
CuNesl: Compiling Nested Data-Parallel Languages
for SIMT Architectures

Yongpeng Zhang, Frank Mueller
North Carolina State University, Raleigh, NC, USA, mueller@csc.ncsu.edu

Abstract—Data-parallel languages feature fine-grained parallel
primitives that can be supported by compilers targeting modern
many-core architectures where data parallelism must be exploited
to fully utilize the hardware. Previous research has focused on
converting data-parallel languages for SIMD (single instruction
multiple data) architectures. However, directly applying them to
today’s SIMT (single instruction multiple thread) archite ctures
does not guarantee competitive performance.

We propose cuNesl, a compiler framework to translate and
optimize NESL into parallel CUDA programs for SIMT ar-
chitectures. By converting recursive calls into while loops, we
ensure that the hierarchical execution model in GPUs can be
exploited on the “flattened” code. The performance gap between
our auto-generated CUDA code and hand-crafted CUDA code
thus narrows while programmability is greatly increased. Our
compiler outperforms handwritten parallel code running on
CPUs in terms of both execution time and programmability.

I. I NTRODUCTION

Exploiting data parallelism is crucial for programming on
many-core architectures because data parallelism exposesa
much higher degree of parallelism than task or pipeline par-
allelism. This high degree of parallelism is necessary to keep
up with the ever-increasing instruction throughput provided by
hardware. However, popular languages, such as C/C++, do not
treat data parallelism as a first-class citizen. This gap between
the front-end language and hardware is exacerbated by the fact
that compilers are struggling to extract data parallelism from
language abstractions. Therefore, human assistance is often
necessary to increase performance, which adversely affects the
programmer’s productivity.

Although adding new ways to pass critical data paral-
lelism information to the compiler (e.g., via pragmas) for
task-oriented languages maybe a viable method, we take a
completely different approach. We investigate what compiling
techniques are needed to efficiently map data-parallel lan-
guages to state-of-the-art GPU architectures. One of the advan-
tages of this approach is to improve programming productivity
because data-parallel languages are often found to be more
concise and elegant to express parallel algorithms.

Among the various data parallel languages, NESL [1] is of
particular interest. It is based on the concept of nested data
parallel abstractions, which are very common in divide-and-
conquer parallel algorithms. An apply-to-each construct en-
courages programmers to think about algorithms in a parallel
fashion at the finest data granularity, thus removing the burden
for compilers to engage in complicated data dependence
analysis. Recursive calls are widely used in NESL, an elegant

This work was supported in part by NSF grants 1058779, 0958311,
0937908, and DOE grant DE-FG02-08ER25837.

way to express nested parallelism.
Previous research has studied how to compile data-parallel

languages for SIMD vector machines as well as MIMD
parallel machines ([2], [3]). Our work, in contrast, targets
the SIMT paradigm, an increasingly popular programming
model advocated by modern GPU architectures. There is a
fundamental difference between SIMD and SIMT. In SIMD,
only one flow of control exists. The width of vector data
that an instruction operates on can swiftly vary from one
instruction to another. SIMT, in contrast, has more control
flow resources to support many independent threads, each of
which can execute instructions asynchronously. The loosely-
coupled threading model in SIMT gives programmers more
flexibility and removes the lock-step synchronization of SIMD.
Generally speaking, it is more challenging to fully utilizethe
hardware resources in SIMT. SIMT requires coarser grained
data parallelism with many, preferably independent entities to
achieve good performance.

An important vectorizing compiler technique is the trans-
formation of nested data parallel languages to SIMD code.
The transformed code can be ideally mapped into thePar-
allel Vector Model, which contains a vector processor and a
“flattened” vector memory [2]. Unfortunately, today’s SIMT
is not truly “flattened”. In particular, CUDA-enabled GPUs
consist of hierarchical levels of threading models with different
synchronization properties ([4]): (level-1) a host level CPU
thread; (level-2) massive numbers of asynchronous threadsin
CUDA kernels; (level-3) moderate numbers of synchronizable
threads in a CUDA kernel block and (level-4) a relatively
small number of lock-step synchronized threads in a warp.
A naı̈ve execution of the transformed code uses the level-
1 CPU thread as flow control and treats the set of level-2
threads as a unified vector processor. Under the CUDA model,
explicit barriers are required for each nesting level but are not
supported in hardware at level 2. This lack of support results
in many unnecessary and expensive global barriers (at level
1) between explicit kernel calls issued by the CPU, which
adversely affects performance.

Therefore, it is desirable to delve into the threading model
hierarchy and take advantage of low-overhead local synchro-
nizations. To that end, we spawn the control flow at level-
3/4. But recursive functions in NESL pose a performance
hurdle. In previous approaches, there was no motivation to
remove recursions during code transformations. Yet, invoking
recursive functions at level-2/3 will cause overhead such as
branch penalties and results in imbalanced computation load.
Such overhead cannot be neglected and may consume the

benefits of faster local synchronizations.
As we can see, previous code transformations no longer

suffice to generate code suitable for today’s hierarchical SIMT
architectures. In this work, we design a source-to-source
compiler to directly convert NESL to CUDA code that can
be efficiently executed on contemporary NVIDIA GPUs. We
focus on recursive NESL functions. In addition to the vector-
ization transformations, we restructure control flow to remove
recursion and provide fine-grained data granularity suitable for
SIMT architectures. A recursion-free control flow allows usto
dynamically switch between hierarchical threading modelsand
then to choose the best one under different scenarios.

The current cuNesl compiler targets CUDA C++, a vendor
proprietary programming model from NVIDIA. However, the
proposed compiler techniques can be extended to other data-
parallel languages, such as data-parallel Haskell [5].

II. NESL LANGUAGE

In this section, we give a brief introduction to NESL. NESL
is an example of a data-parallel language, also known as
a collection-oriented language [6]. It is strongly typed and
declarative (free of side-effects).

