CuNesl: Compiling Nested Data-Parallel Languages
for SIMT Architectures

Yongpeng Zhang, Frank Mueller
North Carolina State University, Raleigh, NC, USA, mueafilzsc.ncsu.edu

Abstract—Data-parallel languages feature fine-grained parallel way to express nested parallelism.
primitives that can be supported by compilers targeting moem Previous research has studied how to compile data-parallel
many-core architectures where data parallelism must be expited languages for SIMD vector machines as well as MIMD

to fully utilize the hardware. Previous research has focusa on . .
converting data-parallel languages for SIMD (single instuction Parallel machines ([2], [3]). Our work, in contrast, taget

multiple data) architectures. However, directly applying them to the SIMT paradigm, an increasingly popular programming

today’s SIMT (single instruction multiple thread) architectures model advocated by modern GPU architectures. There is a

does not guarantee competitive performance. fundamental difference between SIMD and SIMT. In SIMD,
We propose cuNesl, a compiler framework to translate and 5y one flow of control exists. The width of vector data

optimize NESL into parallel CUDA programs for SIMT ar- h . . il f
chitectures. By converting recursive calls into while loog, we that an instruction operates on can swiftly vary from one

ensure that the hierarchical execution model in GPUs can be instruction to another. SIMT, in contrast, has more control
exploited on the “flattened” code. The performance gap betwen flow resources to support many independent threads, each of
our auto-generated CUDA code and hand-crafted CUDA code \hich can execute instructions asynchronously. The Igesel
thus narrows while programmability is greatly increased. Qur oo hjed threading model in SIMT gives programmers more
compiler outperforms handwritten parallel code running on flexibili d he lock hronization d¥IS!
CPUs in terms of both execution time and programmability. exipility an rerqove;t_ e lock-step Syn(? ronization S
l. INTRODUCTION Generally speaking, it is more challenging to fully utilites
Exploiting data a.rallelism is crucial for proarammin Onhardware resources in SIMT. SIMT requires coarser grained
P g P prog 9 Myata parallelism with many, preferably independent esitd

many-core architectures because data parallelism exmoses, .
achieve good performance.

much higher degree of parallelism than task or pipeline par-, . - . . .
9 g b PIp P An important vectorizing compiler technique is the trans-

allelism. This high degree of parallelism is necessary tepke .
up with the ever-increasing instruction throughput preddy formation of nested data parallgl languages to.SIMD code.
I transformed code can be ideally mapped into Rae

hardware. However, popular languages, such as C/C++, do Eﬁ _ .
treat data parallelism as a first-class citizen. This gapéen 2 el Vect(”)r Mode] which contains a vector processor and a
the front-end language and hardware is exacerbated bydhe f lattened v:ector mef,nory [2]. _Unfortunately, foday's SIMT
that compilers are struggling to extract data parallelisomf IS nqt truly. fIatter_1ed - In part|cular,.CUDA-enabI-ed GPUS
language abstractions. Therefore, human assistance a8 ofonsist of hierarchical levels of threading models witliedi#nt

necessary to increase performance, which adversely afteet tsg/ncfljr.or;lzatllozn prope_r'ues ([43)): (Ie\f/el-l) athSt le\f{ﬁ?@d
programmer’s productivity. read; (level-2) massive numbers of asynchronous thrieads

Although adding new ways to pass critical data par _UDA kernels; (level-3) moderate numbers of synchronigabl

lelism information to the compilere(g., via pragmas) for hreads in a CUDA kernel block and (level-4) a relatively

task-oriented languages maybe a viable method, we taksqall number of lock-step synchronized threads in a warp.

completely different approach. We investigate what coingil naive execution of the transformed code uses the level-

techniques are needed to efficiently map data-parallel Iat}H_CPU thread as flow control and treats the set of level-2
guages to state-of-the-art GPU architectures. One of d reads as a unified vector processor. Under the CUDA model,

taqes of this aporoach is to imorove proarammin roduytivieXp”Cit barriers are required for each nesting level betraot
9 PP P prog gp sugported in hardware at level 2. This lack of support result

because data-parallel languages are often found to be mor . .
. . IN Many unnecessary and expensive global barriers (at level
concise and elegant to express parallel algorithms.

Among the various data parallel languages, NESL [1] is c])T) between explicit kernel calls issued by the CPU, which
atdversely affects performance.

articular interest. It is based on the concept of nested da e . . .
Earallel abstractions, which are very commopn in divide-anﬂ Therefore, it is desirable to delve into the threading model
o ierarchy and take advantage of low-overhead local synchro
conquer paraliel algorlthms._An apply-to-ez?\ch co_nstruc{ © 'zationsy To that end, we gspawn the control flow atylevel—
courages programmers to think about algorithms in a péral 4. But .recursive fun’ctions in NESL pose a performance

fashion at the finest data granularity, thus removing theléxur : N
for compilers to engage in complicated data dependen@érdle' In previous approaches, there was no motn_/_amon to
analysis. Recursive calls are widely used in NESL, an emgéﬁmov.e recursions during code tra_msformatlons. vet, imgk
recursive functions at level-2/3 will cause overhead sugh a
This work was supported in part by NSF grants 1058779, ogsgaiPranch penalties and results in imbalanced computatioth loa
0937908, and DOE grant DE-FG02-08ER25837. Such overhead cannot be neglected and may consume the

benefits of faster local synchronizations. applies the recursive calls to gsort on a nested sequence

As we can see, previous code transformations no londgermed by less and greater sequences. Nested parallefism, i
suffice to generate code suitable for today’s hierarchitdllS this case, means that both the two gsorts and the generation
architectures. In this work, we design a source-to-souroéthree intermediate arrays inside gsort can be performed i
compiler to directly convert NESL to CUDA code that camparallel.
be efficiently executed on contemporary NVIDIA GPUs. We
focus on recursive NESL functions. In addition to the vector
ization transformations, we restructure control flow to osmn
recursion and provide fine-grained data granularity sietédr
SIMT architectures. A recursion-free control flow allowstas
dynamically switch between hierarchical threading modeis$
then to choose the best one under different scenarios.

