
Proactive Fault Tolerance for HPC with Xen Virtualization ∗

Arun Babu Nagarajan1, Frank Mueller1, Christian Engelmann2, Stephen L. Scott2

1 Department of Computer Science 2 Computer Science and Mathematics Division
North Carolina State University Oak Ridge National Laboratory

Raleigh, NC 27695-7534 Oak Ridge, TN 37831-6016
e-mail: mueller@cs.ncsu.edu

ABSTRACT
Large-scale parallel computing is relying increasingly onclusters
with thousands of processors. At such large counts of compute
nodes, faults are becoming common place. Current techniques to
tolerate faults focus on reactive schemes to recover from faults and
generally rely on a checkpoint/restart mechanism. Yet, in today’s
systems, node failures can often be anticipated by detecting a dete-
riorating health status.

Instead of a reactive scheme for fault tolerance (FT), we are
promoting a proactive one where processes automatically migrate
from “unhealthy” nodes to healthy ones. Our approach relieson
operating system virtualization techniques exemplified bybut not
limited to Xen. This paper contributes an automatic and transpar-
ent mechanism for proactive FT for arbitrary MPI applications.
It leverages virtualization techniques combined with health mon-
itoring and load-based migration. We exploit Xen’s live migra-
tion mechanism for a guest operating system (OS) to migrate an
MPI task from a health-deteriorating node to a healthy one without
stopping the MPI task during most of the migration. Our proac-
tive FT daemon orchestrates the tasks of health monitoring,load
determination and initiation of guest OS migration. Experimental
results demonstrate that live migration hides migration costs and
limits the overhead to only a few seconds making it an attractive
approach to realize FT in HPC systems. Overall, our enhance-
ments make proactive FT a valuable asset for long-running MPI
application that is complementary to reactive FT using fullcheck-
point/restart schemes since checkpoint frequencies can bereduced
as fewer unanticipated failures are encountered. In the context of
OS virtualization, we believe that this is the first comprehensive
study of proactive fault tolerance where live migration is actually
triggered by health monitoring.

∗The research at NCSU was supported in part by NSF grants CCR-
0237570(CAREER), CNS-0410203, CCF-0429653 and DOE DE-
FG02-05ER25664. The research at Oak Ridge National Laboratory
(ORNL) is sponsored by the Office of Advanced Scientific Com-
puting Research; U.S. Department of Energy. ORNL is managed
by UT-Battelle, LLC under Contract No. De-AC05-00OR22725.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’07 June 18–20, 2007, Seattle, WA, USA.
Copyright 2007 ACM 978-1-59593-768-1/07/0006 ...$5.00.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
parallel programming; D.4.5 [Operating Systems]: Reliability—
checkpoint/restart; D.4.8 [Operating Systems]: Performance—
measurements

General Terms
Performance, Reliability

Keywords
High-Performance Computing, Proactive Fault Tolerance, Virtual-
ization

1. INTRODUCTION
High-end parallel computing is relying increasingly on large clus-

ters with thousands of processors. At such large counts of compute
nodes, faults are becoming common place. For example, today’s
fastest system, BlueGene/L (BG/L) at Livermore National Labo-
ratory with 65,536 nodes, was experiencing faults at the level of
a dual-processor compute card at a rate of 48 hours during initial
deployment [22]. When one node fails, a 1024-processor midplane
had to be temporarily shut down to replace the card.

Results from related work [20], depicted in Table 1, show that the
existing reliability of larger HPC clusters is currently constrained
by a mean time between failures (MTBF) / interrupts (MTBI) inthe
range of 6.5-40 hours, depending on the maturity / age of the instal-
lation. The most common causes of failure were processor, mem-
ory and storage errors / failures. This is reinforced by a study of
HPC installations at Los Alamos National Laboratory (LANL)in-
dicating that, on average, 50% of all failures were due to hardware
and almost another 20% due to software with more than 15% of
the remaining failure cases unaccounted for in terms of their cause
[36]. Another study conducted by LANL estimates the MTBF, ex-
trapolating from current system performance [30], to be 1.25 hours
on a petaflop machine.

System # CPUs MTBF/I

ASCI Q 8,192 6.5 hrs
ASCI White 8,192 5/40 hrs (’01/’03)

PSC Lemieux 3,016 9.7 hrs
Google 15,000 20 reboots/day

Table 1: Reliability of HPC Clusters

Commercial installations, such as Google (see Table 1) experi-
ence an interpolated fault rate of just over one hour for equivalent

number of nodes, yet their fault-tolerant middleware hidessuch
failures altogether so that user services remain completely intact
[17]. In this spirit, our work focuses on fault-tolerant middleware
for HPC systems. More specifically, this paper promotes operating
system virtualization as a means to support fault tolerance(FT).
Since OS virtualization is not an established method in HPC due
to the potential overhead of virtualization, we conducted astudy
measuring the performance of the NAS Parallel Benchmark (NPB)
suite [42] using Class C inputs over Xen [6]. We compared three
Linux environments: Xen Dom0 Linux (privileged domain 0 OS),
Xen DomU Linux (a regular guest OS), and a regular, non-Xen
Linux version on the same platform (see Section 3 for configura-
tion details). The results in Figure 1 indicate a relative speed of
0.81-1.21 with an average overhead of 1.5% and 4.4% incurredby
Xen DomU and Dom0, respectively. This overhead is mostly dueto
the additional software stack of virtualizing the network device, as
OS-bypass experiments with InfiniBand and extensions for super-
pages have demonstrated [26, 25]. With OS bypass, the overhead is
lowered to≈ ±3% for NAS PB Class A. In our experiments with
Class C inputs, CG and LU result in a reproducible speedup (using
10 samples for all tests) for one or both Xen versions, which ap-
pears to be caused by memory allocation policies and relatedactiv-
ities of the Xen Hypervisor that account for 11% of CG’s runtime,
for example. The details are still being investigated. Hence, OS
virtualization accounts for only marginal overhead and caneasily
be amortized for large-scale systems with a short MTBF.

Ç
ÞÇ

õÇÇ
õÞÇ
�ÇÇ
�ÞÇ
#ÇÇ
#ÞÇ
:ÇÇ
:ÞÇ
ÞÇÇ

Qh �� ­Ä Ûò 	Ä

	
7N
e|

�

ª ÁØï��4ÛKeØb y e4�§ y e4¾NÕì

Figure 1: Xen Overhead for NAS PB, Class C, 16 Nodes

Current techniques to tolerate faults focus on reactive schemes
where fault recovery commonly relies on a checkpoint/restart (C/R)
mechanism. However, the LANL study [30] also estimates the
checkpointing overhead based on current techniques to prolong a
100 hour job (without failure) by an additional 151 hours in petaflop
systems.