Like other data-parallel languages, NESL consists of stan-
dard apply-to-each (map) constructs. The apply-to-each con-
struct applies a certain operation to all elements of a sequence.
For example, the expression

{negate(a): a in [3, -4, -9, 5]};

negates the sequence of numbers in an element-wise fashion
in parallel, resulting in a sequence of values [-3, 4, 9, 5].
NESL ensures that apply-to-each constructs can be executed
independently per element. Therefore, they can easily be
mapped onto data-parallel execution models.

A set of primitive parallel functions that can operate on
sequences are pre-defined in NESL as well. These functions
are not necessarily embarrassingly parallel but still represent
efficient parallel algorithms. An example is “b = permute(a,i)”,
where sequence b is formed in such a way that thejth elements
in sequence a is permuted to position i[j] for all js.

Support for nested parallelism is one of the key ideas behind
NESL. Elements in a sequence in NESL can itself be a
sequence, which supports recursively nested sequences. Such
nested parallelism comes from NESL’s ability to apply any
function in parallel over the elements of a nested sequence.
For example, a sum applied to a nested sequence forms a set
of parallel sum calls in a nested fashion.

{sum(a) : a in [[2,3], [8,3,9], [7]]};
=> it = [5, 20, 7] : [int]

NESL defines several functions to support nesting and
unnesting of a sequence, including flattening (reducing the
nesting by one level) and bottop (splitting a sequence in two
halves and returning them as a nested sequence). NESL is very
powerful in expressing divide-and-conquer parallel algorithms
with nested recursive calls. Quicksort written in NESL is
depicted in Figure 1. The expression

result = {qsort(v): v in [less, greater]}

applies the recursive calls to qsort on a nested sequence
formed by less and greater sequences. Nested parallelism, in
this case, means that both the two qsorts and the generation
of three intermediate arrays inside qsort can be performed in
parallel.

1 function qsort(a) =
2 if (#a < 2) then a
3 else
4 let pivot = a[#a/2];
5 less ={e in a| e < pivot};
6 equal ={e in a| e == pivot};
7 greater ={e in a| e > pivot};
8 result ={qsort(v): v in [less,greater]};
9 in result[0] ++ equal ++ result[1] $

Fig. 1. Quicksort in NESL

S

Segment

Segment Segment

SegmentSegmentSegment S

SSSSSSS

Fig. 2. Segmented Array in Quicksort: Each row is a segmentedarray.

A. Segmented Array
Previous research translates data-parallel languages (e.g.,

NESL) into a stack-based intermediate language called
VCODE ([7]), which is tailored to SIMD machines. This
transformation is calledflattening of nested parallelism[8].
The basic data type of VCODE is a flattened segmented array.
Unlike the nested sequence in NESL, it allows only one level
of partitions.

Figure 2 depicts the dynamic partitioning of segmented
arrays for quicksort. Each row in the figure is a segmented
array. Initially, a single segmented array with just one segment
exists. As more and more partitions are formed, the segmented
array breaks into many smaller segments.

CuNesl adopts this concept and provides an efficient im-
plementation for pre-defined parallel operations on segmented
arrays. We will provide more details in Section V-A.

III. R ELATED WORK

Programming on SIMT architectures has quickly become
mainstream since the launch of CUDA and has changed the
GPU’s image from that of a purely graphics-specific acceler-
ator to a general-purpose co-processor. While a tremendous
numbers of applications can benefit from manually rewriting
legacy code for CUDA, many researchers strive to improve
the programmability without sacrificing performance.

One approach is to provide handwritten, highly-efficient
implementations for well-defined APIs so that they can di-
rectly be used by other programs. CUDPP [9], Jacket [10] and
Thrust [11] are examples of this approach. In fact, cuNesl’s

implementation directly uses CUDPP’s parallel scan/reduce
APIs. However, this only applies to certain areas where the
interface can be clearly defined or standards exist.

By restricting problems into specific domains, compilers
can aggressively exploit domain-specific knowledge to auto-
generate efficient CUDA code. Domains like stencil computa-
tion [12], [13], [14], streaming [15] and PDE solvers [16] are
already benefiting from this approach.

For general-purpose languages, a common method is to
add directives (e.g., pragmas) to enable code generation by
the CUDA back-end. They can be either extending existing
directives like OpenMP [17] or introduce new sets of pragmas
[18], [19]. There are also source-to-source compilers that
translate a naive CUDA kernel into an optimized highly
efficient version [20].

In terms of data-parallel languages, the PGI CUDA Fortran
Compiler [21] directly compiles HPF into CUDA source code.
The compilation of other data-parallel languages, such as
Haskell and Python, into CUDA code is still an active research
topic [22], [23], [24].

CuNesl shares the same philosophy as Copperhead [24] in
that a hierarchical execution model should be exploited in
today’s architectures to achieve good performance for nested
parallelism. CuNesl also extends the applicability of this
concept to recursive calls, which cannot easily be statically
mapped to finite execution hierarchies and are thus beyond
Copperhead. In addition, we show that anestedflattening
transformation, if coupled with data-flow analysis on the
transformed code, matches the hierarchical execution model
for SIMT architectures and results in additional performance
benefits.

IV. CUNESL COMPILER

A. Removing Recursive Calls
As discussed in Section II-A, removing the recursive calls

in NESL is important for efficient compilation in SIMT
architectures. In this section, we will use quicksort as an
example to show how cuNesl maps a recursive function into
a while loop, even for some non-tail recursion cases.