The current cuNesl compiler targets CUDA C++, a vendor
proprietary programming model from NVIDIA. However, the
proposed compiler techniques can be extended to other data-
parallel languages, such as data-parallel Haskell [5]. ‘

Il. NESL LANGUAGE

In this section, we give a brief introduction to NESL. NESL ‘
is an example of a data-parallel language, also known as
a collection-oriented language [6]. It is strongly typeddan i

declarative (free of side-effects). L i
Like other data-parallel languages, NESL consists of stan- |__Se9ment Segment

dard apply-to-each (map) constructs. The apply-to-each co ¢ i ¢
s

_ ! . i I
ls:t(;lrjcetxaap;rﬁ)glees, ?hze;t;;\;)?eosz?(:ﬁtlon to all elements of a serpie

{negate(a): ain[3, -4, -9, 5]};

function gsort(a) =
if (#a< 2)then a
else
let pivot = a[#a/2];
less ={e in g e < pivot};
equal ={e in g e == pivot};
greater ={e in g e > pivot};
result ={qgsort(v): v in [less,greate}]
in result[0] ++ equal ++ result[1] $

O©CoO~NOOOhWNE

Fig. 1. Quicksort in NESL

Segment ‘

Segment ‘ ‘ Segment ‘

Fig. 2. Segmented Array in Quicksort: Each row is a segmeatedl.

negates the sequence of numbers in an element-wise fashion
in parallel, resulting in a sequence of values [-3, 4, 9, 5. Segmented Array
NESL ensures that apply-to-each constructs can be executeBrevious research translates data-parallel languaggs (
independently per element. Therefore, they can easily BESL) into a stack-based intermediate language called
mapped onto data-parallel execution models. VCODE ([7]), which is tailored to SIMD machines. This
A set of primitive parallel functions that can operate otransformation is calledlattening of nested parallelisif8].
sequences are pre-defined in NESL as well. These functiorie basic data type of VCODE is a flattened segmented array.
are not necessarily embarrassingly parallel but stillespnt Unlike the nested sequence in NESL, it allows only one level
efficient parallel algorithms. An example is “b = permutd(a, of partitions.
where sequence b is formed in such a way thajtthelements ~ Figure 2 depicts the dynamic partitioning of segmented
in sequence a is permuted to positioj} fpr all js. arrays for quicksort. Each row in the figure is a segmented
Support for nested parallelism is one of the key ideas behiatray. Initially, a single segmented array with just onensegt
NESL. Elements in a sequence in NESL can itself be exists. As more and more partitions are formed, the segrdente
sequence, which supports recursively nested sequencels. Suray breaks into many smaller segments.
nested parallelism comes from NESL's ability to apply any CuNesl adopts this concept and provides an efficient im-
function in parallel over the elements of a nested sequenpégementation for pre-defined parallel operations on segeaen
For example, a sum applied to a nested sequence forms aaseays. We will provide more details in Section V-A.

of parallel sum calls in a nested fashion. [1l. RELATED WORK
{sum(a) : ain [[23], [8309], [71]}: Programming on SIMT architectures has quickly become
=> it =[5 20, 7] : [int] ’ mainstream since the launch of CUDA and has changed the

. ,) GPU’s image from that of a purely graphics-specific acceler-
NESL defines several functions to support nesting ang, 15 a general-purpose co-processor. While a tremendous

unnesting of a sequence, including flattening (reducing thgmpers of applications can benefit from manually rewriting
nesting by one level) and bottop (splitting a sequence in Wgyacy code for CUDA, many researchers strive to improve
halves and returning them as a nested sequence). NESL is VGl programmability without sacrificing performance.

powerful in expressing divide-and-conquer parallel algans — 5ne approach is to provide handwritten, highly-efficient
Wlth. nest_ed recursive calls. Qupksort written in NESL ISmplementations for well-defined APIs so that they can di-
depicted in Figure 1. The expression rectly be used by other programs. CUDPP [9], Jacket [10] and
result = {qgsort(v): v in [less, greater]} Thrust [11] are examples of this approach. In fact, cuNesl's

implementation directly uses CUDPP’s parallel scan/reduc ~ Se9mented aray:

APIs. However, this only applies to certain areas where the @@@@@@@@
interface can be clearly defined or standards exist. ‘QD@@‘@@ ‘Q ‘

By restricting problems into specific domains, compilers
can aggressively exploit domain-specific knowledge to -auto
generate efficient CUDA code. Domains like stencil computa-

tion [12], [13], [14], streaming [15] and PDE solvers [16kar thread
already benefiting from this approach. blocks
For general-purpose languages, a common method is to (a) Kernel Mode

add directives €.g, pragmas) to enable code generation by segmented array:
the CUDA back-end. They can be either extending existing

directives like OpenMP [17] or introduce new sets of pragmas ‘@@@‘OQ ‘@@@@@‘@@@@‘
[18], [19]. There are also source-to-source compilers that

translate a naive CUDA kernel into an optimized highly

efficient version [20]. [@@} [OQ} [@

In terms of data-parallel languages, the PGl CUDA Fortran
Compiler [21] directly compiles HPF into CUDA source code.
The compilation of other data-parallel languages, such as
Haskell and Python, into CUDA code is still an active reskarc
topic [22], [23], [24].

CuNesl shares the same philosophy as Copperhead [24] in
that a hierarchical execution model should be exploited in KD@@‘@@ ‘QQ ‘QQQ‘
today’s architectures to achieve good performance foredest Shared Memory
parallelism. CuNesl also extends the applicability of this
concept to recursive calls, which cannot easily be stdyical KD@@‘ ‘QD@ ‘ ‘@@ ‘ @)@Q)‘
mapped to finite execution hierarchies and are thus beyond
Copperhead. In addition, we show thatnastedflattening
transformation, if coupled with data-flow analysis on the
transformed code, matches the hierarchical execution mode [@@] [@@} [@@} [@@}
for SIMT architectures and results in additional perforgen
benefits.

thread
blocks

(b) Block Mode
segmented array:

thread
blocks

IV. CUNESL COMPILER (c) Shared Memory Block Mode
A. Removing Recursive Calls
As discussed in Section II-A removing the recursive Ca”g’g. 4. Different Execution Modes. In kernel mode, threadspss elements
. L . [. In the array globally. In block mode, one block is assignedateegment.
in NESL is important for efficient compllatlon in SIMT Shared Memory block mode is an optimized version of block enddutilizes
architectures. In this section, we will use quicksort as ame on-chip Shared Memory to reduce global memory accesses.