In today’s systems, node failures can often be anticipated by de-
tecting a deteriorating health status using monitoring of fans, tem-
peratures and disk error logs. Recent work focuses on capturing the
availability of large-scale clusters using combinatorialand Markov
models, which are then compared to availability statisticsfor large-
scale DOE clusters [37, 32]. Health data collected on these ma-
chines is used in a reactive manner to determine a checkpointinter-
val that trades off checkpoint cost against restart cost, even though
many faults could have been anticipated. Hence, instead of areac-
tive scheme for FT, we are promoting a proactive one that migrates
processes away from “unhealthy” nodes to healthy ones. Suchan
approach has the advantage that checkpoint frequencies canbe re-
duced as sudden, unexpected faults should become the exception.

The availability of spare nodes is becoming common place in re-
cent cluster acquisitions. We expect such spare nodes to become a
commodity provided by job schedulers upon request. Our experi-
ments assume availability of 1-2 spare nodes.1

The feasibility of health monitoring at various levels has recently
been demonstrated for temperature-aware monitoring,e.g., by us-
ing ACPI [3], and, more generically, by critical-event prediction
[33]. Particularly in systems with thousands of processors, such
as BG/L, fault handling becomes imperative, yet approachesrange
from application-level and runtime-level to the level of operating
system (OS) schedulers [9, 10, 11, 27]. These and other approaches
are discussed in more detail in Section 5. They differ from our ap-
proach in that we exploit OS-level virtualization combinedwith
health monitoring and live migration.

In related, orthogonal work [40], experiments were conducted
with process-level BLCR [14] to assess the overhead of saving
and restoring the image of an MPI application on a faulty node,
which we compare with the save/restore overhead over Xen [6]. For
BLCR, this comprises the process of an MPI task while for Xen,the
entire guest OS is saved. Process-level FT with BLCR showed an
overhead of 8-10 seconds for BLCR and 15-23 seconds for Xen for
NPB programs under Class C inputs on a common experimental
platform. Variations are mostly due to the memory requirements
of specific benchmarks. These memory requirements also domi-
nate those of the underlying OS, which explains why Xen remains
competitive in these experiments. From this, we conclude that both
process-level and OS-level C/R mechanisms are viable alternatives.
This paper focuses on the OS virtualization side.

We have designed and implemented an automatic and transpar-
ent mechanism for proactive FT of arbitrary MPI applications over
Xen [6]. A novel proactive FT daemon orchestrates the tasks of
health monitoring, load determination and initiation of guest OS
migration. To this extent, we exploit the intelligent performance
monitoring interface (IPMI) for health inquiries to determine if
thresholds are violated, in which case migration should commence.
Migration targets are determined based on load averages reported
by Ganglia. Xen supportslive migration of a guest OS between
nodes of a cluster,i.e., MPI applications continue to execute during
much of the migration process [12]. In a number of experiments,
our approach has shown that live migration can hide migration costs
such that the overall overhead is constrained to only a few seconds.
Hence, live migration provides an attractive solution to realize FT
in HPC systems. Our work shows that proactive FT complements
reactive schemes for long-running MPI jobs. Specifically, should a
node fail without prior health indication or while proactive migra-
tion is in progress, our scheme reverts to reactive FT by restarting
from the last checkpoint. Yet, as proactive FT has the potential to
prolong the mean-time-to-failure, reactive schemes can lower their
checkpoint frequency in response, which implies that proactive FT
can lower the cost of reactive FT. In the context ofOS virtualiza-
tion, this appears to be the first comprehensive study of proactive
fault tolerance where live migration is actually triggeredby health
monitoring.

The paper is structured as follows. Section 2 presents the design
and implementation of our health monitoring and migration system
with its different components. Section 3 describes the experimental
setup. Section 4 discusses experimental results for a set ofbench-

1Our techniques also generalize to task sharing on a node should
not enough spare nodes be available, yet the cost is reduced per-
formance for tasks on such a node. This may result in imbalance
between all tasks system-wide and, hence, decrease overallperfor-
mance. In this model, tasks sharing a node would still run within
multiple guest OSs hosted by a common hypervisor on a node.

marks. Section 5 contrasts this work to prior research. Section 6
summarizes the contributions.

2. SYSTEM DESIGN AND IMPLEMENTA-
TION

A proactive fault tolerance system, as the name implies, should
provide two mechanisms, namely one for proactive decision mak-
ing and another to address load balancing, which, in combination,
provide fault tolerance. An overview of the system components
and their interaction is depicted in Figure 2. Each node hosts an
instance of the Xen Virtual Machine Monitor (VMM). On top of
the VMM runs a privileged/host virtual machine, which is a para-
virtualized Linux version in our case. In addition, a guest virtual
machine (also Linux) runs on top of the Xen VMM as well. The
privileged virtual machine hosts, among others, a daemon for Gan-
glia, which aids in selecting the target node for migration,and our
proactive FT daemon (PFTd) used to monitor health and initiate
migration. The guest virtual machines form a multi-purposedae-
mon (MPD) ring of all cluster nodes [8] on which the MPI applica-
tion can run (using MPICH-2). Other MPI runtime systems would
be handled equally transparently by Xen for the migration mecha-
nism. Upon deteriorating health, determined through the monitor-
ing capabilities of the baseboard management controller (BMC),
the entire guest VM is migrated to another node that already hosts
a privileged VM but no guest VM. We will describe each of these
components of our system in the following.

Figure 2: Overall setup of the components

2.1 Fault Tolerance over Xen
To provide an effective fault tolerance system, a mechanismis

required that gracefully aids the relocation of an MPI task,thereby
enabling it to run on a different physical node with minimum pos-
sible overhead. More importantly, the MPI task should not be
stopped while migration is in progress. Xen provides exactly this
capability. Xen is a para-virtualized environment that requires the
hosted virtual machine to be adapted to run on the Xen virtualma-
chine monitor (VMM). Applications, however, need not be mod-
ified. On top of the VMM runs a privileged/host virtual machine
with additional capabilities exceeding those of other virtual ma-
chines. We can start other underprivileged guest virtual machines
on that host VM using the command line interface. Most signifi-
cantly, Xen provideslive migration, which enables the guest VM
to be transferred from one physical node to another [12]. Xen’s
mechanism exploits the pre-migration methodology where all state

is transferred prior to target activation. Migration preserves the
state of all the processes on the guest, which effectively allows the
VM to continue execution without interruption. Migration can be
initiated by specifying the name of guest VM and the IP of the des-
tination physical node hosted by the VM. Live migration occurs as
a sequence of phases:

1. When the migration command is initiated, the host VM in-
quires if the target has sufficient resources and reserves them
as needed in a so-called pre-migration and reservation step.