For a recursive function to terminate, there are always
conditional branches inside the recursive function. At least
one of the branches does not make further recursive calls. A
simplified control flow for a recursive function is illustrated in
Figure 3(a). The P2() branch is the exit path for the recursive
call. In the recursive path, if P4() is empty and this path
directly returns after issuing a single recursive call, then it is a
tail-recursive function. Most of the NESL examples do not fall
into the category of tail-recursion, for they either have multiple
recursive calls or have a non-empty P4() block. Fortunately,
NESL’s syntax guarantees that such multiple recursive calls,
if they exist, can be executed in parallel. And it is often
the case that P4() is a simple operation that, if positioned
prior to the recursive calls, does not affect the final output.
Examples of such operations are concatenation, flatten and
bottop. Figure 3(b) shows the recursion-free transformation
based on the above assumptions. The recursive function is
now replaced by a while loop, which exits once all segments

blocks

segmented array:

thread

(a) Kernel Mode

blocks

segmented array:

thread

(b) Block Mode

blocks

segmented array:

Shared Memory

thread

(c) Shared Memory Block Mode

Fig. 4. Different Execution Modes. In kernel mode, threads process elements
in the array globally. In block mode, one block is assigned toa segment.
Shared Memory block mode is an optimized version of block mode. It utilizes
the on-chip Shared Memory to reduce global memory accesses.

terminate (have reached the exit branch). Inside the loop, all
operations are applied to segments that have not been marked
as finished. P2() is executed when the loop exits. Here, we
also assume that P2()’s execution can be safely moved to the
end. Otherwise, this step need would need to be moved inside
the while loop so that it is applied to every segment that has
just terminated.

Quicksort in NESL is an example of an algorithm that
can be transformed into a parallel tail-recursive function. The
mapping from NESL source code into the recursive control
flow is shown in 3(c). P4() is a simple concatenation operation.
Therefore, the compiler can perform code motion to place it
before issuing the recursive calls. This is done by inserting
the “equal” sequence in in between the “less” and “greater”
sequences and marking this as a non-recursive segment.

Figure 5 lists the resulting code generated for quicksort.
The compiler fuses operations that share the same input into
one operation. For instance, all three intermediate flag arrays
for “less”, “equal” and “greater” are generated from the same

...

Y N

P1()

Recursive_foo()

P3();P2()

return;

P4()

return;

branch

Recursive_foo();

(a) Recursive Functions

foo()

P2() for all segments

return

while
(all segment done)

N

Y

P1() for each unfinished segment

branch check for each unfinished segment

P3() for each unfinished segment

P4() for each unfinished segment

(b) Segmented Version

Y N
#a<2 ?

qsort(a)

equal = {e in a | e == pivot};
greater = { e in a | e > pivot};

pivot = a[#a/2];

empty

empty

return a;

result[0] ++ equal ++ result[1]

P2
P3

P1

P4

less = {e in a | e < pivot};

result = {qsort(v): v in [less, greater]};

(c) Quicksort Control Flow

Fig. 3. Convert (a) Recursivefoo() into (b) a recursion-free while loop with (c) an example for Quicksort.

1 void qsort(SegmentArray<T> &array) {
2 while(!array.isRecursiveAllDone()){
3 /∗ branch 0, check segment length∗/
4 array.setRecDoneByLength(1);
5 /∗ branch 1,∗/
6 MirroredArray<T> pivots(array.getNumSegments())

;
7 gen pivots(array, pivots);
8
9 MirroredArray<uint> less flag(array.getSize());

10 ...;
11 gen flags from pivot(array, pivots, lessflag, ...);
12
13 FlagSubIrregularSegmentArray<T> less();
14 FlagSubIrregularSegmentArray<T> equal();
15 FlagSubIrregularSegmentArray<T> greater();
16
17 FlagSubIrregularSegmentArray<T> ∗children[3];
18 children[0] = &lesser;
19 children[1] = &equal;
20 children[2] = &greater;
21
22 /∗ reshuffle each segment in array into 3 segments,
23 a built−in function in segmented array∗/
24 array.reshuffle(&children[0], 3);
25 }
26 }

Fig. 5. Generated Code for Quicksort

kernel function. The concatenation of three segments is a built-
in function of our segmented array (reshuffle() method).

B. Hybrid Execution Mode

After converting recursive routines into iterative while
loops, we have successfully flattened the program and made it
suitable for SIMT architectures. Threads can now start from
the bottom and work at the finest data granularity during the
entire execution. But in practice, this transformation alone does

not usually deliver competitive performance. The reason isthat
today’s SIMT architectures consist of a hierarchy of execution
modes, each of which has its own characteristics. Consider
CUDA, which has the following execution levels:

Kernel level: This is similar to the bulk synchronization
model [25]. Control flow is driven by one or a few host
threads on the CPU side. Concurrent computation is performed
by launching massively-threaded CUDA kernels. Global syn-
chronization is feasible (between CUDA kernel launches) but
relatively expensive.

Block level: This level operates inside CUDA kernels on a
GPU. Threads in the same block execute the same program,
but do not necessarily proceed at the same rate. Sharing
between threads can be realized via Shared Memory. Syn-
chronization at block level is relatively cheap. In the CUDA
context, it is supported trough thesyncthreads() API call.

Warp level: This level is similar to SIMD in the sense that
threads in the same warp execute programs at the same pace
on a GPU. There can be one or more warps at the upper block
level. Branches are more efficiently executed if threads in the
warp all agree to take the same path. Synchronization between
warps is zero-overhead because it is enforced by the hardware
via lock-step execution.

Experienced CUDA programmers often choose particular
execution levels to solve different problems, or even a problem
at different stages, based on various factors. If global synchro-
nization is only occasionally required, a kernel level program
should be designed. If a problem can be divided into at least a
moderate number of independent smaller problems (a divide-
and-conquer approach), it is generally more efficient to work

1 template <classT> global void
2 quicksort block(IrregularSegmentGpuArrayC<T> ∗array){
3 shared FlagSubIrregularSegmentGpuArray<T> less;
4 shared IrregularSegmentGpuArrayC<T> s array;
5 shared GpuArray<uint> less flag; ...
6 shared GpuArray<T> pivots;
7 // temporary buffer for parallel scan/reduce
8 shared uint mSharedBuffer[...];
9 shared FlagSubIrregularSegmentGpuArray<T> ∗

children[3];
10
11 syncthreads();
12 // copy the segment info locally
13 if (threadIdx.x == 0)
14 array→clone(&s array);
15
16 syncthreads();
17 ...
18 int segid = blockIdx.x;
19 if (array→isRecursiveDone(segid))
20 return ;
21 // prepare for the assigned segment
22 s array.convertToLocal(bid);
23 syncthreads();
24
25 // the while loop from the recursive call
26 while (!s array.isRecursiveAllDone()){
27 s array.setRecDoneByLength(1);
28 syncthreads();
29 if (s array.isRecursiveAllDone())
30 break;
31 syncthreads();
32 ...;
33 gen pivots block(s array, pivots);
34 syncthreads();
35 gen flags block(s array, pivots, lessflag,..);
36 syncthreads();
37 ...;
38 s array.reshuffle(children, 3, mSharedBuffer);
39 syncthreads();
40 }
41 // copy the data back to the global array
42 s array.copyFromLocal();
43 }

Fig. 6. Generated Code for Quicksort in Block Mode

at the block level because kernel launch overhead and global
synchronization are reduced. It is not uncommon to utilize
the lock-step synchronization property at the warp level for
small but communication-rich operations. Such examples can
be found in efficient CUDA implementations of parallel reduce
or scan [26].

