, all nodesselect
the same random seed. During replay, all nodes use the same
sequence of random numbers to interpret each histogram-
recorded parameter so that all nodes agree on the random
value upon each selection of a replay parameter within
the range of 0 and the total number of elements in the
histogram. Nonetheless, a given node issues MPI calls only
if it is a participant of the recorded events. In this way, no
coordination via back-channel communication is required
and the communication overhead that would otherwise be
required to coordinate random parameter value selection is
avoided.

B. Replay the Histogram-recorded Point-to-Point Messages

A unique challenge for our Scala-H-Trace replay al-
gorithm is the replay of the point-to-point communica-
tion when the source/destination ranks are recorded with
histograms. Conventional ScalaTrace replay design suffers
from deadlock problems under such scenario. Consider
a histogram-recorded point-to-point communication event
between a senderS1 and a receiverR1:
RSD1:<MPI_Send,Range:{R1-x,..,R1+x}>[rank:S1]
RSD2:<MPI_Recv,Range:{S1-y,..,S1+y}>[rank:R1]

Without the coordinated random parameter value selection,
the sending nodeS1 may randomly choose nodeR2 (R1−
x < R2< R1+x) as the destination, while the receiving node
R1 may randomly chooseS2 (S1− y < S2 < S1+ y) as the
source. As a result, this point-to-point communication will
deadlock because the send and receive operations (or the
corresponding wait operations) cannot proceed due to end-
point mismatch.

This problem is addressed with our Scala-H-Trace re-
play design by always coordinating the random parameter
value selection across nodes and generating receive oper-
ations on-the-fly. During the random selection of replay
parameters, end-points of MPISend/MPI Isend events are
selected. Upon encountering a send event, once a node
identifies itself as a receiver, the receiver node issues a
receive call (MPIIrecv) instead of a send. Hence, all receive
communication events like MPIRecv and MPIIrecv are
ignored. Since a particular receiver can also be a sender,
only MPI Irecv calls are internally issued followed by
an internal MPIWait call. Such internal MPIWait calls
are issued last, after all ranks have been parsed and all
MPI Send/MPI Isend/MPI Irecv calls have been issued.
Any MPI Wait/MPI Waitall for receive operations in the
original recorded trace are subsequently ignored (wait op-
erations for non-blocking sends are preserved). Hence, for
the same example above, RSD2 is ignored during replay. As-
suming nodeS1 randomly choosesR3 (R1−x < R3< R1+x)
as the destination, because of the coordinated parameter
value selection, nodeR3 identifies itself as the receiver,

and a corresponding receive fromS1 is therefore posted.
Again, the histogram-based tracing and probabilistic replay
inevitably involve the tradeoff between accuracy and effi-
ciency. In this example, the Scala-H-Trace replay tool can
only approximately reproduce the original communication
pattern.

We further addressed replay challenges due to collectives
via event reordering and proved that deterministic replay
after reordering is deadlock free. Due to space constraints,
this work is beyond the scope of this paper [12].

V. I NTER-NODE TRACE COMPRESSION

Beyond the histogram-based tracing technique, we have
also designed a novel inter-node trace compression algorithm
to fully exploit the SPMD nature of the scientific codes.
While the histogram-based approach focuses on improving
the compression of the application parameters, including the
MPI parameters and the loop iteration count, the inter-node
compression algorithm discussed in this section aims at an
even higher level, namely the compression of two sequences
of events, which is not addressed by the histogram-based ap-
proach. Note that, although they solve orthogonal problems,
inter-node compression actually benefits from the histogram-
based approach as parameter matching is accomplished by
histogram merging (instead of requiring exact parameter
matches for a merge).