example to show how cuNesl maps a recursive function into]]
a while loop, even for some non-tail recursion cases terminate (have reached the exit branch). Inside the lolbp, a

For a recursive function to terminate, there are alwayPerations are applied to segments that have not been marked
conditional branches inside the recursive function. Astea®S finished. P2() is executed when the loop exits. Here, we
one of the branches does not make further recursive calls g0 assume that P2()'s execution can be safely moved to the
simplified control flow for a recursive function is illusteatin €nd- Otherwise, this step need would need to be moved inside
Figure 3(a). The P2() branch is the exit path for the recersifh® While loop so that it is applied to every segment that has
call. In the recursive path, if P4() is empty and this patSt terminated.
directly returns after issuing a single recursive callntitdas a ~ Quicksort in NESL is an example of an algorithm that
tail-recursive function. Most of the NESL examples do ndit facan be transformed into a parallel tail-recursive functibhe
into the category of tail-recursion, for they either havetiple mapping from NESL source code into the recursive control
recursive calls or have a non-empty P4() block. Fortunatefipw is shown in 3(c). P4() is a simple concatenation openatio
NESL's syntax guarantees that such multiple recursivescall'herefore, the compiler can perform code motion to place it
if they exist, can be executed in parallel. And it is oftepefore issuing the recursive calls. This is done by insgrtin
the case that P4() is a simple operation that, if positionéde “equal” sequence in in between the “less” and “greater”
prior to the recursive calls, does not affect the final outpuiequences and marking this as a non-recursive segment.
Examples of such operations are concatenation, flatten andrigure 5 lists the resulting code generated for quicksort.
bottop. Figure 3(b) shows the recursion-free transforomati The compiler fuses operations that share the same input into
based on the above assumptions. The recursive functionoie operation. For instance, all three intermediate flagyarr
now replaced by a while loop, which exits once all segmenfisr “less”, “equal” and “greater” are generated from the sam

gsort(a)

P1

Recursive_foo()

P1() for each unfinished segmen v N
R i

branch check for each unfinished segment bo P3
e | -
0 0 ! Enpty pivot = af#a/2];
P3() for each unfinished segmen less ={eina|e <pivot};

equal ={e in a | e == pivot};
i greater ={ ein a| e > pivot};

‘ P4() for each unfinished segment }7
result = {gsort(v): v in [less, greater]};

R | .
P2() for all segments ‘

(a) Recursive Functions i resultfO] ++ equal ++ result[1]

(c) Quicksort Control Flow

(b) Segmented Version

return;

return a; i

Fig. 3. Convert (a) Recursivéoo() into (b) a recursion-free while loop with (c) an exampbr Quicksort.

% voidhf?SEJ'rt(Seg_msntA"?yTAiD&a”é(\)Y{) { not usually deliver competitive performance. The reasdhas
while(larray.Isrecursive. one) H H : -

3| I« branch 0. check segment lengh today’s SIMT archne_ctures consist of a h|erarchy_of exiecut

4 array.setRecDoneByLength(1); modes, each of which has its own characteristics. Consider

5| [+ branch 1,/ _ CUDA, which has the following execution levels:

6 MirroredArray<T> pivots(array.getNumSegments())

, Kernel level: This is similar to the bulk synchronization
7 gen pivots(array, pivots); model [25]. Control flow is driven by one or a few host

g MirroredArray<uint> less flag(array.getSize(): threads on the CPU side. Concurrent computation is perfdrme
10 - ' ' by launching massively-threaded CUDA kernels. Global syn-
1 genflags from_pivot(array, pivots, lesdlag, ...); chronization is feasible (between CUDA kernel launcheg) bu
12 i ;

13 FlagSublrregularSegmentArrayl > less(); relatlvely expens!ve. o

14 FlagSublrregularSegmentArrayl > equal(); Block level This level operates inside CUDA kernels on a
ig FlagSublrregularSegmentArreyl > greater(); GPU. Threads in the same block execute the same program,
17 FlagSublrregularSegmentArray> «children[3]: but do not necessarily procged at. the same rate. Sharing
18 children[0] = &lesser; between threads can be realized via Shared Memory. Syn-
19| children[1] = &equal; chronization at block level is relatively cheap. In the CUDA
20| children[2] = &greater; s

21 context, it is supported trough the syncthreads() API call.

22| |« reshuffle each segment in array into 3 segments, Warp level: This level is similar to SIMD in the sense that

23 a built-in function in segmented array/ threads in the same warp execute programs at the same pace
24 array.reshuffle(&children[0], 3);

25/ } on a GPU. There can be one or more warps at the upper block
26| } level. Branches are more efficiently executed if thread$ién t

warp all agree to take the same path. Synchronization baetwee
warps is zero-overhead because it is enforced by the haedwar
YWia lock-step execution.

Fig. 5. Generated Code for Quicksort
kernel function. The concatenation of three segments islia b

n functlgn of our.segmented array (reshuffle() method). Experienced CUDA programmers often choose particular
B. Hybrid Execution Mode execution levels to solve different problems, or even a lerob
After converting recursive routines into iterative whileat different stages, based on various factors. If globatisya
loops, we have successfully flattened the program and madaiitation is only occasionally required, a kernel level perg
suitable for SIMT architectures. Threads can now start froghould be designed. If a problem can be divided into at least a
the bottom and work at the finest data granularity during threoderate number of independent smaller problems (a divide-
entire execution. But in practice, this transformatiomaldoes and-conquer approach), it is generally more efficient tokwor

1) template <classT> __global _ void Kernel Mode:This mode corresponds to the kernel level