2. Next, the host VM sends all pages of the guest VM to the
destination node in a first iteration of the so-called pre-copy
step. Prior to sending a page, the corresponding modified
(dirty) bit is cleared in the shadow page table entry (PTE)
of the guest OS. During the transfer, the guest VM is still
running. Hence, it will modify data in pages that were al-
ready send. Using page protection, a write to already sent
pages will initially result in a trap. The trap handler then
changes the page protection such that subsequent writes will
no longer trap. Furthermore, the dirty bit of the page is auto-
matically set in the PTE so that it can later be identified.

3. The host VM now starts sending these dirty pages iteratively
in chunks during subsequent iterations on the pre-copy step
until a heuristic indicates that pre-copy is no longer benefi-
cial. For example, the ratio of modified pages to previously
sent pages (in the last iteration) can be used as a termina-
tion condition. At some point, the rate of modified pages to
transfer will stabilize (or nearly do so), which causes a tran-
sition to the next step. The portion of the working set that is
subject to write accesses is also termed in writable working
set (WSS) [12], which gives an indication of the efficiency
of this step. An additional optimization also avoids copying
modified pages if they are frequently changed.

4. Next, the guest VM is actually stopped and the last batch
of modified pages is sent to the destination where the guest
VM restarts after updating all pages, which comprises the
so-called stop & copy, commitment and activation steps.

The actual downtime due to the last phase has been reported to
be as low as 60 ms [12]. Keeping an active application runningon
the guest VM will potentially result in a high rate of page mod-
ifications. We observed a maximum actual downtime of around
three seconds for some experiments, which shows that HPC codes
may have higher rates of page modifications. The overall overhead
contributed to the total wallclock time of the application on the mi-
grating guest VM can be attributed to this actual downtime plus
the overhead associated with the active phase when dirty pages are
transferred during migration. Experiments show that this overhead
is negligible compared to that of the total wallclock time for HPC
codes.

2.2 Health monitoring with OpenIPMI
Any system that claims to be proactive must effectively predict

an event before it occurs. As the events to be predicted are fail-
stop node failures in our case, a health monitoring mechanism is
needed. To this extent, we employ the Intelligent Platform Manage-
ment Interface (IPMI). IPMI is an increasingly common manage-
ment/monitoring interface that provides a standardized message-
based mechanism to monitor and manage hardware, a task per-
formed in the past by software with proprietary interfaces.2 The
2Alternatives to IPMI exist, such as lmsensor, but they tend to be

Baseboard Management Controller (BMC), depicted in Figure2, is
equipped with sensors to monitor different properties. Forexam-
ple, sensors provide data on temperature, fan speed, and voltage.
IPMI provides a portable interface for reading these sensors to ob-
tain data for health monitoring.

OpenIPMI [2] provides an open-source higher-level abstraction
from the raw IPMI message-response system. We use the OpenIPMI
API to communicate with the Baseboard Management Controller
of the backplane and to retrieve sensor readings. Based on the
readings obtained, we can evaluate the health of the system.We
have implemented a system with periodic sampling of the BMC to
obtain readings of different properties. OpenIPMI also provides an
event-triggered mechanism allowing one to specify ,e.g., a sensor
reading exceeding a threshold value and register a notification re-
quest. When the specified event actually occurs, notification is trig-
gered by activating an asynchronous handler. This event-triggered
mechanism might offload some overhead from the application side
since the BMC takes care of event notification. Unfortunately,
OpenIPMI did not provide stable event notification at the time of
writing. Hence, we had to resort to the more costly periodic sam-
pling alternative.

2.3 Load Balancing with Ganglia
When a node failure is predicted due to deteriorating health, as

indicated by the sensor readings, a target node is selected to mi-
grate the virtual machine to. We utilize Ganglia [1], a widely used,
scalable distributed monitoring system for HPC systems, toselect
the target node in the following manner. All nodes in the cluster
run a daemon that monitors local resource (e.g., CPU usage) and
sends multicast packets with the monitored data. All nodes listen
to such messages and update their local view in response. Thus, all
nodes have an approximate view of the entire cluster.

By default, Ganglia measures the CPU usage, memory usage and
network usage among others. Ganglia provides extensibility in that
application-specific metrics can also be added to the data dissem-
ination system. For example, our systems requires the capability
to distinguish whether a physical node runs a virtual machine or
not. Such information can be added to the existing Ganglia infras-
tructure. Ganglia provides a command line interface, gmetric, to
this respect. An attribute specified through the gmetric tool indi-
cates whether the guest VM is running or not on a physical node.
Once added, we obtain a global view (of all nodes) available at
each individual node. Our implementation selects the target node
for migration as the one which does not yet host a guest virtual
machine and has the lowest load based on CPU usage. We can fur-
ther extend this functionality to check if the selected target node
has sufficient available memory to handle the incoming virtual ma-
chine. Even though the Xen migration mechanism claims to check
the availability of sufficient memory on the target machine before
migration, we encountered instances where migration was initiated
and the guest VM crashed on the target due to insufficient mem-
ory. Furthermore, operating an OS at the memory limit is known to
adversely affect performance.

2.4 PFT Daemon Design
We have designed and implemented a proactive fault tolerance

daemon (PFTd). In our system depicted in Figure 2, each node runs
an instance of the PFTd on the privileged VM, which serves as the
primary driver of the system. The PFTd gathers details, interprets
them and makes decisions based on the data gathered. The PFTd
provides three components: Health monitoring, decision making

system-specific (x86 Linux) and may be less powerful. Also, disk
monitoring can be realized portably with SMART.

Figure 3: Proactive Fault Tolerance Daemon

and load balancing (see Figure 3). After initialization, the PFTd
monitors the health state and checks for threshold violations. Once
a violation is detected, Ganglia is contacted to determine the target
node for migration before actual migration is initiated.

Upon PFTd initialization, a configuration file containing a list
of parameters to be monitored is consulted. In addition to a pa-
rameter name, the lower and upper thresholds for that particular
parameter can also be specified. For example, for dual processor
machines, the safe temperature range for two CPUs and the valid
speed range for system fans is specified. Next, the PFTd initializes
the OpenIPMI library and sets up a connection for the specified net-
work destination (determined by the type of interface,e.g., as LAN,
remote hostname and authentication parameters, such as userid and
password). A connection to the BMC becomes available after suc-
cessful authentication. A domain is created (using the domain API)
so that various entities (fans, processors, etc.) are attached to it. The
sensors monitor these entities.