The SPMD nature of the scientific codes causes par-
ticipants of a parallel application to produce similar per
node traces. E.g., if we treat a trace as a sequence of MPI
events, traces from different nodes tend to have similar
subsequences that contains most of MPI events. In addition,
loop structures captures by PRSDs in ScalaTrace facilitate
compression as traces from different nodes tend to have
similar PRSD nests. ScalaTrace originally required not just
similar but ratheridentical patterns, i.e., it failed to fully
exploit similarities for inter-node trace compression. More
specifically, identical loop structures, i.e., PRSDs with iden-
tical length, iteration count, and MPI event sequence were
required. While this approach works well with the perfect
SPMD-style codes, it is subject to scalability problems when
traces slightly diverge between nodes. For the example
below, letTi be traces where each letter in a trace “string”
represents an MPI event and the pair of parentheses repre-
sent the loop structures. The coarse-grained trace matching
algorithm may merge the per-node tracesT1 and T2 to T3.
Yet, an ideal compression would instead be traceT4.

T1 : a(b(bcb)db)a T2 : a(b(beb) f b)a
T3 : a(b(bcb)db)(b(beb) f b)a T4 : a(b(bceb)d f b)a

Only if the inter-node trace matching algorithm does not
miss the structural similarities can the probabilistic commu-
nication parameter compression (discussed below) be fully
utilized. Hence, we have designed a novel, fine-grained event
matching algorithm that recursively compares and merges
the nested loop structures. Algorithm 1 outlines the recursive

trace merging technique. This algorithm traverses traces of
two nodes,T1 and T2, to identify the matching event pairs.
Stand-alone events are compared by their MPI parameter
values with the functionPARAM MATCH. If two events start
structurally identical loop nests, i.e., loop nests with equal
depth and equal iteration counts at each nest level, the func-
tion MATCH LOOP is called. MATCH LOOP then matches
the loop bodies at each level starting from the innermost
nest and recursively call itself if new matching loop heads
are found. When a pair of matching events is identified,
the preceding unmatched sequences are sequentially linked
by DO MERGE. Since we forward the cursors for both input
sequences when a match is found, this algorithm, in practice,
has a complexity ofO(n), wheren is the length of the input
traces given that two input traces are similar.

Algorithm 1 Recursive Trace Matching Algorithm
Precondition: T1 and T2: input per node traces
Postcondition: T1 and T2: recursively merged trace

1: procedure MATCH TRACE(T1, T1)
2: for iter1← T1.head, T1.tail do
3: for iter2← T2.head, T2.tail do
4: if iter1 and iter2 start identical loop neststhen
5: MATCH LOOP(iter1, iter2, depthof nest)
6: else
7: if PARAM MATCH(iter1, iter2) then
8: DO MERGE(iter1, iter2)
9: end if

10: end if
11: end for
12: end for
13: end procedure

14: procedure MATCH LOOP(loop1, loop2, depth)
15: for iter1← loop1.head, loop1.taildo
16: for iter2← loop2.head, loop2.taildo
17: if iter1 == loop1.head && iter2 == loop2.head &&

PARAM MATCH(iter1, iter2) then
18: DO MERGE(iter1, iter2)
19: end if
20: if iter1 and iter2 are single events &&

PARAM MATCH(iter1, iter2) then
21: DO MERGE(iter1, iter2)
22: end if
23: if iter1 and iter2 start identical loop neststhen
24: MATCH LOOP(iter1, iter2, depthof nest)
25: end if
26: end for
27: end for
28: if depth>1 then
29: MATCH LOOP(iter1, iter2, depth-1)
30: end if
31: end procedure

Algorithm 1 may still fail to generate the best inter-
node compression because traversing two sequences with the
double-nested loop structure does not guarantee identifying
the longest common subsequence. As an example, consider
T1 andT2 below. Algorithm 1 will return the sequenceT3:

T1 : abbbbb T2 : bbbbba T3 : bbbbbabbbbb

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

32 64 128
256

512
1024

2048
4096

T
ra

ce
 F

ile
 S

iz
e

(B
yt

e)

Number of Nodes

Lossless
ScalaHTrace

Figure 2. Parallel Ocean Program

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

32 64 128
256

512
1024

2048

T
ra

ce
 F

ile
 S

iz
e

(B
yt

e)

Number of Nodes

Lossless
ScalaHTrace

Figure 3. CG Benchmark

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

32 64 128
256

512
1024

2048

T
ra

ce
 F

ile
 S

iz
e

(B
yt

e)

Number of Nodes

Lossless
ScalaHTrace

Figure 4. MG Benchmark

Matching eventa is found before the longer subsequence
bbbbb. To solve this problem, we integrated aWeighted
Longest Common Subsequence (WLCS) algorithm into Al-
gorithm 1. WLCS is adapted from the classicLongest Com-
mon Subsequence (LCS) algorithm. Since the loop structures
in the trace should be treated as a whole, we enhanced LCS
such that the matching loop structures are evaluated with a
weight that equal to the length of their LCS. This results in
compressingbbbbb first in the example above.