Z qT‘;ﬁgﬁ%%'ic';ﬁgg%ﬁé?:igﬂ?;fggmﬁgﬁﬁa’?ﬁgg abstraction above. When the segmented array consists f onl
4| __shared__ IrregularSegmentGpuArrayCT> s_array; a few large segments, it does not make sense to assign a
5| _shared GpuArray<uint> less flag; ... large segment to only one thread block. Instead, it is more
? F;ﬁgiﬂayebpuufgrr?gfg;a‘fgf’tsséan/reduce efficient to spawn as many threads as possible and allow
8| _ shared _ uint mSharedBufferl...]; multiple blocks to work on the same segment (Figure 4(a)).
9| _shared _ FlagSublrregularSegmentGpuArray > s The drawback of this mode is that synchronizations across
10 children(3; a segment can only be performed between disjoint CUDA
11| __syncthready); kernels, which is relatively expensive. From the recursive
12| Il copy the segment info locally routine’s point of view, this mode is usually advocated & th

ﬁ i (théfrz?,%’énze?&?away); beginning of a recursive call where the number of partitions
15 - is small. The foreach operations on a segmented array are
i? —syncthreads); translated into kernel pseudo code like the following:

18| int segid = blockldx.x; , stepsize = blockDimx * gridDi mXx;

19 if (array—isRecursiveDone(segid)) for (id = threadldx.x; id < size; id += stepsize)

20 return;; {

21| /I prepare for the assigned segment

22| s array.convertToLocal(bid); segid = get Segld(id);

23| _ syncthreads); segl en = get SegLen(segid);

24 L

25| /I the while loop from the recursive call }

26| while (Is_array.isRecursiveAllDone ())

27 s array.setRecDoneByLength(1); Block Mode: When the segment array contains a moderate
28 _syncthready), number of segments, we can assign each segment to an
29 if (s_array.isRecursiveAllDone()) . . .

30 break: exclusive thread block (Figure 4(b)). This correspondshi t

31 __syncthreads); block level abstraction. Because a barrier is supportedinvit

32 o . a thread block, many operations on segments, though not
33 gen pivots block(s array, pivots); . . .

34 ~ syncthreadg); embarrassingly parallel, can be performed without leatiey

35 gen flags block(s array, pivots, lesdlag,..); kernel, thus reducing kernel launch overheads. This mode ca
gs —syncthreads); often be applied during the mid-phase of a recursive callwhe
38 s, é"ay.,eshume(ch”dren, 3, mSharedBuffer); enough partitions are produced to fully utilize the manyeso

39 __syncthreads); of SIMT architectures. The foreach operations on a segrdente
40} in thi i i

41| 1l copy the data back to the global array array, in this mode, is trz.;mslated to the following pseuddec

42| s array.copyFromLocal(): inside the CUDA kernel:

43| }

stepsi ze = bl ockDi m x;
Fig. 6. Generated Code for Quicksort in Block Mode segi d = bl ockl dx. x;
segsi ze = get SegLen(segid);
egof fset = get SegOf f set (segid);
at the block level because kernel launch overhead and gIoEa (id = th?eadl gx_ X: i ((j <gseéSi ze; id += stepsize)

synchronization are reduced. It is not uncommon to utilize

the lock-step synchronization property at the warp level fo ny_gl obal _id = segoffset + id;

small but communication-rich operations. Such examples ca - - -

be found in efficient CUDA implementations of parallel reduc

or scan [26]. Shared Memory Block Mode: One important and effective
Lessons learned from coding styles of real-world appleptimization opportunity arises when the size of each segme

cations lead us to believe that a hybrid execution mode hgcomes small enough to fit in the on-chip Shared Memory.

necessary to achieve good performance in cuNesl. A trulye can preload segments into Shared Memory first and

flattened hardware is not likely to be available due to thgork on them before storing them back to global memory

unavoidable tradeoff between hardware resources and p&igure 4(c)). This way, we can reduce memory bandwidth

formance. Relying on a flattened execution mode will onlgonsumption. Because Shared Memory is limited in size, this

underutilize the hardware, which would make such a methatbde is usually feasible and more efficient near the end of

inferior to other approaches. a recursive call. This mode can be regarded as an optimized
Therefore, we define several execution modes in cuNesgrsion ofblock mode

corresponding to the hierarchical levels of hardware abstr As of now, we have not explored the benefits of going down

tions. This is best explained in the context of how to accetsthe warp level in cuNesl because warp level programming is

and manipulate elements in a segmented array for a masgften found in low-level libraries that aresedby cuNesl. This

number of independent SIMT threads. Right now, cuNeHd not to say that the lockstep synchronization at warp lesvel

defines the following three execution modes: unimportant. A study to assess if this mode is beneficial for

mNumSegments : 1 . .
mSegLen%th: 10 mSegDone array of size mNumSegments. It is used for

‘@ €10]0I0101E1010) @‘ mSegindex:0000000000 recursive calls. A “1” at position i means that the i-th segine
mSegOffset: 0 . L .
mNumSegments : 3 \ mSegDone: 0 has reached the exit condition of the recursive call.

mSeglLength:4 1 5

. =3 In the quicksort example, such segment information also
mSegindex:0000122222 ‘@ O J @‘@‘@ ©8® @‘ preserves the current state of the quicksort recursiorur€ig

mSegOffset: 0 4 5 NUMS s 6 ; -
mSegDone : 010 / milumsegments : 7 illustrates the status of a segmented array for quick$t.

L __..., mSeglLength:311311 . <) ‘) -
\@ @ @‘@}@‘@) @‘@;; mSegindex: 000123334 sSix auxiliary arrays (32 bits each) come with a linear inseea
o mSegoftset 034589 in the memory footprint for a total of 24 bytes per NESL data
mNumSegments : 8 \ mSegDone: 011011
mSeglength:21112111 structure.
mSegindex: 0012344567 DG) (9) The layout of a segmented array can be dynamically mod-
mSegOffset: 02345789 @L®L@@@@ ified b {] >egme ay h Y y h
mSegDone: 01111111 / _ ified by the user via storing a 1 in the mSegment array. The
N <ol mg‘ggﬁeﬁg;”he.“{sl- 2 runtime is responsible for adjusting the remaining aungtiar-

W R
AR
5N
LIN)
o R
~N

©E@E[©@ ©)@2@]@] msegindex 012
,,,,,,, R mSegOffset : 0 1
mSegDone: 111

rays accordingly. We have developed an efficient data-jghral
approach via Algorithm 1 to minimize the execution time of
this operation. These auxiliary data structures togethir w

Fig. 7. The modification to the segmented array for the quidkShadowed the algorithm help reduce the overhead of the code generated
elements are quicksort pivots. Elements in the same seganergrouped by by cuNesl.

rectangular boxes. Dotted boxes indicate segments thahairesubject to
recursive calls.