OpenIPMI, as we discussed earlier, provides an event-driven sys-
tem interface, which is somewhat involved, as seen next. We need
to register a handler for an event with the system. Whenever the
event occurs, that particular handler will be invoked. While creat-
ing a domain, a handler is registered, which will be invoked when-
ever a connection changes state. The connection change handler
will be called once a connection is successfully established. Within
the connection change handler, a handler is registered for an entity
state change. This second handler will be invoked when new en-
tities are added. (Upon program start, it discovers entities one by
one and adds them to the system.) Inside the entity change handler,
a third handler is registered that is triggered upon state changes of
sensor readings. It is within the sensor change handler thatPFTd
discovers various sensors available from the BMC and records their
internal sensor identification numbers for future reference. Next,
the list of requested sensors is validated against the list of those
available to report discrepancies. At this point, PFTd registers a fi-
nal handler for reading actual values from sensors by specifying the
identification numbers of the sensors indicated in the configuration

file. Once these values are available, this handler will be called and
the PFTd obtains the readings on a periodic basis.

After this lengthy one-time initialization, the PFTd goes into a
health monitoring mode by communicating with the BMC. It then
starts monitoring the healthvia periodic sampling of values from
the given set of sensors before comparing it with the threshold val-
ues. In case any of the thresholds is exceeded, control is transferred
to the load balancing module of the PFTd. Next, a target node is
selected to migrate the guest VM to. The PFTd then contacts Gan-
glia to determine the least loaded node. The PFTd next issuesa
migration command that initiates live migration of the guest node
from the “unhealthy” node to the identified target node. After the
migration is complete, the PFTd raises an alarm to inform thead-
ministrator about the change and also logs the sensor valuesthat
caused the disruption pending further investigation.

3. EXPERIMENTAL FRAMEWORK
Experiments were conducted on a 16 node cluster. The nodes

are equipped with two AMD Opteron-265 processors (each dual
core) and 2 GB of memory interconnected by a 1 Gbps Ethernet
switch. The Xen 3.0.2-3 Hypervisor/Virtual Machine Monitor is
installed on all the nodes. The nodes run a para-virtualizedLinux
2.6.16 kernel as a privileged virtual machine on top of the Xen hy-
pervisor. The guest virtual machines are configured to run the same
version of the Linux kernel as that of the privileged one. They are
constrained within 1 GB of main memory. The disk image for the
guest VMs is maintained on a centralized server. These guestVMs
can be booted disklessly on the Xen hypervisor using PXE-like net-
boot via NFS. Hence, each node in the cluster runs a privileged VM
and a guest VM. The guest VMs form an MPICH-2 MPD ring on
which MPI jobs run. The PFTd runs on the privileged VM and
monitors the health of the node using OpenIPMI. The privileged
VM also runs Ganglia’s gmond daemon. The PFTd will inquire
with gmond to determine a target node in case the health of a node
deteriorates. The target node is selected based on resourceusage
considerations (currently only process load). As the selection cri-
teria are extensible, we plan to consult additional metricsin the
future (most significantly, the amount of available memory given
the demand for memory by Xen guests). In the event of health
deterioration being detected, the PFTd will migrate the guest VM
onto the identified target node.

We have conducted experiments with several MPI benchmarks
executed on the MPD ring over guest VMs. Health deterioration
on a node is simulated by running a supplementary daemon on the
privileged daemon that migrates the guest VM between the original
node and a target node. The supplementary daemon synchronizes
migration control with the MPI task executing on the guest VM
by utilizing the shared file system (NFS in our case) to indicate
progress / completion. To assess the performance of our system,
we measure the wallclock time for a benchmark with and with-
out migration. In addition, the overhead during live migration can
be attributed to two parts: (1) overhead incurred due to transmit-
ting dirty pages and (2) the actual time for which the guest VMis
stopped. To measure the latter, the Xen user tools controlling the
so-called “managed” migration [12] are instrumented to record the
timings. Thus, the actual downtime for the VM is obtained.

Results were obtained for the NAS parallel benchmarks (NPB)
version 3.2.1 [42]. The NPB suite was run on top of the experimen-
tal framework described in the previous section. Out of the NPB
suite, we obtained results for the BT, CG, EP, LU and SP bench-
marks. Class B and Class C data inputs were selected for runs on

4, 8 or 9 and 16 nodes.3 Other benchmarks in the suite were not
suitable,e.g., IS executes for too short a period to properly gauge
the effect of imminent node failures while MG required more than
1 GB of memory (the guest memory watermark) for a class C run.

4. EXPERIMENTAL RESULTS
Our experiments focus on various aspects: (a) overheads asso-

ciated with node failures — single or multiple failures4, (b) the
scalability of the solution (task and problem scaling on migration)
and (c) the total time required for migrating a virtual machine. Be-
sides the above performance-related metrics, the correctness of the
results was also verified. We noted that in every instance after mi-
gration, the benchmarks completed without an error.

Ç
ÞÇ

õÇÇ
õÞÇ
�ÇÇ
�ÞÇ
#ÇÇ
#ÞÇ
:ÇÇ
:ÞÇ
ÞÇÇ

Qh �� ­Ä Ûò 	Ä

	
7N

e|
�

ÏæN4§KÁ��ýKNe õ4§KÁ��ýKNe

Figure 4: Execution Time for NPB Class C on 16 Nodes (stan-
dard deviation for wallclock time was 0-5 seconds — excluding
migration — and less than 1 second for migration overhead)

As a base metric for comparison, all the benchmarks were run
without migration to assess a base wallclock time (averagedover
10 runs per benchmark). The results obtained from various experi-
ments are discussed in the following.

4.1 Overhead for Single-Node Failure
The first set of experiments aims at estimating the overhead in-

curred due to one migration (equivalent to one imminent nodefail-
ure). Using our supplementary PFT daemon, running on the privi-
leged VM, migration is initiated and the wallclock time is recorded
for the guest VM including the corresponding MPD ring process on
the guest. As depicted in the Figure 4, the wallclock time forexecu-
tion with migration exceeds that of the base run by 1-4% depending
on the application. This overhead can be attributed to the migra-
tion overhead itself. The longest execution times of 16-17 minutes
were observed for NPB codes BT and SP under Class C inputs for
4 nodes (not depicted here). Projecting these results to even longer-
running applications, the overhead of migration can becomealmost
insignificant considering current mean-time-to-failure (MTTF) rates.

4.2 Overhead for Double-Node Failure
In a second set of experiments, we assessed the overhead of

two migrations (equivalent to two simultaneous node failures) in
3Some NAS benchmarks have 2D, others have 3D layouts for23

or 32 nodes, respectively.
4We use the term failure in the following interchangeably with im-
minent failure due to health monitoring.

terms of wallclock time. The migration overhead of single-node
and double-node failures over 4 base nodes is depicted in Figure
5. We observe a relatively small overhead of 4-8% over the base
wallclock time. While the probability of a second failure ofa node
decreases exponentially (statistically speaking) when a node had al-
ready failed, our results show that even multi-node failures can be
handled without much overhead, provided there are enough spare
nodes that serve as migration targets.