Lessons learned from coding styles of real-world appli-
cations lead us to believe that a hybrid execution mode is
necessary to achieve good performance in cuNesl. A truly
flattened hardware is not likely to be available due to the
unavoidable tradeoff between hardware resources and per-
formance. Relying on a flattened execution mode will only
underutilize the hardware, which would make such a method
inferior to other approaches.

Therefore, we define several execution modes in cuNesl
corresponding to the hierarchical levels of hardware abstrac-
tions. This is best explained in the context of how to access
and manipulate elements in a segmented array for a massive
number of independent SIMT threads. Right now, cuNesl
defines the following three execution modes:

Kernel Mode:This mode corresponds to the kernel level
abstraction above. When the segmented array consists of only
a few large segments, it does not make sense to assign a
large segment to only one thread block. Instead, it is more
efficient to spawn as many threads as possible and allow
multiple blocks to work on the same segment (Figure 4(a)).
The drawback of this mode is that synchronizations across
a segment can only be performed between disjoint CUDA
kernels, which is relatively expensive. From the recursive
routine’s point of view, this mode is usually advocated at the
beginning of a recursive call where the number of partitions
is small. The foreach operations on a segmented array are
translated into kernel pseudo code like the following:

stepsize = blockDim.x * gridDim.x;
for (id = threadIdx.x; id < size; id += stepsize)
{

segid = getSegId(id);
seglen = getSegLen(segid);
...

}

Block Mode: When the segment array contains a moderate
number of segments, we can assign each segment to an
exclusive thread block (Figure 4(b)). This corresponds to the
block level abstraction. Because a barrier is supported within
a thread block, many operations on segments, though not
embarrassingly parallel, can be performed without leavingthe
kernel, thus reducing kernel launch overheads. This mode can
often be applied during the mid-phase of a recursive call when
enough partitions are produced to fully utilize the many-cores
of SIMT architectures. The foreach operations on a segmented
array, in this mode, is translated to the following pseudo-code
inside the CUDA kernel:

stepsize = blockDim.x;
segid = blockIdx.x;
segsize = getSegLen(segid);
segoffset = getSegOffset(segid);
for (id = threadIdx.x; id < segsize; id += stepsize)
{
my_global_id = segoffset + id;
...

}

Shared Memory Block Mode: One important and effective
optimization opportunity arises when the size of each segment
becomes small enough to fit in the on-chip Shared Memory.
We can preload segments into Shared Memory first and
work on them before storing them back to global memory
(Figure 4(c)). This way, we can reduce memory bandwidth
consumption. Because Shared Memory is limited in size, this
mode is usually feasible and more efficient near the end of
a recursive call. This mode can be regarded as an optimized
version ofblock mode.

As of now, we have not explored the benefits of going down
to the warp level in cuNesl because warp level programming is
often found in low-level libraries that areusedby cuNesl. This
is not to say that the lockstep synchronization at warp levelis
unimportant. A study to assess if this mode is beneficial for

mSegDone: 1 1 1 1 1 1 1 1 1

3 4 9 0 9 2012 512 176

6 12 9 203 4 9 1705

0 5 6 12 9 17 20

4 5 6 9 12 17 209

3 4 5 6 9 12 17 20

mSegIndex:0 0 0 0 0 0 0 0 0 0

mNumSegments : 1
mSegLength: 10

mSegOffset: 0
mSegDone: 0

mSegLength : 4 1 5
mSegIndex : 0 0 0 0 1 2 2 2 2 2
mSegOffset: 0 4 5
mSegDone : 0 1 0

mNumSegments : 3

3 4 9

mNumSegments : 6
mSegLength : 3 1 1 3 1 1

mSegOffset : 0 3 4 5 8 9
mSegDone: 0 1 1 0 1 1

mSegIndex: 0 0 0 1 2 3 3 3 4 4

3 0

mSegLength : 2 1 1 1 2 1 1 1
mNumSegments : 8

mSegIndex: 0 0 1 2 3 4 4 5 6 7
mSegOffset : 0 2 3 4 5 7 8 9
mSegDone: 0 1 1 1 1 1 1 1

0 9

mNumSegments : 9
mSegLength : 1 1 1 1 1 2 1 1 1
mSegIndex: 0 1 2 3 4 5 5 6 7 8
mSegOffset : 0 1 2 3 4 5 7 8 9

Fig. 7. The modification to the segmented array for the quicksort. Shadowed
elements are quicksort pivots. Elements in the same segmentare grouped by
rectangular boxes. Dotted boxes indicate segments that arenot subject to
recursive calls.

more general cases is subject to future research.
Going back to quicksort, the pseudocode in Figure 5 is in

fact generated for thekernel mode, only. To switch to other
execution modes, cuNesl adds a counter check inside the while
loop to exit the loop early, i.e., once the number of segments
exceeds a threshold. It then calls a single CUDA kernel that ex-
ecutes the rest of the iterations inblock mode. The pseudo-code
for this single kernel is shown in Figure 6. It contains a similar
while loop as in thekernel mode(Figure 5). Functions that are
used as kernel calls inkernel modeare transformed into device
functions in a segmented version. Barrier synchronizationis
provided by syncthreads() between parallel regions.

V. RUNTIME

A. Segmented Array
The core of cuNesl’s runtime system supports the neces-

sary primitives for segmented arrays. Segmented arrays are
encapsulated in various classes that can be included in the
compiler-emitted code. They are further compiled by NVCC
to generate binaries. To support the concept of a segmented
array, to make it conveniently available to the programmer and
to ensure efficiency for fine-grained SIMT threads to work on
individual elements, we add several auxiliary arrays besides
the raw data array to maintain the state of a segmented array
(assuming its size is N):

mSegments: array of size N. Elements in this array are
either 1 or 0. A 1 indicates the start of a new segmented
array.

mNumSegments: size one. It stores the number of segments
in a segmented array.

mSegIndex: array of size N. mSegIndex[i] returns which
segment the i-th element belongs to.

mSegOffset: array of size mNumSegments. It stores the
offset of each segment relative to the starting address of the
data array.

mSegLength: array of size mNumSegments.
mSegLength[i] returns the length of the i-th segment.

mSegDone: array of size mNumSegments. It is used for
recursive calls. A “1” at position i means that the i-th segment
has reached the exit condition of the recursive call.

In the quicksort example, such segment information also
preserves the current state of the quicksort recursion. Figure
7 illustrates the status of a segmented array for quicksort.The
six auxiliary arrays (32 bits each) come with a linear increase
in the memory footprint for a total of 24 bytes per NESL data
structure.

The layout of a segmented array can be dynamically mod-
ified by the user via storing a 1 in the mSegment array. The
runtime is responsible for adjusting the remaining auxiliary ar-
rays accordingly. We have developed an efficient data-parallel
approach via Algorithm 1 to minimize the execution time of
this operation. These auxiliary data structures together with
the algorithm help reduce the overhead of the code generated
by cuNesl.

Algorithm 1 Update auxiliary arrays from mSegments
mSegIndex := InclusiveScan(mSegments, N);
Barrier();
mNumSegments := mSegIndex[N-1];
Barrier();
for i = 1 → N do

mSegIndex[i] := mSegIndex[i] - 1;
end for
Barrier();
for i = 1 → N do

if mSegments[i] == 1then
mSegOffset[mSegIndex[i]] := i;

end if
end for
Barrier();
for i = 1 → mNumSegments do

if i == (mNumSegments - 1)then
nextOffset := N;

else
nextOffset := mSegOffset[i+1];

end if
mSegLength[i] = nextOffset - mSegOffset[i];

end for

In this parallel algorithm, all for loops and the
Inclusive Scan() function can be efficiently and cooperatively
(independently) executed by SIMT threads. We need to gener-
ate two versions of code based on this algorithm to fulfill the
need for different execution modes discussed in Section IV-B,
one for thekernel mode, the other for the other two modes. In
the kernel mode, all for loops are transformed into separate
CUDA kernels and InclusiveScan() is invoked by calling
appropriate CUDPP library APIs [9]. A Barrier() is implicitly
enforced by the CUDA runtime. In theblock modeand the
shared memory block mode, the entire algorithm becomes a
device function called by other device or global functions.This
also applies to the InclusiveScan() function, which only needs
to perform a local scan at the block level. Barrier() needs tobe

instantiated by syncthreads() (provided as a CUDA device
function) to ensure correctness.

This strategy to provide kernel-level and block-level support
for an operation needs to be applied to either pre-defined
NESL primitives in the runtime or emitted code by the cuNesl
compiler. This allows us to exhaustively explore differentcom-
binations of execution modes to find the fastest combination.
Fortunately, except for a few differences (e.g., barriers inblock
modeare realized via syncthreads()), these two versions are
similar to each other.

The implementation of the CuNesl runtime takes advantages
of existing hand-crafted CUDA libraries for many of the
parallel primitives supported in NESL. For example, CUDPP’s
APIs at different layers are heavily used in our runtime system.
We also provide implementations of other primitives, such as
sum, concatenation and reverse.

B. Optimizations

We call a segmented array aregular segmented array when
all its segments are of the same length. For such segmented
arrays, we do not need to waste memory and time to maintain
the aforementioned auxiliary arrays. Instead, only a single
scalar is needed to keep track of the length of each segment
in the array. All other information, such as segment offset and
the corresponding segment id for an element, can be calculated
on-the-fly and independently by SIMT threads. The runtime
system will convert aregularsegmented array to a non-regular
one whenever necessary.

VI. EXPERIMENTAL RESULTS

We conducted our experiments on a Quad-core Intel(R)
Xeon(R) CPU E5507 machine with 6 GB memory. The
GPU was a Geforce GTX 480 consisting of 15 Streaming
Multiprocessors. The host code was compiled by Gcc 4.4.4.
CUDA code was compiled by NVCC, CUDA release 4.0. Both
Gcc and CUDA codes are compiled at optimization level -O3.

A. Quicksort

We present cuNesl’s quicksort performance by comparing
with three other implementations:

GPU-Quicksort: This is a hand-written CUDA sorting
library using quicksort in the beginning and switching to
bitonic sort in the end [27]. To the best of our knowledge,
it is the fastest open-source GPU implementation involving
quicksort. The total number of source code lines, including
both the host-side C++ and CUDA, adds up to about 900
lines.

STL: This is also a hybrid sorting implementation: it first
uses introsort, which is based on quicksort, followed by
insertion sort. It is run on CPUs only.

OpenMP: We also wrote quicksort in OpenMP using the
parallel pragma directives. This, too, is run on CPUs only.
The maximal number of threads is 8. The same thread con-
figuration applies to other experiments.

We use the number of lines of code (LOC) as a metric
to assess the programmability, i.e., reflecting the effort of the
programmer to write code.

TABLE I
QUICKSORT: L INE OF CODE COMPARISON

Implementation LOC

GPU-Quicksort 900
cuNesl 9
STL 100

OpenMP 130

For STL constructs, we are counting the lines of code at
the first major level, e.g., inside of std::sort(). In our OpenMP
implementation, we use std::partition() to split arrays into
halves, which is a central part of quicksort. This hand-written
STL code is counted as just one LOC in the table. The
LOC metric shows that NESL supports extremely concise
expressions of such a recursive function: The LOC metric
is one to two orders of magnitude less than for the other
implementations.