Algorithm 1 Update auxiliary arrays from mSegments

more general cases is subject to future research. mSegindex := InclusivéScan(mSegments, N);
Going back to quicksort, the pseudocode in Figure 5 is in Barrier();

fact generated for thiernel modgonly. To switch to other ~MNumSegments := mSegindex[N-1];

execution modes, cuNesl| adds a counter check inside the whil Barrier();

loop to exit the loop early, i.e., once the number of segments‘cor i=1- N_do .

exceeds a threshold. It then calls a single CUDA kernel thate ~ MSegindex[i] := mSegindex(i] - 1;

ecutes the rest of the iterationstitock modeThe pseudo-code ~ €nd for

for this single kernel is shown in Figure 6. It contains a ami ~ Barrier();

while loop as in theéernel modéFigure 5). Functions that are for @ =1 — N do

used as kernel calls kernel modere transformed into device if mSegments[i] == then
functions in a segmented version. Barrier synchronizaigon mSegOffsetfmSegindex[i] := i;
provided by__syncthreads() between parallel regions. end if
V. RUNTIME end _for
Barrier();
A. Segmented Array) for i =1 — mNumSegments do
The core of cuNesl’s runtime system supports the neces- j j == (mNumSegments - lthen

sary primitives for segmented arrays. Segmented arrays are [extOffset = N:

encapsulated in various classes that can be included in the gge

compiler-emitted code. They are further compiled by NVCC nextOffset := mSegOffset[i+1];

to generate binaries. To support the concept of a segmented o4 i

array, to make it conveniently available to the programnmer a mSegLength[i] = nextOffset - mSegOffset[i]:
to ensure efficiency for fine-grained SIMT threads to work on onq for

individual elements, we add several auxiliary arrays hesid
the raw data array to maintain the state of a segmented array,, his parallel algorithm, all for loops and the

(assuming its size is N): o Inclusive Scan() function can be efficiently and cooperatively
~mSegments array of size N. Elements in this array arqindependently) executed by SIMT threads. We need to gener-
either 1 or 0. A 1 indicates the start of a new segmentggs 1o versions of code based on this algorithm to fulfill the
array. need for different execution modes discussed in SectioB, V-
~ mNumSegmentssize one. It stores the number of segmentsne for thekernel modethe other for the other two modes. In
in a segmented array. the kernel modeall for loops are transformed into separate
mSegindex array of size N. mSegindex[i] returns whichCUDA kernels and InclusiveScan() is invoked by calling
segment the i-th element belongs to. appropriate CUDPP library APIs [9]. A Barrier() is implilit
mSegOffset array of size mNumSegments. It stores thenforced by the CUDA runtime. In thelock modeand the
offset of each segment relative to the starting addressef &hared memory block modthe entire algorithm becomes a
data array. device function called by other device or global functidimss
mSegLength array of size mNumSegments.also applies to the Inclusiv&can() function, which only needs
mSegLengthli] returns the length of the i-th segment. to perform a local scan at the block level. Barrier() needseo

: . . _ TABLE |
instantiated by__syncthreads() (provided as a CUDA device QUICKSORT. LINE OF CODE COMPARISON

function) to ensure correctness.
This strategy to provide kernel-level and block-level supp

[Implementation| LOC |

. . : X GPU-Quicksort] 900
for an operation needs to be applied to either pre-defined Cu?\,ﬂgl = 9
NESL primitives in the runtime or emitted code by the cuNesl| STL 100
compiler. This allows us to exhaustively explore differeain- OpenMP 130

binations of execution modes to find the fastest combination))
Fortunately, except for a few differencesd, barriers inblock ~ For STL constructs, we are counting the lines of code at

modeare realized via_syncthreads()), these two versions arthe first major level, e.g., inside of std::sort(). In our @ptP
similar to each other. implementation, we use std::partition() to split arraysoin

The implementation of the CuNes! runtime takes advantagd&Ves: which is a central part of quicksort. This hand et
of existing hand-crafted CUDA libraries for many of the>|L code is counted as just one LOC in the table. The
parallel primitives supported in NESL. For example, cupppLOC metric shows that NESL supports extremely concise
APIs at different layers are heavily used in our runtime eyst expressions of such a recursive function: The LOC metric

We also provide implementations of other primitives, sush & ©ne t0 two orders of magnitude less than for the other

sum, concatenation and reverse. |m\F/J\I/eme:jnta;u(zjn;.] esting strat in [27] b
o e adopted the same testing strategy as in mea-
B. Optimizations P 9 9y y

suring the execution time under different input distribus,

We call a segmented arrayregular segmented array whenpamely uniform, Gaussian, zero, bucket, staggered anedsort
all its segments are of the same length. For such segmentg@ details of these distributions are explained in [27]. We
arrays, we do not need to waste memory and time to maintajfyhtly revised the original Quicksort NESL script to clseca
the aforementioned auxiliary arrays. Instead, only a singbetter pivot element for each segment array. Instead oéllylin
scalar is needed to keep track of the length of each segmgiKing the element at the middle index, we pick the pivot as
in the array. All other information, such as Segment offsmt athe average of the max and min value in each Segment_
the corresponding segment id for an element, can be caéclilat The final performance is shown in Figure 8. The Y axis
on-the-fly and independently by SIMT threads. The runtimghows the execution time on a log scale. The X depicts shows
system will convert aegular segmented array to a non-regulathe array size from one million to eight million elements
one whenever necessary. (numbers). For cuNesl, we show two bars. The first is obtained

V1. EXPERIMENTAL RESULTS by only generating code in th&ernel mode The second

We conducted our experiments on a Quad-core Intel(Rigrts withkernel modeand then switches tblock modeafter
Xeon(R) CPU E5507 machine with 6 GB memory. Th@roducing enough segments (256). This is referred to as the
GPU was a Geforce GTX 480 consisting of 15 Streamingybrid mode” in the figures. The switching point needs to
Multiprocessors. The host code was compiled by Gce 4.4R€ tuned (currently manually, could be automated) because i
CUDA code was compiled by NVCC, CUDA release 4.0. BotHepends on the size of the sorting data types and the resource