Ç

ÞÇ

õÇÇ

õÞÇ

�ÇÇ

�ÞÇ

#ÇÇ

Qh �� ­Ä Ûò 	Ä

	
7N

e|
�

ÏæN4§KÁ��ýKNe õ4§KÁ��ýKNe �4§KÁ��ýKNe�

Figure 5: Execution Time for NPB Class B on 4 Nodes

4.3 Effect of Problem Scaling
We ran the NPB suite with class B and C inputs on 16 nodes

to study the effect of migration on scaling the problem size (see
Figure 6). Since we want to assess the overhead, we depict only the
absolute overhead encountered due to migration on top of thebase
wallclock execution time for the benchmarks. Also, we distinguish
the overhead in terms of actual downtime of the virtual machine and
other overheads (due transferring modified pages, cache warm-up
at the destination, etc.), as discussed in the design section.

The downtime was determined in a ping-pong migration scenario
since the timestamps of a migration source nodes and of a target
node cannot be compared due to insufficient clock synchronization.
Hence, we obtain the start time, s1A, of the stop & copy phase
within the first live migration on node A, the finish, f1B, of the first
and the start, s2B, of the second stop & copy phase on node B, and
the finish time, f2A, of the second migration on node A again. The
total downtime per migration is calculated the duration foreach of
the two downtimes divided by two:

downtime =
(f2A − s1A) − (s2B − f1B)

2
.

Since the two timestamps on A and the two timestamps on B are
consistent with one another in terms of clock synchronization, we
obtain a valid overhead metric at fine time granularity.

Figure 6 shows that, as the task size increases from Class B
to Class C, we observe either nearly the same overhead or an in-
crease in overhead (except for SP). This behavior is expected. Prob-
lem scaling results in larger data per node. However, the migra-
tion mechanism indiscriminately transfers all pages of a guest VM.
Hence, problem sizes per se do not necessarily affect migration
overhead. Instead, the overhead is affected by the modification rate
of pages during live migration. The overhead further depends on
whether or not page transfers can be overlapped with application
execution and on the moment the migration is initiated. If migration

coincides with a global synchronization point (a collective, such as
a barrier), the overhead may be smaller compared than that ofa
migration initiated during a computation-dominated region [28].
SP under class C input appears to experience a migration point
around collective communication while memory-intensive writes
may dominate for others, such as CG and — to a lesser extent —
BT and LU.

Ç

�

:

�

+

õÇ

õ�

õ:

õ�

Qh �� ­Ä Ûò 	Ä

	
7N

e|
�

Q � Q � Q � Q � Q �
�ï���

B7ýØ�ï4¾NYeýKÕ
ìp �� �|

Figure 6: Problem Scaling: Migration Overhead for NPB on 16
Nodes

4.4 Effect of Task Scaling
We next examined the behavior of migration by increasing the

number of nodes involved in computation. Figure 7 depicts the
overhead for the benchmarks with Class C inputs on varying num-
ber of nodes (4, 8/9 and 16).

Ç

Þ

õÇ

õÞ

�Ç

�Þ

#Ç

Qh �� ­Ä Ûò 	Ä

	
7N

e|
�

: + õ� : � õ� : � õ� : � õ� : + õ�
µNÌ4Nã4µN| �

B7ýØ�ï4¾NYeýKÕ
ìp �� �|

Figure 7: Task Scaling: Migration Overhead for NPB Class C

As with problem scaling, we distinguish actual downtime from
other overheads. For most of the benchmarks (BT, EP, LU and SP),
we observe a trend of decreasing overheads for increasing number
of nodes. Only for CG, we observe an increasing overhead. This
can be attributed to additional communication overhead combined
with smaller data sets per nodes. This communication overhead
adversely affects the time required for migration. These results in-
dicate the potential of our approach for when the number of nodes
is increased.

Next, we examine the overall execution time for varying number
of nodes. Figure 8 depicts the speedup on 4, 8/9 and 16 nodes nor-
malized to the wallclock time on 4 nodes. The figure also showsthe
relative speedup observed with and without migration. The lightly
colored bars represent the execution time of the benchmarksin the
presence of one node failure (and one live migration). The aggre-
gate value of the light and dark stacked bars present the execution
time without node failures. Hence, the dark portions of the bars
represent the loss in speedup due to migration. The results indicate
an increasing potential for scalability of the benchmarks (within the
range of available nodes on our cluster) that is not affectedby the
overhead of live migration.

ÇÌÞ

õ

õÌÞ

�

�ÌÞ

#

#ÌÞ

:

Qh �� ­Ä Ûò 	Ä

	ú

|Ø
ú

: + õ� : � õ� : � õ� : � õ� : + õ�

ÛN��4Ke4�ú |Øú4

µNÌ4Nã4µN| �

Figure 8: Speedup for NPB Class C

4.5 Cache Warm-up Time
The reported overhead (in previous measurements) includescache-

warm at the migration target. To quantify the cache warm-up effect
due to starting the guest VM and then filling the caches with the
application’s working set, we consider architectural effects. The
Opteron processors have 64KB split I+D 2-way associative L1caches
and two 16-way associative 1MB L2 caches, one per core. We
designed a microbenchmark to determine the warm-up overhead
for the size of the entire L2 cache. Our experiments indicatean
approximate cost of 1.6 ms for a complete refill of the L2 cache.
Compared to the actual downtime depicted in Figure 6, this warm-
up effect is relatively minor compared to the overall restart cost.

4.6 Total Migration Time
We already discussed the overhead incurred due to the migration

activity. We next provide insight into the amount of time it takes
on the host VM to complete the migration process. On average,13
seconds are required for relocating a guest virtual machinewith 1
GB of RAM that does not execute any applications. Hence, all the
migration commands have to be initiated prior to actual failure by
at least this minimum bound.

In addition to live migration, Xen provides another way of migra-
tion called stop & copy migration. This essentially is the last phase
of the live migration, wherein the execution of the VM is stopped
and the image is transferred before execution restarts at the des-
tination side. The attractive feature about this mode of migration
is that, no matter how data intensive or computation intensive the
application, migration takes the same amount of time. In fact, this
time is constrained by the amount of memory allocated to a guest
VM, which is currently transferred in its entirety so that the cost

is mostly constrained by network bandwidth. The memory pages
of a process, while it remains inactive, simply cannot be modified
during stop & copy. In contrast, live migration requires repeated
transfers of dirty pages so that its overhead is a function ofthe
write frequency to memory pages. Our experiments confirm that
the stop & copy overhead is nearly identical to the base overhead
for relocating the entire memory image of the guest OS. However,
the application would be stopped for the above-mentioned period
of time. Hence, the completion of the application would be delayed
by that period of time.