VI. EXPERIMENTAL RESULTS

We evaluated Scala-H-Trace in three aspects: (1) its effec-
tiveness of trace compression, (2) its statistical trace replay
feature, and (3) its trace compression sensitivity to merge
precision level settings. Experiments (1) and (2) utilize both
the histogram compression approach and the WLCS-based
recursive inter-node compression algorithm. Most of our
experiments were conducted on Jaguar, the Cray XT4 system
at ORNL. Each of compute node features a 2.1 GHz quad-
core AMD Opteron 1354 processor and 8GB of DDR2
memory. The login nodes run a full-featured Linux version
while the compute nodes run the Compute Node Linux
microkernel. Due to unavailability of Jaguar in the final
experimentation phase, the MG experiments were conducted
on Jugene, an IBMBlue Gene/P system with 73,728 compute
nodes and 294,912 cores, 2 GB memory per node, and the
3D torus and global tree interconnection networks.

We analyze the efficacy of Scala-H-Trace using a
production-scale application, the Parallel Ocean Program
(POP) [13], as the main challenge. The Parallel Ocean
Program (POP) is an ocean circulation model developed at
Los Alamos National Laboratory. Our experiments exercise
a one degree grid resolution in which the problem size
is 320x384 blocks and the individual block size is 5x6
resulting in a total of 4096 (64x64) blocks distributed to
individual nodes. POP exhibits non-SPMD behavior, which
leads to trace file size increases with the number of nodes
for conventional trace tools, including ScalaTrace. POP is
a large-scale application with challenging communication
patterns. There five different dominant patterns equivalent to
five micro-benchmarks, yet in combined complexity. Hence,
this application provides an opportunity to show-case the
effectiveness of histogram-based trace collection of Scala-H-

Trace. We conducted experiments by varying the maximum
number of blocks assigned to each node.

We further utilize the CG and MG benchmarks from the
NAS Parallel Benchmark (NPB) suite of inputs sizes C
to study the efficacy of Scala-H-Trace for different types
of application behavior. Both CG and MG mostly exhibit
SPMD behavior but differ significantly in the communica-
tion pattern impacting the compression effectiveness during
trace collection. These two benchmarks are selected from the
NAS benchmarks also because they were the challenging
cases for ScalaTrace’s lossless compression: Both were
reported to result in sub-linear increases in the trace file size
for ScalaTrace [4]. We have also tested Scala-H-Trace with
the remaining NPB codes. They result in nearly constantly
sized traces. In fact, Scala-H-Trace performs at least as well
as the original ScalaTrace, which has been shown to handle
NPB codes very well — with the exception CG and MG
(the focus of this paper).

A. Trace Compression Effectiveness

We collected traces based on two different compression
techniques. First, the original ScalaTrace is used, in which
loop details and parameter values are captured losslessly and
inter-node trace compression is performed with the coarse-
grained matching scheme. Second, our novel histogram-
based trace compression featuring Scala-H-Trace is used, in
which trace information is collected in histograms for events
and parameters that otherwise would not have compressed
with the lossless trace compression, and inter-node compres-
sion is performed recursively. Trace file sizes are assessed
under strong scaling, where we vary the number of nodes
while keeping the overall problem size fixed.

Figure 2 depicts the trace file size for both lossless and
histogram-based traces when varying the number of nodes.
Note that the y axis is in log scale. Since POP exhibits
non-SPMD behavior, we observe a linear increase in the
trace file size in the case of lossless trace collection up
to 256 nodes. The trace file size then stabilizes for 512
nodes and even declines for 1024 nodes. We identified that
the timestep behavior becomes more regular at these levels,
resulting in more effective inter-node compression. But we
again observed an increasing trend in the case of 2048 nodes.
For 2048 nodes and above, we could not even collect traces

 0

 50

 100

 150

 200

 250

 300

 350

 400

32 64 128
256

512
1024

2048

E
xe

cu
tio

n
T

im
e

(S
ec

on
d)

Number of Nodes

Original Time
Replay Time

Figure 5. POP Replay

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

32 64 128
256

512
1024

2048

E
xe

cu
tio

n
T

im
e

(S
ec

on
d)

Number of Nodes

Original Time
Replay Time

Figure 6. CG Replay

 0

 50

 100

 150

 200

32 64 128
256

512
1024

2048

E
xe

cu
tio

n
T

im
e

(S
ec

on
d)

Number of Nodes

Original Time
Replay Time

Figure 7. MG Replay

anymore as the trace file size was growing unmanageably
fast and the time taken to merge hundreds of megabytes
of per-node traces became prohibitive. With the histogram-
based approach, there is a sub-linear increase in the trace file
size. Moreover, histogram-based trace files are two orders of
magnitude smaller than the lossless traces. This considerable
reduction is obtained by aggressive compression of events
and their function parameters in histograms. This clearly
shows the efficacy of Scala-H-Trace to collect concise trace
files even with applications exhibiting irregular behavior.

Figures 3 depicts trace file size for the CG benchmark.
We observe an interesting trend in CG in which the trace
file size for lossless traces is consistently 50% less than
that of the histogram traces up to 1024 nodes, yet sizes
match at 2048 node. Even though lossless traces are initially
smaller than histogram traces, there is a consistent increase
in the trace file size for the lossless case. In contrast,
the size of histogram traces is almost constant with the
increase in number of nodes. For lossless traces, non-
matching function parameters for events with the same call
stack are collected in vectors associated with a participant
rank list. This representation is more concise than histograms
for smaller number of nodes. With thousands of nodes, the
vector-participant list pair for each event has increased in
size to where it is at par with histogram traces. Unlike
vector-participant lists, histogram representation is constant
with the increase in number of nodes as the number of
bins is fixed during the application run and even the outlier
participant rank information is absorbed as constants in bins.
It should also be noted that the trace file size for CG is in the
order of hundreds of kilobytes. For larger applications with
a similar communication behavior as CG yet with trace file
sizes in hundreds of megabytes, such a linear (or even sub-
linear) growth for lossless traces may simply not be scalable
due to inter-node merge overheads, as discussed.

Figure 4 depicts the results for MG. MG exhibits a
double nested 7-point stencil communication pattern in the
3D space. Due to the regular communication pattern and
data-independent program behavior, compressing the MPI
parameter values of MG works well for both lossless and
histogram-based approaches. However, due to the slightly
diverged per-node program behavior within a loop, the
original inter-node compression algorithm of ScalaTrace

failed to merge across communication groups. This caused
trace sizes to increases linearly with the number of nodes.
In contrast, with our novel fine-grained recursive approach,
similar PRSDs are merged and the trace size grows sub-
linearly, i.e., by a factor of two as the number of nodes is
increased by a factor of 64.

B. Histogram-based Trace Replay

In the second set of experiments, we studied the replay
effectiveness of histogram-based traces by comparing the
original application runtime with the time taken to replay the
recorded events. For these experiments, we always set the
merge precision level to 0%, which is the most aggressive
compression possible with Scala-H-Trace. More accurate
replay may result from higher precision levels at the cost
of larger traces, as will be discussed in Section VI-C.

Figure 5 depicts the replay time of histogram-based trace
events compared to that of the application’s original execu-
tion time. The compressed traces are fully forced histogram
trace events where any non-matching function parameters or
loop iterations are collected as histograms. Even with these
traces, we see that the replay time for traces collected for 32-
512 number of nodes are within 5% of the original execution
time (with the exception of replay time for 128 nodes).
Replay time accuracy drops to 12% for 1024 and 2048
nodes. Due to our experiment with strong scaling for POP,
the original execution time for both 1024 and 2048 nodes
(30 seconds) is much lower than that for fewer nodes (>100
seconds) so that even small deviations in absolute values
during replay increase the error percentage. We conjecture
that such deviations are unrealistic as POP for this particular
input does not scale beyond 512 nodes so that such short
times are unrealistic. Similarly, this problem would not occur
under weak scaling as runtimes would not decrease with
larger number of nodes. We observe a deviation of over
30% in the case of 128 nodes. We found that when the inter-
node merge fails, the RSDs for events that happen roughly
the same time will be recorded far apart in the trace. Since
the new replay approach requires all nodes to interpret every
event in the trace, these unmerged events introduce increased
synchronization, which forces some nodes to wait for other
nodes to join in a particular send event.

Figure 6 depicts the replay time for the CG benchmark.

In the majority of cases, the replay time is with 10% to
15% of the original application runtime. This inaccuracy
is mainly caused by the random selection of application
parameters such as the iteration count. This inaccuracy is
further magnified by the fact that the input stops scaling at
512 nodes such that even a small absolute error increases the
error percentage considerably. Again, this is a fundamental
tradeoff between accuracy and trace size.

The replay time for MG under strong scaling is depicted
in Figure 7. The averaged inaccuracy is 8.2%. We observe up
to 34.2% inaccuracy for 2,048 nodes, which is due to an ex-
cessively short runtime of 3.8s with an absolute error of just
1.3s. For 1,024 nodes, this decreases to 12.5% and for 512
to 5.3% and so on indicating that the problem is only due to
excessively short runtimes. After discarding this outlierdue
to strong scaling limitations, the replay timing accuracy for
MG is high. As discussed before, with the recursive inter-
node trace compression, we are able to achieve a nearly
constant trace sizes for MG even without the histogram-
based probabilistic approach. Due to the elimination of the
imprecision, the timing behavior of the trace replay highly
resembles that of the original MG benchmark.

C. Trace Sensitivity Study

Finally, we study the effect of varying merge precision
levels on trace file sizes. This experiment serves as an
illustration for the benefits of user-specified merge precision
levels as a means to steer compression.

Figure 8 depicts the impact of varying merge precision
levels on the final trace file size. We fixed the number of
nodes to 512 for POP and measured trace file sizes for
varying merge precision levels. We observe that even with
a small decrease in the merge precision from 100% to 95%,
the trace size reduced by more than a factor of three. This
significant reduction is due to merging events with varying
numbers of loop iterations for the timestep in POP.

Figure 8. POP Trace Sensitivity for 512 nodes

The trace file size is constant up to a 70% merge precision
level. At 60% precision, sizes drop again by almost 50%.
This second reduction has been attributed to function param-
eters collected as histograms — in contrast to compression
failures or non-scalable vector style compression of the loss-
less approach. Finally, another three-fold reduction in trace
sizes is observed for forced histograms (0% merge precision
level). At the 0% merge precision level, all non-matching
values are represented as histograms, which results in the
most concise trace possible with Scala-H-Trace. Overall,

sensitivity experiments for merge precision levels show that
small reductions in precision can significantly reduce the
overall trace sizes. This particularly aids production-scale
codes like POP, which otherwise cannot be feasibly traced
without loss of information for thousands of nodes.

VII. R ELATED WORK

There are several tools, such as TAU [14], Vampir [1], Par-
aver [15] and SCALASCA [16], that capture communication
and/or I/O trace events using library instrumentation similar
to Scala-H-Trace. But only a few employ trace compression
techniques to control the trace file size. Many of these
tools depend on zlib for compression, which compresses
blocks of data without preserving the structure of the trace,
i.e., post-processing/analysis only becomes feasible after de-
compression. This also increases the memory requirements,
effectively rendering trace analysis infeasible on commodity
desktops or laptops and sometimes even high-end worksta-
tions, depending on the uncompressed trace size. Unlike
these techniques, ScalaTrace [4] compresses traces while
preserving the trace structure in terms of order of events. As
a result, post-processing/analysis can be performed without
decompression. We utilize this concept of structure preserv-
ing compression in Scala-H-Trace. Yet while ScalaTrace
and any of the aforementioned tracing tools record loss-
less traces with a subset or all event parameters, Scala-H-
Trace establishes a different methodology. Parameters, event
frequencies and participant lists of nodes are recorded as
histograms when lossless compressing cannot be established
within a user-specified merge precision level. Employing
statistical methods results in more concise traces even for
non-SPMD programs at the expense of loss of information.
Our replay tool uses an algorithm to issue events on-the-
fly using the compressed traces, much like ScalaTrace.
Yet recorded parameters are replayed in a probabilistic
manner, which creates novel challenges that are met by our
distributed approach to coordinate event replay across nodes.

The mpiP tool, a lightweight profiling library for MPI
applications, collects statistical information about MPIfunc-
tions [3]. It collects aggregate metrics like number of MPI
events issued by the application and average execution times.
This is useful to provide high-level information on commu-
nication and I/O calls. In contrast, Scala-H-Trace captures all
events in traces and employs more sophisticated histogram
bins only when the need arises for applications exhibiting
non-SPMD behavior. Beside the histogram information, we
also record outlier information associated with each bin to
detect communication bottlenecks and to provide a “big
picture” of communication and I/O events in applications.

Klugeet al. [17] employ pattern matching techniques sim-
ilar to ours to capture POSIX I/O calls in parallel programs.
Unlike our approach, they perform post-mortem pattern
matching only after collecting the application traces. They
read the collected trace and create an I/O dependency graph

thereby preserving the event order to do pattern matching.
Even though post mortem pattern matching reduces the
trace volume, this approach limits its usefulness in memory
constrained systems like the IBM BlueGene family. Without
online compression, either the memory footprint increases
by holding the recorded trace or trace events are frequently
written to disk, which affects the application execution
behavior. They also do not employ pattern matching across
nodes so that a trace file per node is required. This limits
their approach in that they struggle with applications utiliz-
ing thousands of nodes due to parallel file system constraints.
Our approach is immune to such limitations as a single
trace file captures the behavior of all nodes with statistical
information on a per-event and per-parameter basis.

Gao et al. [18] developed an event trace compression
technique that performs static analysis on the application
binary and collects loops and functions as structures. Along
with these structure, a path grammar is constructed on-
the-fly. Path grammars are then utilized to encode paths
taken during execution. These structures are compressed
individually and stored. Even the iteration count is stored
along with the compressed structure traces. This loosely
resembles the RSD and PRSD technique used in related
work [8], [9], [19], [5]. But unlike Gaoet al.’s work, our tool
does not require the construction of grammars for individual
applications separately. Our work employs a generalized
trace compression approach based on call path stacks and
records parameters exploiting statistical means. It is suffi-
cient to link the tool library along with the application to
collect traces. This generalization also enables comparative
trace studies between two different applications.

VIII. C ONCLUSION

We presented the design and implementation of Scala-H-
Trace, which provides novel capabilities for more aggressive
trace compression than any previous approach. Scala-H-
Trace utilizes histograms based on a user-specified merge
precision level. It features a distributed approach to deter-
ministically replay statistical histogram traces where events
are reissued without decompressing the original trace file.
Experimental results demonstrate the ability to obtain a
single, near constant sized trace file, even for production-
scale scientific applications such as POP with non-SPMD
behavior. Results also show that replay time for traced events
are within 12%-15% of the original application runtime in
majority of the cases, even for the fully forced histograms.

REFERENCES

[1] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and
K. Solchenbach, “VAMPIR: Visualization and analysis of
MPI resources,”Supercomputer, vol. 12, no. 1, pp. 69–80,
1996.

[2] H. Brunst, D. Kranzlmüller, and W. Nagel, “Tools for Scalable
Parallel Program Analysis - Vampir NG and DeWiz,”The
International Series in Engineering and Computer Science,
Distributed and Parallel Systems, vol. 777, pp. 92–102, 2005.

[3] J. Vetter and M. McCracken, “Statistical scalability analysis
of communication operations in distributed applications,” in
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2001.

[4] M. Noeth, F. Mueller, M. Schulz, and B. de Supinski, “Sca-
latrace: Scalable compression and replay of communication
traces in high performance computing,”Journal of Parallel
Distributed Computing, vol. 69, no. 8, pp. 969–710, Aug.
2009.

[5] P. Ratn, F. Mueller, B. R. de Supinski, and M. Schulz,
“Preserving time in large-scale communication traces,” in
International Conference on Supercomputing, Jun. 2008, pp.
46–55.

[6] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth, “Scalable
i/o tracing and analysis,” inWorkshop on Petascale Data
Storage, 2009, pp. 26–31.

[7] “MPI-2: Extensions to the message-passing
interface,” July 1997. [Online]. Available:
http://www.mpi-forum.org/docs/docs.html

[8] P. Havlak and K. Kennedy, “An implementation of interpro-
cedural bounded regular section analysis,”IEEE Transactions
on Parallel and Distributed Systems, vol. 2, no. 3, pp. 350–
360, Jul. 1991.

[9] J. Marathe and F. Mueller, “Detecting memory performance
bottlenecks via binary rewriting,” inWorkshop on Binary
Translation, Sep. 2002.

[10] X. Wu, F. Mueller, and S. Pakin, “Automatic generation of
executable communication specifications from parallel ap-
plications,” in International Conference on Supercomputing,
2011, pp. 12–21.

[11] “The parallel ocean program (POP),” Los Alamos National
Laboratory, 1996, http://climate.lanl.gov/Models/POP/.

[12] X. Wu, K.Vijayakumar, F. Mueller, X. Ma, and P. C. Roth,
“Probabilistic communication and i/o tracing with determin-
istic replay at scale,” Dept. of Computer Science, North
Carolina State University, Tech. Rep. TR 2011-6, 2011.

[13] P. W. Jones, P. H. Worley, Y. Yoshida, J. B. White, III, and
J. Levesque, “Practical performance portability in the parallel
ocean program (pop): Research articles,”Concurr. Comput. :
Pract. Exper., vol. 17, no. 10, pp. 1317–1327, 2005.

[14] S. S. Shende and A. D. Malony, “The tau parallel performance
system,”Int. J. High Perform. Comput. Appl., vol. 20, no. 2,
pp. 287–311, 2006.

[15] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “PARAVER: A
tool to visualise and analyze parallel code,” inProceedings
of WoTUG-18: Transputer and occam Developments, ser.
Transputer and Occam Engineering, vol. 44, Apr. 1995, pp.
17–31.

[16] M. Geimer, F. Wolf, B. J. N. Wylie, E. Abraham, D. Becker,
and B. Mohr, “The scalasca performance toolset architecture,”
in Workshop on Scalable Tools for High-End Computing, Jun.
2008.

[17] M. Kluge, A. Knüpfer, M. Müller, and W. E. Nagel, “Pattern
matching and i/o replay for posix i/o in parallel programs,”
in Euro-Par ’09: Proceedings of the 15th International Euro-
Par Conference on Parallel Processing. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 45–56.

[18] X. Gao, A. Snavely, and L. Carter, “Path grammar guided
trace compression and trace approximation,” inSymposium
on High-Performance Distributed Computing, 2006, pp. 57–
68.

[19] M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski,
“Scalable compression and replay of communication traces
in massively parallel environments,” inInternational Parallel
and Distributed Processing Symposium, Apr. 2007.

http://www.mpi-forum.org/docs/docs.html

	Introduction
	Background
	Trace Compression
	Time Preservation
	Timed Replay

	Histogram-Based Trace Collection
	Histogram Construction
	Iteration Count Histogram
	Function Parameter Histogram

	Deterministic Replay
	Scala-H-Trace Replay
	Replay the Histogram-recorded Point-to-Point Messages

	Inter-node Trace Compression
	Experimental Results
	Trace Compression Effectiveness
	Histogram-based Trace Replay
	Trace Sensitivity Study

	Related Work
	Conclusion
	References