Gec and CUDA codes are compiled at optimization level -08Sage (register and Shared Memory). We can see that the
A. Quicksort hybrid mode usually takes about half of the time of keenel

, _mode This demonstrates our previous hypothesis that different

‘We present cuNesl's quicksort performance by comparigecytion modes are suitable for different segment arhafgs.
with three other implementations: also tried to add thehared memory block mode the hybrid

GPU-Quicksort: This is a hand-written CUDA sorting mode when segments are becoming small enough fit in the
library using quicksort in the beginning and switching tespy’s Shared Memory. But it provides no improvement over
bitonic sort in the end [27]. To the best of our knowledggpe two-stage hybrid mode. The extra barrier and bookkeepin
it is the fastest open-source GPU implementation involvirgetween theblock modeand shared memory block mode
quicksort. The total number of source code lines, includingsuited in a net performance loss due to overheads. Therefo
:f_JOth the host-side C++ and CUDA, adds up to about 9QRe execution time in this case is not displayed in the Figure
ines. 8.

STL: This is also a hybrid sorting implementation: it first Figure 8 shows that our best compiled quicksort routine
uses introsort, which is based on quicksort, followed bghybrid mode) is about two to three times slower than the
insertion sort. It is run on CPUs only. hand-written CUDA implementation (GPU-Quicksort). Thes i

OpenMP: We also wrote quicksort in OpenMP using thenainly due to three reasons:
parallel pragma directives. This, too, is run on CPUs only. , GPU-Quicksort uses bitonic sort at the end, i.e., after
The maximal number of threads is 8. The same thread con- spawning a sequence of the quicksort recursions. Quick-
figuration applies to other experiments. sort is well known to be less efficient than bitonic sort

We use the number of lines of code (LOC) as a metric due to the partition imbalance problem.
to assess the programmability, i.e., reflecting the efféthe o GPU-Quicksort is using problem-specific knowledge to
programmer to write code. reduce execution time. For this particular case, the pro-

Execution Time (ms)

Execution Time (ms)

Uniform Distribution Gaussian Distribution All Zeros

10000 10000 10000
GPU-Quicksort GPU-Quicksort GPU-Quicksort
cuNESL Kernel Modemwmmms CuNESL Kernel Modemmmms cuNESL Kernel Modemwmms
CUNESL Hybrid Mode s CUNESL Hybrid Mode s CUNESL Hybrid Mode s
sy - STL s = 1 — E STL mm—
1000 m 1000 M 1000 OpenMP sz
E E
[} [}
100 F £ 100 F £
e e
i=4 i=4
) S
wr 5 10F =]
(53 (53
17} 17}
X X
[} [}
1ir 1ir
0.1 0.1
1 2 4 8 1 2 4 8 1 2 4 8
Elements (millions) Elements (millions) Elements (millions)
(a) Uniform Distribution (b) Gaussian Distribution (c) All Zeros
Bucket Distribution Staggered Distribution Sorted
10000 - 10000 - 10000 -
GPU-Quicksort s GPU-Quicksort s GPU-Quicksort s
CUNESL Kermel Modess=== CUNESL Kermel Modes==== CUNESL Kermel Modes====
CUNESL Hybrid Modemmmmm ~ CUNESL Hybrid Modemmmmm CUNESL Hybrid Modemmmmm
1000 — & 1000F — 3 & 1000F —
E E
(] (]
100 b E 100 b E 100 p
F F
c c
k) S
10t 5 10t 5 10t
(5} (5}
Q Q
X X
n} n}
1t 1t 1t
0.1 0.1 0.1
1 2 4 1 2 4 1 2 4 8
Elements (millions) Elements (millions) Elements (millions)
(d) Bucket Distribution (e) Staggered Distribution (f) Sorted

Fig. 8. Quicksort Results

1 void batchersort(SegmentArrayT > &array) {
. I _ 2 while (farray.isRecursiveAllDone()] // first while loop

% iffu?;goibit)o E:cgrs]o;t(a) B 3 array.setRecDoneByLength(1);

3 else - 4 /I nothing to do, just push the segment info

4 let 5 array.pushSegments(0);line 14 in NESL

5 bot = subseq(a,0,#a/2); ? array.bottop();

? trgﬁ]: _s?g]siﬁ?égﬁg/z)fﬁizfto@_ 8 array.popSegments(Q);no action for the finest granularity
8 maxs_:{max(bo’t t(r))p.)'boyt'to};)' while (array.popSegments(0Y)

9 in flatten{bitonic 'sort(x) "x i;1 [mins,maxs]) $ SubSegmentArrayT> bs(&array, SubBot);
10 = ’ ’ bs.reverse()/ correspond to the reverse call in line 15

while (larray.isRecursiveAllDone()]// seond while
array.setRecDoneByLength(1);

9

10

11
. _ 12
11 function batchersort(a) = 13
14 if (array.isRecursiveAllDone (preak;
15
16
17
18
19 }

12 if (#a == 1) then a
13 else
14 let b ={batchersort(x) : x in bottop(a);
15 in bitonic_sort(b[0]++reverse(b[1]))
$

genMinMax (array)/ responsible for line 5 to 9
array.bottop()// deduced from subseqs in line 5 and 6

(a) Batcher Sort in NESL
(b) Generated CUDA C++ code for Kernel Mode

Fig. 9. Batcher Sort

grammer knows that the concatenated total length from variants require these sub-arrays to support segmented
the less, equal and greater arras (partitions) are the arrays and incur overhead for maintaining these auxiliary
same as the original array. This greatly increases the data structures.)