We have obtained detailed measurements to determine the time
required to complete the migration command for the above bench-
marks with (a) live and (b) stop & copy migration. These durations
were obtained in ping-pong migration experiments similar to the
ones for determining the downtime, yet the starting times are when
the respective migration is initiated (and not at a later point during
migration, as in the earlier downtime measurements).

Figure 9 shows the time taken from initiating migration to actual
completion on 16 nodes for the NPB with Class B and C inputs.
Live migration duration ranged between 14-24 seconds in compar-
ison to stop & copy with a constant overhead of 13-14 seconds.
This overhead includes the 13 seconds required to transfer a1 GB
inactive guest VM.

Ç

Þ

õÇ

õÞ

�Ç

�Þ

#Ç

Qh �� ­Ä Ûò 	Ä

	
7N

e|
�

�ï���4Q4�eúØý�4(ÛKp ? �ï���4Q4�eúØý�4(ýNúV�Núm?
�ï���4�4�eúØý�4(ÛKp ? �ï���4�4�eúØý�4(ýNúV�Núm?

Figure 9: Migration Duration for NPB on 16 Nodes (with a
standard deviation of 0.5-3 seconds)

In case of live migration, we observe that the duration for migra-
tion increases for BT and SP from Class B to Class C. In contrast,
for CG, EP and LU, little variation is observed. In order to in-
vestigate this further, we measured the memory usage and also the
count of pages transferred during live migration to assess the rate
at which pages are modified for 16-node jobs of these benchmarks.
The results are depicted in Table 2. We observe an increased mem-
ory usage from Class B to Class C for all benchmarks except for
EP. Yet, the increase in the number of modified pages, indicated in
the last column, shows significant increases for only BT and SP.
Thus, the page modification rate has a decisive impact on the mi-
gration overhead explaining the more significant overall increases
for BT and SP between class B and C under live migration in Fig-
ure 9. The results in the Figure also show that, in contrast tolive
migration, stop & copy migration results in constant time overhead
for all the benchmarks.

Figure 10 shows the migration duration for different numbers
of nodes for NPB with Class C inputs comparing live and stop &
copy migration modes. In case of live migration, for the input-

NPB Memory Usage % IncreaseNumber of Pages% Increase
in MB in Memory Transferred in Pages

Class BClass C Usage Class B Class CTransferred

BT 40.81 121.71 198.23 295,030513,294 73.98
CG 43.88 95.24 117.04 266,530277,848 4.25
EP 10.61 10.61 0.01 271,492276,313 1.78
LU 24.15 61.05 152.76 292,070315,532 8.03
SP 42.54 118.67 178.93 315,225463,674 47.09

Table 2: Memory Usage, Page Migration Rate on 16 Nodes

sensitive codes BT and SP, we observe a decreasing duration as the
number of nodes increases. Other codes experience nearly constant
migration overhead irrespective of the number of nodes. In case of
stop & copy migration, we note that the duration is constant.These
results again assert a potential of our proactive FT approach for
scalability within the range of available nodes in the cluster.

Ç

Þ

õÇ

õÞ

�Ç

�Þ

#Ç

#Þ

:Ç

:Þ

Qh
(ÛKp ?

Qh44
(�?

��
(ÛKp ?

��44
(�?

­Ä
(ÛKp ?

­Ä44
(�?

Ûò
(ÛKp ?

Ûò44
(�?

	Ä
(ÛKp ?

	Ä44
(�?

	
7N

e|
�

:4µN| �4 +æ�4µN| � õ�4µN| �

Figure 10: Migration Duration for NPB Class C inputs

While live migration has a higher overhead than the stop & copy
approach, the application continues to execute in the former but not
in the latter. Hence, we next compare the overall execution time of
the benchmarks to assess the trade-off between the two approaches.
Figure 11 depicts the overall execution times of the benchmarks
with Class B and C inputs on 16 nodes, both for live migration and
stop & copy migration with a single node failure.

We observe that live migration results in a lower overall wall-
clock execution time compared to stop & copy migration for all
the cases (except for nearly identical times for CG under input C).
Considering earlier results indicating that the total duration for mi-
gration in live approach keeps decreasing as the number of nodes
increases (see Figure 10), live migration overall outperforms the
stop & copy approach.

Besides the above comparison, the actual migration duration largely
depends on the application and the network bandwidth. Migra-
tion duration is one of the most relevant metrics for proactive FT.
The health monitoring system needs to indicate deteriorating health
(e.g., a violated threshold of temperatures or fan speeds) prior to the
actual failure of a node. Migration duration provides the metric to
bound the minimum alert distance required prior to failure to en-
sure successful migration completion. Future work is needed in
the area of observing the amount of lead time between a detected
health deterioration and the actual failure in practice, aspast work
in this area is sparse [33].

Ç

õÇÇ

�ÇÇ

#ÇÇ

:ÇÇ

ÞÇÇ

Qh �� ­Ä Ûò 	Ä

	
7N

e|
�

�ï���4Q4�eúØý�4(ÛKp ? �ï���4Q4�eúØý�4(ýNúV�Núm?
�ï���4�4�eúØý�4(ÛKp ? �ï���4�4�eúØý�4(ýNúV�Núm?

Figure 11: Execution Time for NPB on 16 Nodes

5. RELATED WORK
A number of systems have been developed that combine FT with

the message passing implementations of MPI, ranging from auto-
matic methods (checkpoint-based or log-based) [38, 34, 7] to non-
automated approaches [4, 16]. Checkpoint-based methods com-
monly rely on a combination of OS support to checkpoint a process
image (e.g., viaBerkeley Labs Checkpoint Restart (BLCR) Linux
module [14]) combined with a coordinated checkpoint negotiation
using collective communication among MPI tasks. Another varia-
tion to the checkpointing approach is a co-operative checkpointing
scheme [28] wherein the checkpoint operation is not performed at a
periodic interval. The application instead indicates suitable points
for a checkpoint,e.g., at the end of a timestep when data has been
consolidated. The runtime/OS then decides to grant or deny the re-
quest based on system-wide parameters,e.g., network utilization.
Log-based methods generally rely on logging messages and pos-
sibly their temporal ordering, where the latter is requiredfor asyn-
chronous approaches. Non-automatic approaches generallyinvolve
explicit invocation of checkpoint routines.

Different layers have been utilized to implement these approaches
ranging from separate frameworks over the API level to the com-
munication layer or a combination of the two. While higher-level
layers are perceived to impose less overhead, lower-level layers en-
compass a larger amount of state,e.g., open file handles. Virtualiza-
tion techniques, however, have not been widely used in HPC totol-
erate faults, even though they capture even more state (including the
entire IP layer). This paper takes this approach and shows that over-
heads are quite manageable, even in the presence of faults, making
virtualization-based FT in HPC a realistic option. LA-MPI [4] op-
erates at a different abstract level, namely that of the network/link
layer and, as such, is not designed to transparently providecheck-
point/restart capabilities. It differs in that it providesa complete
MPI implementation and transparently hides network errorsrather
than node failures. FT-MPI [16] is a reactive fault-tolerant solution
that keeps the MPI layer and the application alive once a process
failure has occurred. This is done by reconfiguring the MPI layer
(MPI Communicator) and by letting the application decide how to
handle failures. It is the application’s responsibility torecover from
failures by compensating for lost data/computation withinits al-
gorithmic framework, which shifts the burden to the programmer.
Compared to potential resynchronization of MPI layer of an entire
machine, the restart of lost process and the roll back of all other
processes, the performance penalty of our approach is quitemini-
mal.

Virtualization as a technique to tolerate faults in HPC has been

studied before showing that MPI applications run over a Xen vir-
tualization layer [6] result in virtually no overheads [21]. To make
virtualization competitive for message-passing environments, OS
bypassing is required for the networking layer [26, 25]. This paper
leverages Xen as an abstraction to the network layer to provide FT
for MPI jobs. It does not exploit OS bypass for networking as this is
not an integrated component of Xen. Yet, it does not precludesuch
extensions without changes to our work in the future. Our FT sup-
port leverages the Xen live migration mechanism that, in addition
to disk-based checkpointing (and restarting) of an entire guest OS,
allows a guest OS to be relocated on another machine [12]. During
the lion’s share of the migration’s duration, the guest OS remains
operational while first an initial system snapshot of all pages and
then a smaller number of pages (modified since the last snapshot)
are transferred. Finally, the guest OS is frozen and last changes are
communicated before the new target node is activating the migrated
guest OS. This guest OS still uses the same IP number (due to auto-
matic updates of routes at the Xen host level) and is not even aware
of its relocation (other than a short lapse of inactivity). We exploit
live migration for proactive FT to move MPI tasks from unstable (or
unhealthy) nodes to stable (healthy) ones. While the FT extensions
to MPI cited above focus on reactive FT, our approach emphasizes
proactive FT as a complementary method (at lower cost). Instead of
costly recovery after actual failures, proactive FT anticipates faults
and migrates MPI tasks onto healthy nodes.

Past work has shown the feasibility of proactive FT [27]. More
recent work promotes FT in Adaptive MPI using a combination of
(a) object virtualization techniques to migrate tasks and (b) causal
message logging within the MPI runtime system of Charm++ ap-
plications [9, 10, 11]. Causal message logging is due to Elnozahyet
al. [15]. Our work focuses on assessing the overhead of Xen-based
proactive FT for MPI jobs. It contributes an integrated approach
to combine health-based monitoring with OpenIPMI [2] to predict
node failures and proactively migrate MPI jobs to healthy nodes.
In contrast to the Charm++ approach, it is coarser grained asFT is
provided at the level of the entire OS, thereby encapsulating one or
more MPI tasks and also capturing OS resources used by applica-
tions, which are beyond the MPI runtime layer.

FT support at different different levels has different merits due
to associated costs. Process-level migration [31, 39, 23, 5, 13, 14]
may be slightly less expensive than virtualization support. Yet, the
former may only be applicable to HPC codes if certain resources do
not need to be captured that virtualization covers — at the cost of
increased memory utilization due to host and guest OS consump-
tion for virtualization. A system could well support different FT
options to let the application choose which one best fits its code
and cost constraints.

While integrated with Xen’s live migration, our solution is, in
it’s methodology, equally applicable to other virtualization tech-
niques, such as live migration strategies implemented in VMWare’s
VMotion or NomadBIOS [18], a solution closely related to Xen’s
live migration, which is implemented over the L4 microkernel [19].
Even non-live migration strategies under virtualization [35, 24, 41,
29] could be integrated but would be less effective due to their stop
& copy semantics. Demand-based migration [43], however, isun-
suitable in a proactive environment as it does not tightly bound the
migration duration.

6. CONCLUSION
Node failures on contemporary computers can often be antic-

ipated by monitoring health and detecting a deteriorating status.
To exploit anticipatory failures, we are promoting proactive fault
tolerance (FT). Instead of a reactive scheme proactive FT system,

processes automatically migrate from “unhealthy” nodes tohealthy
ones. This is in contrast to a reactive scheme where recoveryoccurs
in response to already occurred failures.

We have contributed an automatic and transparent mechanism
for proactive FT for arbitrary MPI applications. Combiningvirtu-
alization techniques with health monitoring and load-based migra-
tion, we assess the viability of proactive FT for contemporary HPC
clusters. Xen’s live migration allows a guest OS to be relocated to
another node, including running tasks of an MPI job. We exploit
this feature when a health-deteriorating node is identified, which
allows computation to proceed on a healthy node, thereby avoiding
a complete restart necessitated by node failures. The live migra-
tion mechanism allows execution of the MPI task to progress while
being relocated, which reduces the migration overhead for HPC
codes with large memory footprints that have to be transferred over
the network. Our proactive FT daemon orchestrates the tasksof
health monitoring, load determination and initiation of guest OS
migration. Experimental results confirm that live migration hides
the costs of relocating the guest OS with its MPI task. The ac-
tual overhead varies between 1-16 seconds for most NBP codes.
We also observe migration overhead to be scalable (independent of
the number of nodes) within the limits of our test bed. Our work
shows that proactive FT complements reactive schemes for long-
running MPI jobs. As proactive FT has the potential to prolong the
mean-time-to-failure, reactive schemes can lower their checkpoint
frequency in response.

7. REFERENCES
[1] Ganglia. http://ganglia.sourceforge.net/.
[2] OpenIPMI. http://openipmi.sourceforge.net/.
[3] Advanced configuration & power interface.

http://www.acpi.info/, 2004.
[4] R. T. Aulwes, D. J. Daniel, N. N. Desai, R. L. Graham, L. D.

Risinger, M. A. Taylor, T. S. Woodall, and M. W. Sukalski.
Architecture of LA-MPI, a network-fault-tolerant MPI. In
International Parallel and Distributed Processing
Symposium, 2004.

[5] A. Barak and R. Wheeler. MOSIX: An integrated
multiprocessor UNIX. In USENIX Association, editor,
Proceedings of the Winter 1989 USENIX Conference:
January 30–February 3, 1989, San Diego, California, USA,
pages 101–112, Berkeley, CA, USA, Winter 1989. USENIX.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
art of virtualization. InSymposium on Operating Systems
Principles, pages 164–177, 2003.

[7] G. Bosilca, A. Boutellier, and F. Cappello. MPICH-V:
Toward a scalable fault tolerant MPI for volatile nodes. In
Supercomputing, Nov. 2002.

[8] R. Butler, W. Gropp, and E. L. Lusk. A scalable
process-management environment for parallel programs. In
Euro PVM/MPI, pages 168–175, 2000.

[9] S. Chakravorty, C. Mendes, and L. Kale. Proactive fault
tolerance in large systems. InHPCRI: 1st Workshop on High
Performance Computing Reliability Issues, in Proceedingsof
the 11th International Symposium on High Performance
Computer Architecture (HPCA-11). IEEE Computer Society,
2005.

[10] S. Chakravorty, C. Mendes, and L. Kale. Proactive fault
tolerance in mpi applications via task migration. In
International Conference on High Performance Computing,
2006.

[11] S. Chakravorty, C. Mendes, and L. Kale. A fault tolerance
protocol with fast fault recovery. InInternational Parallel
and Distributed Processing Symposium, 2007.

[12] C. Clark, K. Fraser, S. Hand, J. Hansem, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In 2nd Symposium on Networked Systems Design and
Implementation, May 2005.

[13] F. Douglis and J. K. Ousterhout. Transparent process
migration: Design alternatives and the sprite implementation.
Softw., Pract. Exper., 21(8):757–785, 1991.

[14] J. Duell. The design and implementation of berkeley lab’s
linux checkpoint/restart. Tr, Lawrence Berkeley National
Laboratory, 2000.

[15] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transparent
roll back-recovery with low overhead, limited rollback, and
fast output commit.IEEE Trans. Comput., 41(5):526–531,
1992.

[16] G. E. Fagg and J. J. Dongarra. FT-MPI: Fault Tolerant MPI,
supporting dynamic applications in a dynamic world. InEuro
PVM/MPI User’s Group Meeting, Lecture Notes in
Computer Science, volume 1908, pages 346–353, 2000.

[17] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file
system. InSOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 29–43,
2003.

[18] J. G. Hansen and E. Jul. Self-migration of operating systems.
In EW11: Proceedings of the 11th workshop on ACM
SIGOPS European workshop: beyond the PC, page 23, New
York, NY, USA, 2004. ACM Press.

[19] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and
J. Wolter. The performance ofµ-Kernel-based systems. In
Proceedings of the 16th Symposium on Operating Systems
Principles (SOSP-97), volume 31,5 ofOperating Systems
Review, pages 66–77, New York, Oct. 1997. ACM Press.

[20] C.-H. Hsu and W.-C. Feng. A power-aware run-time system
for high-performance computing. InSC ’05: Proceedings of
the 2005 ACM/IEEE conference on Supercomputing, 2005.

[21] W. Huang, J. Liu, B. Abali, and D. Panda. A case for high
performance computing with virtual machines. In
International Conference on Supercomputing, June 2006.

[22] IBM T.J. Watson. Personal communications. Ruud Haring,
July 2005.

[23] E. Jul, H. M. Levy, N. C. Hutchinson, and A. P. Black.
Fine-grained mobility in the emerald system.ACM Trans.
Comput. Syst., 6(1):109–133, 1988.

[24] M. Kozuch and M. Satyanarayanan. Internet
suspend/resume. InIEEE Workshop on Mobile Computing
Systems and Applications, pages 40–, 2002.

[25] J. Liu, W. Huang, B. Abali, and D. Panda. High performance
vmm-bypass i/o in virtual machines. InUSENIX Conference,
June 2006.

[26] A. Menon, A. Cox, and W. Zwaenepoel. Optimizing network
virtualization in xen. InUSENIX Conference, June 2006.

[27] A. Oliner, R. Sahoo, J. Moreira, M. Gupta, and
A. Sivasubramaniam. Fault-aware job scheduling for
bluegene/l systems. InInternational Parallel and Distributed
Processing Symposium, 2004.

[28] A. J. Oliner, L. Rudolph, and R. K. Sahoo. Cooperative
checkpointing: a robust approach to large-scale systems
reliability. In International Conference on Supercomputing,
pages 14–23, 2006.

[29] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and
implementation of zap: A system for migrating computing
environments. InOSDI, 2002.

[30] I. Philp. Software failures and the road to a petaflop machine.
In HPCRI: 1st Workshop on High Performance Computing
Reliability Issues, in Proceedings of the 11th International
Symposium on High Performance Computer Architecture
(HPCA-11). IEEE Computer Society, 2005.

[31] M. L. Powell and B. P. Miller. Process migration in
DEMOS/MP. InSymposium on Operating Systems
Principles, pages 110–119, Oct. 1983.

[32] S. Rani, C. Leangsuksun, A. Tikotekar, V. Rampure, and
S. Scott. Toward efficient failre detection and recovery in
hpc. InHigh Availability and Performance Computing
Workshop, page (accepted), 2006.

[33] R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, S. Ma,
R. Vilalta, and A. Sivasubramaniam. Critical event prediction
for proactive management in large-scale computer clusters.
In KDD ’03: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 426–435, 2003.

[34] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine,
J. Duell, P. Hargrove, and E. Roman. The LAM/MPI
checkpoint/restart framework: System-initiated
checkpointing. InProceedings, LACSI Symposium, Oct.
2003.

[35] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,
and M. Rosenblum. Optimizing the migration of virtual
computers. InOSDI, 2002.

[36] B. Schroeder and G. A. Gibson. A large-scale study of
failures in high-performance computing systems. InDSN
’06: Proceedings of the International Conference on
Dependable Systems and Networks (DSN’06), pages
249–258, 2006.

[37] H. Song, C. Leangsuksun, and R. Nassar. Availability
modeling and analysis on high performance cluster
computing systems. InFirst International Conference on
Availability, Reliability and Security, pages 305–313, 2006.

[38] G. Stellner. CoCheck: checkpointing and process migration
for MPI. In IEEE, editor,Proceedings of IPPS ’96. The 10th
International Parallel Processing Symposium: Honolulu, HI,
USA, 15–19 April 1996, pages 526–531, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1996. IEEE
Computer Society Press.

[39] M. Theimer, K. A. Lantz, and D. R. Cheriton. Preemptable
remote execution facilities for the v-system. InSOSP, pages
2–12, 1985.

[40] C. Wang, F. Mueller, C. Engelmann, and S. Scott. A job
pause service under lam/mpi+blcr for transparent fault
tolerance. InInternational Parallel and Distributed
Processing Symposium, page (accepted), Apr. 2007.

[41] A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble.
Constructing services with interposable virtual hardware. In
Symposium on Networked Systems Design and
Implementation, pages 169–182, 2004.

[42] F. Wong, R. Martin, R. Arpaci-Dusseau, and D. Culler.
Architectural requirements and scalability of the NAS
parallel benchmarks. InSupercomputing, 1999.

[43] E. R. Zayas. Attacking the process migration bottleneck. In
SOSP, pages 13–24, 1987.