We adopted the same testing strategy as in [27] by mea-
suring the execution time under different input distributions,
namely uniform, Gaussian, zero, bucket, staggered and sorted.
The details of these distributions are explained in [27]. We
slightly revised the original Quicksort NESL script to choose a
better pivot element for each segment array. Instead of blindly
taking the element at the middle index, we pick the pivot as
the average of the max and min value in each segment.

The final performance is shown in Figure 8. The Y axis
shows the execution time on a log scale. The X depicts shows
the array size from one million to eight million elements
(numbers). For cuNesl, we show two bars. The first is obtained
by only generating code in thekernel mode. The second
starts withkernel modeand then switches toblock modeafter
producing enough segments (256). This is referred to as the
“hybrid mode” in the figures. The switching point needs to
be tuned (currently manually, could be automated) because it
depends on the size of the sorting data types and the resource
usage (register and Shared Memory). We can see that the
hybrid mode usually takes about half of the time of thekernel
mode. This demonstrates our previous hypothesis that different
execution modes are suitable for different segment arrays.We
also tried to add theshared memory block modeto the hybrid
mode when segments are becoming small enough fit in the
GPU’s Shared Memory. But it provides no improvement over
the two-stage hybrid mode. The extra barrier and bookkeeping
between theblock modeand shared memory block mode
resulted in a net performance loss due to overheads. Therefore,
the execution time in this case is not displayed in the Figure
8.

Figure 8 shows that our best compiled quicksort routine
(hybrid mode) is about two to three times slower than the
hand-written CUDA implementation (GPU-Quicksort). This is
mainly due to three reasons:

• GPU-Quicksort uses bitonic sort at the end, i.e., after
spawning a sequence of the quicksort recursions. Quick-
sort is well known to be less efficient than bitonic sort
due to the partition imbalance problem.

• GPU-Quicksort is using problem-specific knowledge to
reduce execution time. For this particular case, the pro-

 0.1

 1

 10

 100

 1000

 10000

1 2 4 8

E
xe

cu
tio

n
T

im
e

(m
s)

Elements (millions)

Uniform Distribution

GPU-Quicksort
cuNESL Kernel Mode
cuNESL Hybrid Mode

STL
OpenMP

(a) Uniform Distribution

 0.1

 1

 10

 100

 1000

 10000

1 2 4 8

E
xe

cu
tio

n
T

im
e

(m
s)

Elements (millions)

Gaussian Distribution

GPU-Quicksort
cuNESL Kernel Mode
cuNESL Hybrid Mode

STL
OpenMP

(b) Gaussian Distribution

 0.1

 1

 10

 100

 1000

 10000

1 2 4 8

E
xe

cu
tio

n
T

im
e

(m
s)

Elements (millions)

All Zeros

GPU-Quicksort
cuNESL Kernel Mode
cuNESL Hybrid Mode

STL
OpenMP

(c) All Zeros

 0.1

 1

 10

 100

 1000

 10000

1 2 4 8

E
xe

cu
tio

n
T

im
e

(m
s)

Elements (millions)

Bucket Distribution

GPU-Quicksort
cuNESL Kernel Mode
cuNESL Hybrid Mode

STL
OpenMP

(d) Bucket Distribution

 0.1

 1

 10

 100

 1000

 10000

1 2 4 8

E
xe

cu
tio

n
T

im
e

(m
s)

Elements (millions)

Staggered Distribution

GPU-Quicksort
cuNESL Kernel Mode
cuNESL Hybrid Mode

STL
OpenMP

(e) Staggered Distribution

 0.1

 1

 10

 100

 1000

 10000

1 2 4 8

E
xe

cu
tio

n
T

im
e

(m
s)

Elements (millions)

Sorted

GPU-Quicksort
cuNESL Kernel Mode
cuNESL Hybrid Mode

STL
OpenMP

(f) Sorted

Fig. 8. Quicksort Results

1 function bitonic sort(a) =
2 if (#a == 1) then a
3 else
4 let
5 bot = subseq(a,0,#a/2);
6 top = subseq(a,#a/2,#a);
7 mins ={min(bot,top):bot;top};
8 maxs ={max(bot,top):bot;top};
9 in flatten({bitonic sort(x) : x in [mins,maxs]}) $

10
11 function batchersort(a) =
12 if (#a == 1) then a
13 else
14 let b ={batcher sort(x) : x in bottop(a)};
15 in bitonic sort(b[0]++reverse(b[1]))
16 $

(a) Batcher Sort in NESL

1 void batchersort(SegmentArray<T> &array) {
2 while (!array.isRecursiveAllDone()){ // first while loop
3 array.setRecDoneByLength(1);
4 // nothing to do, just push the segment info
5 array.pushSegments(0);// line 14 in NESL
6 array.bottop();
7 }
8 array.popSegments(0);// no action for the finest granularity
9 while (array.popSegments(0)){

10 SubSegmentArray<T> bs(&array, SubBot);
11 bs.reverse();// correspond to the reverse call in line 15
12 while (!array.isRecursiveAllDone()){// seond while
13 array.setRecDoneByLength(1);
14 if (array.isRecursiveAllDone())break;
15 genMinMax(array);// responsible for line 5 to 9
16 array.bottop();// deduced from subseqs in line 5 and 6
17 }
18 }
19 }

(b) Generated CUDA C++ code for Kernel Mode

Fig. 9. Batcher Sort

grammer knows that the concatenated total length from
the less, equal and greater arras (partitions) are the
same as the original array. This greatly increases the
parallelization opportunity because the new offset for
each element can be calculated independently inside a
quicksort partition. Such information is difficult to deduce
for the cuNesl compiler. Therefore, for safety reasons, a
global scan needs to be performed to calculate the new
offset in “kernel mode”. This enforces a barrier between
different depths of recursion.