parallelization opportunity because the new offset for The performance in all our cases is two to three times

each element can be calculated independently inside,@ner than STL, which is usually one third faster than
quicksort partition. Sl_Jch information is difficult to deduc our handwritten OpenMP implementation, except for the all-
for the cuNesl compiler. Therefore, for safety reasons, fg case. Considering the tremendous advantage in terms of

global scan needs to be performed to calculate the N\, amming effort, we believe that cuNesl is a viable way to
offset in “kernel mode”. This enforces a barrier betweeq,e(,i"Ze data-parallelism for SIMT architecture

different depths of recursion. P Batcher Sort (Bitonic Sort)
For handwritten quicksort, programmers do not need 10)
maintain auxiliary arrays for segmented arrays. They just\We also evaluated the Batcher Sort benchmark, which

need to keep record the sizes of each sub-array. (All otHFUrsively calls Bitonic sort in a depth-first manner. Bito
sort itself is also a recursive call that keeps sorting syinoa

Sort Key Only Sort Key and Value

10000 - 10000 -
GPU-SortingNetwor k GPU-SortingNetwor k s
cuNESL Kernel Modemamsms cuNESL Kernel Modeassmaas
CUNESL Hybrid Mode s CUNESL Hybrid Mode mssss
OpenMP mw— OpenMP ww—
— 1000 E — 1000 ¢
[%2) [%2]
E E
))
£ £
= [
c 100 4 = 100
8 2
5 5
o [S]
Q Q
X X
] |
10 | E 10 ¢
1
1 2 4 8 16 1 2 4 8 16
Elements (millions) Elements (millions)
(a) Bitonic Sort (Key Only) (b) Bitonic Sort (Key and Value)

Fig. 10. Batcher Sort Results

partitions in the first and second halves at different grarityl mode As shown in the figure, the “hybrid mode” is about
levels. The NESL source code depicted in Figure 9(a) is @imd9®% faster than th&ernel modeGiven the fact that thehared
as concise as that of quicksort. memory block modsaves global memory traffic, it indicates
This benchmark represents a typical example of multipthat batcher sort is memory bandwidth bound. The same
recursions. Correspondingly, cuNes| generates one wddlp | conclusion can be drawn for the other two implementations
for each recursion. The top-level C++ code for Keenel mode as well because they both take roughly twice as much time to
is shown in Figure 9(b). Because the first-level recursion $®rt the (key, value) pair as just the key array.
operating in a bottom-up manner, we need to push the segmen closer look at the source code of GPU-SortingNetworks
information onto a stack and invoke the second-level répairsreveals that this program also divides the execution int@ tw
functions (bitonic sort) when segments are popped (see {igases, where in the later stage it puts small sub-arrags int
while loop at line 9). The second-level recursionis transfed Shared Memory to reduce bandwidth consumption. This is
into the while loop the same way as for the quicksort routirexactly what cuNesl does. The handwritten CUDA code does

(see lines 12-17). not need to keep track of changes in the segmented array,
We compare cuNesl with two other implementations ahaking it about30 — 40% faster than the best cuNesl code
Batcher Sort: (hybrid mode).

GPU-SortingNetworks: This code is released as an exam- Batcher sort is more friendly to parallelization than quick
ple in NVIDIAs CUDA SDK. It features highly optimized sort, even though it only works for arrays of certain sizes
hand-crafted CUDA code. (power of two). Within the investigated input size range&on

OpenMP: We also rewrote Batcher Sort in C++ utilizingmillion to eight million elements), batcher sort is twice as
the OpenMPparallel for pragma directive for parallelization. fast as quicksort on C++ code. CuNesl| achieves up to a 5X
This version runs on CPUs only. speedup over the parallel OpenMP implementation.

The LOC summary is listed below. Again, cuNesl (NESLE. Discussions
increases the programmer’s productivity as an order of mag-NESL's conciseness comes along with sacrifices: it can
nitude fewer LOCs are required. only pass limited information to the compiler. A human
programmer can exploit algorithm-specific knowledge that a
compiler cannot easily deduce. Therefore, we do not expect
cuNesl's performance to be at par with hand-optimized GPU

: code. After all, it is often argued that the performance of a
SortingNetworks | 250 language is proportional to the required programming &ffor
CuNes| 15 guag prop q prog g

OpenMP 120 especially for GPUs. Our results in the above two sorting

algorithms show that the performance gap is not as large as

We applied batcher sort on two kinds of arrays: one is juste programming effort saved. The results are even more com-
a key array with unsigned int type; the other is a (key, valugelling when comparing cuNesl with codes running on CPUs.
pair array with unsigned int type for both key and valueglur compiler outperforms them in terms of both execution
Observed execution times are shown in Figure 10. Similame and programmability. In addition, there is still muckom
to quicksort, we provide two bars for cuNesl. One is obtainddr cuNesl| to improve its performance. Adding directiveg (e
by executing inkernel modeonly. The “hybrid mode” in this OpenMP pragmas) maybe a promising direction for future
case meangernel modefollowed by shared memory block research.

TABLE I
BATCHER SORT: LINE OF CODE COMPARISON

[Batcher Sort | LOC |

VIl. FUTURE WORK

[12]

CuNesl is under active development. There are many ex-
citing directions we would like to pursue to make it morgi3
robust and efficient. Some are mentioned in previous sextion
Additional ideas are listed below: [14]

Auto-Tuning: At the current stage, the transition threshold
between different execution modes is emitted as heuristic
constants. Our reported result is obtained by manuallngjni[15]
those constants. Our experience shows that changing those pipelined execution of stream programs on gpus,G60O '09: Pro-
constants can Sometimes make a Signiﬁcant difference in ceedings of the 2009 International Symposium on Code Gtoerand
performance. It is thus desirable to auto-tune these pdeame

Non-Recursive Functions This paper mainly focuses on[16]
how to transform recursive functions in NESL and optimize
them. For non-recursive functions, we would like to showt tha
cuNesl performs equally well by transforming independent
code schemes into segments.

Scheduling of Execution Mode Right now, the switching 17
between different execution modes is hand-coded: a barrier
exists that prevents two execution modes from overlapping i
time. By aggressively scheduling modes in parallel, we mayg;
be able to obtain better performance for irregular algargh
such as quicksort.