• For handwritten quicksort, programmers do not need to
maintain auxiliary arrays for segmented arrays. They just
need to keep record the sizes of each sub-array. (All other

variants require these sub-arrays to support segmented
arrays and incur overhead for maintaining these auxiliary
data structures.)

The performance in all our cases is two to three times
higher than STL, which is usually one third faster than
our handwritten OpenMP implementation, except for the all-
zero case. Considering the tremendous advantage in terms of
programming effort, we believe that cuNesl is a viable way to
realize data-parallelism for SIMT architecture.

B. Batcher Sort (Bitonic Sort)

We also evaluated the Batcher Sort benchmark, which
recursively calls Bitonic sort in a depth-first manner. Bitonic
sort itself is also a recursive call that keeps sorting symmetrical

 1

 10

 100

 1000

 10000

1 2 4 8 16

E
xe

cu
tio

n
T

im
e

(m
s)

Elements (millions)

Sort Key Only

GPU-SortingNetwork
cuNESL Kernel Mode
cuNESL Hybrid Mode

OpenMP

(a) Bitonic Sort (Key Only)

 1

 10

 100

 1000

 10000

1 2 4 8 16

E
xe

cu
tio

n
T

im
e

(m
s)

Elements (millions)

Sort Key and Value

GPU-SortingNetwork
cuNESL Kernel Mode
cuNESL Hybrid Mode

OpenMP

(b) Bitonic Sort (Key and Value)

Fig. 10. Batcher Sort Results

partitions in the first and second halves at different granularity
levels. The NESL source code depicted in Figure 9(a) is almost
as concise as that of quicksort.

This benchmark represents a typical example of multiple
recursions. Correspondingly, cuNesl generates one while loop
for each recursion. The top-level C++ code for thekernel mode
is shown in Figure 9(b). Because the first-level recursion is
operating in a bottom-up manner, we need to push the segment
information onto a stack and invoke the second-level recursive
functions (bitonic sort) when segments are popped (see the
while loop at line 9). The second-level recursion is transformed
into the while loop the same way as for the quicksort routine
(see lines 12-17).

We compare cuNesl with two other implementations of
Batcher Sort:

GPU-SortingNetworks: This code is released as an exam-
ple in NVIDIA’s CUDA SDK. It features highly optimized
hand-crafted CUDA code.

OpenMP: We also rewrote Batcher Sort in C++ utilizing
the OpenMPparallel for pragma directive for parallelization.
This version runs on CPUs only.

The LOC summary is listed below. Again, cuNesl (NESL)
increases the programmer’s productivity as an order of mag-
nitude fewer LOCs are required.

TABLE II
BATCHER SORT: L INE OF CODE COMPARISON

Batcher Sort LOC

SortingNetworks 250
cuNesl 15

OpenMP 120

We applied batcher sort on two kinds of arrays: one is just
a key array with unsigned int type; the other is a (key, value)
pair array with unsigned int type for both key and value.
Observed execution times are shown in Figure 10. Similar
to quicksort, we provide two bars for cuNesl. One is obtained
by executing inkernel modeonly. The “hybrid mode” in this
case meanskernel modefollowed by shared memory block

mode. As shown in the figure, the “hybrid mode” is about
10% faster than thekernel mode. Given the fact that theshared
memory block modesaves global memory traffic, it indicates
that batcher sort is memory bandwidth bound. The same
conclusion can be drawn for the other two implementations
as well because they both take roughly twice as much time to
sort the (key, value) pair as just the key array.

A closer look at the source code of GPU-SortingNetworks
reveals that this program also divides the execution into two
phases, where in the later stage it puts small sub-arrays into
Shared Memory to reduce bandwidth consumption. This is
exactly what cuNesl does. The handwritten CUDA code does
not need to keep track of changes in the segmented array,
making it about30 − 40% faster than the best cuNesl code
(hybrid mode).

Batcher sort is more friendly to parallelization than quick-
sort, even though it only works for arrays of certain sizes
(power of two). Within the investigated input size range (one
million to eight million elements), batcher sort is twice as
fast as quicksort on C++ code. CuNesl achieves up to a 5X
speedup over the parallel OpenMP implementation.
C. Discussions

NESL’s conciseness comes along with sacrifices: it can
only pass limited information to the compiler. A human
programmer can exploit algorithm-specific knowledge that a
compiler cannot easily deduce. Therefore, we do not expect
cuNesl’s performance to be at par with hand-optimized GPU
code. After all, it is often argued that the performance of a
language is proportional to the required programming effort,
especially for GPUs. Our results in the above two sorting
algorithms show that the performance gap is not as large as
the programming effort saved. The results are even more com-
pelling when comparing cuNesl with codes running on CPUs.
Our compiler outperforms them in terms of both execution
time and programmability. In addition, there is still much room
for cuNesl to improve its performance. Adding directives (e.g.,
OpenMP pragmas) maybe a promising direction for future
research.

VII. F UTURE WORK

CuNesl is under active development. There are many ex-
citing directions we would like to pursue to make it more
robust and efficient. Some are mentioned in previous sections.
Additional ideas are listed below:

Auto-Tuning : At the current stage, the transition threshold
between different execution modes is emitted as heuristic
constants. Our reported result is obtained by manually tuning
those constants. Our experience shows that changing those
constants can sometimes make a significant difference in
performance. It is thus desirable to auto-tune these parameters.

Non-Recursive Functions: This paper mainly focuses on
how to transform recursive functions in NESL and optimize
them. For non-recursive functions, we would like to show that
cuNesl performs equally well by transforming independent
code schemes into segments.

Scheduling of Execution Mode: Right now, the switching
between different execution modes is hand-coded: a barrier
exists that prevents two execution modes from overlapping in
time. By aggressively scheduling modes in parallel, we may
be able to obtain better performance for irregular algorithms,
such as quicksort.

VIII. C ONCLUSIONS

This paper presents translation techniques for a nested data
parallel language to be efficiently executed on modern SIMT
architectures. Previous approaches to convert nested paral-
lelism into flattened segments failed to consider the hierarchy
of execution modes of modern architectures. We show that by
applying control-flow transformations on the flattened code,
the new recursion-free control flow provides the freedom to
dynamically transition between different threading models.
The resulting CUDA code allows the user to enjoy both the
conciseness of data-parallel languages and the computational
power of SIMT accelerators.

REFERENCES

[1] G. E. Blelloch and P. R. Model, “NESL: A Nested Data-Parallel
Language,” Tech. Rep., 1993.

[2] G. E. Blelloch, Vector Models for Data-Parallel Computing. Cam-
bridge, MA, USA: MIT Press, 1990.

[3] S. Chatterjee, “Compiling Nested Data-Parallel Programs for
Shared-Memory Multiprocessors,”ACM Trans. Program. Lang.
Syst., vol. 15, pp. 400–462, July 1993. [Online]. Available:
http://doi.acm.org/10.1145/169683.174152

[4] “NVIDIA Cooperation, CUDA Programming Guide.”
[5] M. M. T. Chakravarty, R. Leshchinskiy, S. P. Jones, G. Keller, and

S. Marlow, “Data Parallel Haskell: a Status Report,” inProceedings of
the 2007 workshop on Declarative aspects of multicore programming,
ser. DAMP ’07. New York, NY, USA: ACM, 2007, pp. 10–18.
[Online]. Available: http://doi.acm.org/10.1145/1248648.1248652

[6] J. Sipelstein and G. E. Blelloch, “Collection-OrientedLanguages,”
Proceedings of the IEEE, vol. 79, no. 4, pp. 504–523, 1991.

[7] G. E. Blelloch and S. Chatterjee, “VCODE: A Data-Parallel Intermediate
Language,” inProceedings Frontiers of Massively Parallel Computation,
1990, pp. 471–480.

[8] G. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha,
“Implementation of a Portable Nested Data-Parallel Language,” Journal
of Parallel and Distributed Computing, vol. 21, pp. 102–111, 1994.

[9] http://code.google.com/p/cudpp/, “CUDPP.”
[10] http://www.accelereyes.com, “Jacket.”
[11] J. Hoberock and N. Bell, “Thrust: A Parallel Template Library,” 2010,

version 1.3.0. [Online]. Available: http://www.meganewtons.com/

[12] D. Unat, X. Cai, and S. Baden, “Mint: Realizing CUDA Performance
in 3D Stencil Methods with Annotated C,” inProceedings of the 25th
International Conference on Supercomputing (ICS’11), 2011.

[13] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis: An
Implicitly Parallel Programming Model for Stencil Computations on
Large-Scale GPU-Accelerated Supercomputers,” 2011.

[14] M. Christen, O. Schenk, and H. Burkhart, “PATUS: A Code Generation
and Autotuning Framework For Parallel Iterative Stencil Computations
on Modern Microarchitectures,”In IEEE Intl Parallel and Distributed
Processing Symposium (IPDPS), May 2011.

[15] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil, “Software
pipelined execution of stream programs on gpus,” inCGO ’09: Pro-
ceedings of the 2009 International Symposium on Code Generation and
Optimization. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 200–209.

[16] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos,
E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso,and
P. Hanrahan, “Liszt: A Domain Specific Language for BuildingPortable
Mesh-Based PDE Solvers,” inProceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’11. New York, NY, USA: ACM, 2011, pp. 9:1–9:12.
[Online]. Available: http://doi.acm.org/10.1145/2063384.2063396

[17] S. Lee, S.-J. Min, and R. Eigenmann, “Openmp to gpgpu: a compiler
framework for automatic translation and optimization,”SIGPLAN
Not., vol. 44, pp. 101–110, February 2009. [Online]. Available:
http://doi.acm.org/10.1145/1594835.1504194

[18] T. D. Han and T. S. Abdelrahman, “hicuda: a high-level directive-based
language for gpu programming,” inProceedings of 2nd Workshop
on General Purpose Processing on Graphics Processing Units, ser.
GPGPU-2. New York, NY, USA: ACM, 2009, pp. 52–61. [Online].
Available: http://doi.acm.org/10.1145/1513895.1513902

[19] S. zee Ueng, M. Lathara, S. S. Baghsorkhi, and W. mei W. Hwu,
“CUDA-Lite: Reducing GPU Programming Complexity,” inLCPC08,
2008.

[20] Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU
Compiler for Memory Optimization and Parallelism Management,”
in Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementation, ser. PLDI ’10.
New York, NY, USA: ACM, 2010, pp. 86–97. [Online]. Available:
http://doi.acm.org/10.1145/1806596.1806606

[21] P. Group, “PGI CUDA Fortran Compiler.” [Online]. Available:
http://www.pgroup.com/resources/cudafortran.htm

[22] S. Lee, V. Grover, M. M. T. Chakravarty, and G. Keller, “Gpu kernels
as data-parallel array computations in haskell,” 2009.

[23] R. Garg and J. N. Amaral, “Compiling Python to a Hybrid Execution
Environment,” in Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, ser. GPGPU ’10.
New York, NY, USA: ACM, 2010, pp. 19–30. [Online]. Available:
http://doi.acm.org/10.1145/1735688.1735695

[24] B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead:Compiling an
Embedded Data Parallel Language,” inProceedings of the 16th ACM
symposium on Principles and practice of parallel programming, ser.
PPoPP ’11. New York, NY, USA: ACM, 2011, pp. 47–56. [Online].
Available: http://doi.acm.org/10.1145/1941553.1941562

[25] L. G. Valiant, “A Bridging Model for Parallel Computation,” Commun.
ACM, vol. 33, pp. 103–111, August 1990. [Online]. Available:
http://doi.acm.org/10.1145/79173.79181

[26] M. Harris, S. Sengupta, and J. D. Owens, “Parallel PrefixSum (Scan)
with CUDA,” in GPU Gems 3, H. Nguyen, Ed. Addison Wesley, August
2007, ch. 39, pp. 851–876.

[27] D. Cederman and P. Tsigas, “A Practical Quicksort Algorithm for
Graphics Processors,” inProceedings of the 16th annual European
symposium on Algorithms, ser. ESA ’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 246–258.