VIII. CONCLUSIONS

This paper presents translation techniques for a nested dal!
parallel language to be efficiently executed on modern SIMT
architectures. Previous approaches to convert nested- paggl
lelism into flattened segments failed to consider the hagmar
of execution modes of modern architectures. We show that by
applying control-flow transformations on the flattened ode

the new recursion-free control flow provides the freedom f
dynamically transition between different threading madel

9

The resulting CUDA code allows the user to enjoy both thé2]
conciseness of data-parallel languages and the commﬂhtiqm
power of SIMT accelerators.

(1]
(2]
(31

(4]
(5]

(6]
(7]

(8]

El
[10]
[11]

REFERENCES

G. E. Blelloch and P. R. Model, “NESL: A Nested Data-Pksial
Language,” Tech. Rep., 1993.

G. E. Blelloch, Vector Models for Data-Parallel Computing Cam-
bridge, MA, USA: MIT Press, 1990.

S. Chatterjee, “Compiling Nested Data-Parallel Progga for
Shared-Memory Multiprocessors,”ACM Trans. Program. Lang.
Syst, vol. 15, pp. 400-462, July 1993. [Online]. Available:

http://doi.acm.org/10.1145/169683.174152

“NVIDIA Cooperation, CUDA Programming Guide.”

M. M. T. Chakravarty, R. Leshchinskiy, S. P. Jones, G.l&®eland
S. Marlow, “Data Parallel Haskell: a Status Report,”"Rmceedings of
the 2007 workshop on Declarative aspects of multicore @wogning
ser. DAMP '07. New York, NY, USA: ACM, 2007, pp. 10-18.
[Online]. Available: http://doi.acm.org/10.1145/124861248652

J. Sipelstein and G. E. Blelloch, “Collection-Orientddanguages,”
Proceedings of the IEEEvol. 79, no. 4, pp. 504-523, 1991.

G. E. Blelloch and S. Chatterjee, “VCODE: A Data-Paraligermediate
Language,” irProceedings Frontiers of Massively Parallel Computation
1990, pp. 471-480.

G. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelsteind M. Zagha,
“Implementation of a Portable Nested Data-Parallel Laggtfalournal
of Parallel and Distributed Computingrol. 21, pp. 102-111, 1994.
http://code.google.com/p/cudpp/, “CUDPP.”
http://www.accelereyes.com, “Jacket.”

J. Hoberock and N. Bell, “Thrust: A Parallel Templatebtary,” 2010,
version 1.3.0. [Online]. Available: http://www.meganews.com/

[24]

[25]

[26]

[27]

D. Unat, X. Cai, and S. Baden, “Mint: Realizing CUDA PRamhance
in 3D Stencil Methods with Annotated C,” iRroceedings of the 25th
International Conference on Supercomputing (ICS/2011.

N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Pygin
Implicitly Parallel Programming Model for Stencil Comptitms on
Large-Scale GPU-Accelerated Supercomputers,” 2011.

M. Christen, O. Schenk, and H. Burkhart, “PATUS: A Coder@ration
and Autotuning Framework For Parallel Iterative Stencim@uitations
on Modern Microarchitectures,n IEEE Intl Parallel and Distributed
Processing Symposium (IPDR$jay 2011.

A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetoftware

Optimization Washington, DC, USA: IEEE Computer Society, 2009,
pp. 200-209.

Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medling Barrientos,

E. Elsen, F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonaad

P. Hanrahan, “Liszt: A Domain Specific Language for Buildidgrtable
Mesh-Based PDE Solvers,” ifProceedings of 2011 International
Conference for High Performance Computing, Networkingrégfe and
Analysis ser. SC '11. New York, NY, USA: ACM, 2011, pp. 9:1-9:12.
[Online]. Available: http://doi.acm.org/10.1145/206332063396

S. Lee, S.-J. Min, and R. Eigenmann, “Openmp to gpgpuoragsler
framework for automatic translation and optimization3IGPLAN
Not, vol. 44, pp. 101-110, February 2009. [Online]. Available:
http://doi.acm.org/10.1145/1594835.1504194

T. D. Han and T. S. Abdelrahman, “hicuda: a high-levektdiive-based
language for gpu programming,” ifProceedings of 2nd Workshop
on General Purpose Processing on Graphics Processing Usis.
GPGPU-2. New York, NY, USA: ACM, 2009, pp. 52-61. [Online].
Available: http://doi.acm.org/10.1145/1513895.151390

S. zee Ueng, M. Lathara, S. S. Baghsorkhi, and W. mei WuHw
“CUDA-Lite: Reducing GPU Programming Complexity,” inCPC08
2008.

Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU
Compiler for Memory Optimization and Parallelism Managetyie

in Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementatiger. PLDI '10.
New York, NY, USA: ACM, 2010, pp. 86—-97. [Online]. Available
http://doi.acm.org/10.1145/1806596.1806606

P. Group, “PGlI CUDA Fortran Compiler.” [Online].
http://www.pgroup.com/resources/cudafortran.htm

S. Lee, V. Grover, M. M. T. Chakravarty, and G. Keller, 3G kernels
as data-parallel array computations in haskell,” 2009.

R. Garg and J. N. Amaral, “Compiling Python to a Hybrideextion
Environment,” in Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Urser. GPGPU ’10.
New York, NY, USA: ACM, 2010, pp. 19-30. [Online]. Available
http://doi.acm.org/10.1145/1735688.1735695

B. Catanzaro, M. Garland, and K. Keutzer, “Copperheadmpiling an
Embedded Data Parallel Language,” Rmoceedings of the 16th ACM
symposium on Principles and practice of parallel programgniser.
PPoPP '11. New York, NY, USA: ACM, 2011, pp. 47-56. [Online].
Available: http://doi.acm.org/10.1145/1941553.194256

L. G. Valiant, “A Bridging Model for Parallel Computatn,” Commun.
ACM, vol. 33, pp. 103-111, August 1990. [Online]. Available:
http://doi.acm.org/10.1145/79173.79181

M. Harris, S. Sengupta, and J. D. Owens, “Parallel Pr&fixn (Scan)
with CUDA,” in GPU Gems 3H. Nguyen, Ed. Addison Wesley, August
2007, ch. 39, pp. 851-876.

D. Cederman and P. Tsigas, “A Practical Quicksort Aidpon for
Graphics Processors,” iRroceedings of the 16th annual European
symposium on Algorithmser. ESA '08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 246-258.

Avaible:

