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ABSTRACT

Large-scale parallel computing is relying increasinglyabusters
with thousands of processors. At such large counts of coenput
nodes, faults are becoming common place. Current techsitjue
tolerate faults focus on reactive schemes to recover frartsfand
generally rely on a checkpoint/restart mechanism. Yetpday's
systems, node failures can often be anticipated by detgatdete-
riorating health status.

Instead of a reactive scheme for fault tolerance (FT), we are
promoting a proactive one where processes automaticatiyate
from “unhealthy” nodes to healthy ones. Our approach ralies
operating system virtualization techniques exemplifiecoby not
limited to Xen. This paper contributes an automatic andsjpan-
ent mechanism for proactive FT for arbitrary MPI applicago
It leverages virtualization techniques combined with treahon-
itoring and load-based migration. We exploit Xen’s live maig
tion mechanism for a guest operating system (OS) to mignate a
MPI task from a health-deteriorating node to a healthy orteauit
stopping the MPI task during most of the migration. Our proac
tive FT daemon orchestrates the tasks of health monitotosy
determination and initiation of guest OS migration. Expemntal
results demonstrate that live migration hides migratiost€@nd
limits the overhead to only a few seconds making it an aitract
approach to realize FT in HPC systems. Overall, our enhance-
ments make proactive FT a valuable asset for long-running MP
application that is complementary to reactive FT using ¢hkck-
point/restart schemes since checkpoint frequencies caadoeed
as fewer unanticipated failures are encountered. In théegbof
OS virtualization we believe that this is the first comprehensive
study of proactive fault tolerance where live migration ¢sually
triggered by health monitoring.
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1. INTRODUCTION

High-end parallel computing is relying increasingly orgerclus-
ters with thousands of processors. At such large countsrapate
nodes, faults are becoming common place. For example, ‘®oday
fastest system, BlueGene/L (BG/L) at Livermore Nationabd-a
ratory with 65,536 nodes, was experiencing faults at thellef
a dual-processor compute card at a rate of 48 hours duritiglini
deployment [22]. When one node fails, a 1024-processor lauip
had to be temporarily shut down to replace the card.

Results from related work [20], depicted in Table 1, showt tha
existing reliability of larger HPC clusters is currentlyregrained
by a mean time between failures (MTBF) / interrupts (MTBI}he
range of 6.5-40 hours, depending on the maturity / age ofrtstai-
lation. The most common causes of failure were processan-me
ory and storage errors / failures. This is reinforced by altof
HPC installations at Los Alamos National Laboratory (LANh)
dicating that, on average, 50% of all failures were due ta\vare
and almost another 20% due to software with more than 15% of
the remaining failure cases unaccounted for in terms of daise
[36]. Another study conducted by LANL estimates the MTBF, ex
trapolating from current system performance [30], to bé&sh@urs
on a petaflop machine.
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[#CPUY
8,192
8,192
3,016
15,000

MTBF/I |
6.5 hrs
5/40 hrs ('01/'03
9.7 hrs
20 reboots/day

Table 1: Reliability of HPC Clusters

Commercial installations, such as Google (see Table 1)rexpe
ence an interpolated fault rate of just over one hour for\ejant



number of nodes, yet their fault-tolerant middleware hidash
failures altogether so that user services remain complénghct
[17]. In this spirit, our work focuses on fault-tolerant rdidware
for HPC systems. More specifically, this paper promotesatpey
system virtualization as a means to support fault tolergfde.
Since OS virtualization is not an established method in HBE d
to the potential overhead of virtualization, we conductestualy
measuring the performance of the NAS Parallel BenchmarlB(NP
suite [42] using Class C inputs over Xen [6]. We comparedehre
Linux environments: Xen DomO Linux (privileged domain 0 QS)
Xen DomU Linux (a regular guest OS), and a regular, non-Xen
Linux version on the same platform (see Section 3 for conéigur
tion details). The results in Figure 1 indicate a relativeesp of
0.81-1.21 with an average overhead of 1.5% and 4.4% incinyed
Xen DomU and DomO, respectively. This overhead is mostlytdue
the additional software stack of virtualizing the netwosvite, as
OS-bypass experiments with InfiniBand and extensions fpeisu
pages have demonstrated [26, 25]. With OS bypass, the aeite
lowered tox +3% for NAS PB Class A. In our experiments with
Class C inputs, CG and LU result in a reproducible speedupdus
10 samples for all tests) for one or both Xen versions, whigh a
pears to be caused by memory allocation policies and retattet
ities of the Xen Hypervisor that account for 11% of CG’s rumgi,
for example. The details are still being investigated. Her@S
virtualization accounts for only marginal overhead and easily
be amortized for large-scale systems with a short MTBF.
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Figure 1: Xen Overhead for NAS PB, Class C, 16 Nodes

Current techniques to tolerate faults focus on reactiverses
where fault recovery commonly relies on a checkpoint/m$G&/R)
mechanism. However, the LANL study [30] also estimates the
checkpointing overhead based on current techniques tormmych
100 hour job (without failure) by an additional 151 hours etaflop
systems.

In today’s systems, node failures can often be anticipayedteb
tecting a deteriorating health status using monitoringaofsf tem-
peratures and disk error logs. Recent work focuses on dapttire
availability of large-scale clusters using combinatogiatl Markov
models, which are then compared to availability statiftcsarge-
scale DOE clusters [37, 32]. Health data collected on these
chines is used in a reactive manner to determine a checkiptémt
val that trades off checkpoint cost against restart costn ¢hough
many faults could have been anticipated. Hence, insteadeda
tive scheme for FT, we are promoting a proactive one that abégr
processes away from “unhealthy” nodes to healthy ones. Saoch
approach has the advantage that checkpoint frequencidsecan
duced as sudden, unexpected faults should become the iexcept

The availability of spare nodes is becoming common placesin r
cent cluster acquisitions. We expect such spare nodes torizea
commodity provided by job schedulers upon request. Ourrexpe
ments assume availability of 1-2 spare notles.

The feasibility of health monitoring at various levels hasantly
been demonstrated for temperature-aware monitogrgy, by us-
ing ACPI [3], and, more generically, by critical-event pieitbn
[33]. Particularly in systems with thousands of processetgh
as BG/L, fault handling becomes imperative, yet approactege
from application-level and runtime-level to the level ofepating
system (OS) schedulers [9, 10, 11, 27]. These and other apipes
are discussed in more detail in Section 5. They differ fromay+
proach in that we exploit OS-level virtualization combinetth
health monitoring and live migration.

In related, orthogonal work [40], experiments were conddct
with process-level BLCR [14] to assess the overhead of gavin
and restoring the image of an MPI application on a faulty node
which we compare with the save/restore overhead over Xerr[g]
BLCR, this comprises the process of an MPI task while for Xiea,
entire guest OS is saved. Process-level FT with BLCR showed a
overhead of 8-10 seconds for BLCR and 15-23 seconds for Xen fo
NPB programs under Class C inputs on a common experimental
platform. Variations are mostly due to the memory requiretae
of specific benchmarks. These memory requirements also-domi
nate those of the underlying OS, which explains why Xen resai
competitive in these experiments. From this, we concludelibth
process-level and OS-level C/R mechanisms are viablaaliges.
This paper focuses on the OS virtualization side.

We have designed and implemented an automatic and transpar-
ent mechanism for proactive FT of arbitrary MP| applicasaver
Xen [6]. A novel proactive FT daemon orchestrates the tasks o
health monitoring, load determination and initiation ofegti OS
migration. To this extent, we exploit the intelligent perfance
monitoring interface (IPMI) for health inquiries to determa if
thresholds are violated, in which case migration shouldroemce.
Migration targets are determined based on load averagesteep
by Ganglia. Xen supportéve migration of a guest OS between
nodes of a cluster,e., MPI applications continue to execute during
much of the migration process [12]. In a number of experirment
our approach has shown that live migration can hide mignatasts
such that the overall overhead is constrained to only a feorsds.
Hence, live migration provides an attractive solution talime FT
in HPC systems. Our work shows that proactive FT complements
reactive schemes for long-running MPI jobs. Specificaligudd a
node fail without prior health indication or while proaaiwnigra-
tion is in progress, our scheme reverts to reactive FT byargsy
from the last checkpoint. Yet, as proactive FT has the pitett
prolong the mean-time-to-failure, reactive schemes caridheir
checkpoint frequency in response, which implies that pread-T
can lower the cost of reactive FT. In the contextQ@f virtualiza-
tion, this appears to be the first comprehensive study of praactiv
fault tolerance where live migration is actually triggeteylhealth
monitoring.

The paper is structured as follows. Section 2 presents thigrmle
and implementation of our health monitoring and migratigstem
with its different components. Section 3 describes the expntal
setup. Section 4 discusses experimental results for a setnuh-

1Our techniques also generalize to task sharing on a nodddshou
not enough spare nodes be available, yet the cost is redwed p
formance for tasks on such a node. This may result in imbalanc
between all tasks system-wide and, hence, decrease gverfudt-
mance. In this model, tasks sharing a node would still ruiwit
multiple guest OSs hosted by a common hypervisor on a node.



marks. Section 5 contrasts this work to prior research. iGe&
summarizes the contributions.

2. SYSTEM DESIGN AND IMPLEMENTA-
TION

A proactive fault tolerance system, as the name impliesillsho
provide two mechanisms, namely one for proactive decisiak-m
ing and another to address load balancing, which, in contibima
provide fault tolerance. An overview of the system compasen
and their interaction is depicted in Figure 2. Each nodedast
instance of the Xen Virtual Machine Monitor (VMM). On top of
the VMM runs a privileged/host virtual machine, which is aga
virtualized Linux version in our case. In addition, a gueistual
machine (also Linux) runs on top of the Xen VMM as well. The
privileged virtual machine hosts, among others, a daemoGém-
glia, which aids in selecting the target node for migratiand our
proactive FT daemon (PFTd) used to monitor health and teitia
migration. The guest virtual machines form a multi-purpdse-
mon (MPD) ring of all cluster nodes [8] on which the MPI applic
tion can run (using MPICH-2). Other MPI runtime systems wioul
be handled equally transparently by Xen for the migratiorcinae
nism. Upon deteriorating health, determined through thaitoo
ing capabilities of the baseboard management controll&GBR
the entire guest VM is migrated to another node that alreadysh
a privileged VM but no guest VM. We will describe each of these
components of our system in the following.

More nodes of the cluster

Figure 2: Overall setup of the components

2.1 Fault Tolerance over Xen

To provide an effective fault tolerance system, a mechargsm
required that gracefully aids the relocation of an MPI takkyeby
enabling it to run on a different physical node with minimuosp
sible overhead. More importantly, the MPI task should not be
stopped while migration is in progress. Xen provides eyaittls
capability. Xen is a para-virtualized environment thatuiegs the
hosted virtual machine to be adapted to run on the Xen virhaal
chine monitor (VMM). Applications, however, need not be mod
ified. On top of the VMM runs a privileged/host virtual machin
with additional capabilities exceeding those of otheruattma-
chines. We can start other underprivileged guest virtuathires
on that host VM using the command line interface. Most signifi
cantly, Xen providedive migration which enables the guest VM
to be transferred from one physical node to another [12]. 'Xen
mechanism exploits the pre-migration methodology whdrstate

is transferred prior to target activation. Migration prass the

state of all the processes on the guest, which effectivéyvalthe

VM to continue execution without interruption. Migratiomart be

initiated by specifying the name of guest VM and the IP of tes-d
tination physical node hosted by the VM. Live migration ascas

a sequence of phases:

1. When the migration command is initiated, the host VM in-
quires if the target has sufficient resources and reseress th
as needed in a so-called pre-migration and reservation step

2. Next, the host VM sends all pages of the guest VM to the
destination node in a first iteration of the so-called prpyco
step. Prior to sending a page, the corresponding modified
(dirty) bit is cleared in the shadow page table entry (PTE)
of the guest OS. During the transfer, the guest VM is still
running. Hence, it will modify data in pages that were al-
ready send. Using page protection, a write to already sent
pages will initially result in a trap. The trap handler then
changes the page protection such that subsequent writes wil
no longer trap. Furthermore, the dirty bit of the page is auto
matically set in the PTE so that it can later be identified.

3. The host VM now starts sending these dirty pages itefgtive
in chunks during subsequent iterations on the pre-copy step
until a heuristic indicates that pre-copy is no longer benefi
cial. For example, the ratio of modified pages to previously
sent pages (in the last iteration) can be used as a termina-
tion condition. At some point, the rate of modified pages to
transfer will stabilize (or nearly do so), which causes a+tra
sition to the next step. The portion of the working set that is
subject to write accesses is also termed in writable working
set (WSS) [12], which gives an indication of the efficiency
of this step. An additional optimization also avoids copgyin
modified pages if they are frequently changed.

4. Next, the guest VM is actually stopped and the last batch
of modified pages is sent to the destination where the guest
VM restarts after updating all pages, which comprises the
so-called stop & copy, commitment and activation steps.

The actual downtime due to the last phase has been reported to
be as low as 60 ms [12]. Keeping an active application runamg
the guest VM will potentially result in a high rate of page mod
ifications. We observed a maximum actual downtime of around
three seconds for some experiments, which shows that HP€cod
may have higher rates of page modifications. The overallhmat
contributed to the total wallclock time of the applicatiomthe mi-
grating guest VM can be attributed to this actual downtimespl
the overhead associated with the active phase when dirgspag
transferred during migration. Experiments show that tivisrbead
is negligible compared to that of the total wallclock time FPC
codes.

2.2 Health monitoring with OpenlPMiI

Any system that claims to be proactive must effectively mied
an event before it occurs. As the events to be predicted dre fa
stop node failures in our case, a health monitoring mechauiss
needed. To this extent, we employ the Intelligent Platforemistye-
ment Interface (IPMI). IPMI is an increasingly common magag
ment/monitoring interface that provides a standardizedsage-
based mechanism to monitor and manage hardware, a task per-
formed in the past by software with proprietary interfaée¥he

2Alternatives to IPMI exist, such as lisensor, but they tend to be



Baseboard Management Controller (BMC), depicted in Figuis
equipped with sensors to monitor different properties. &am-
ple, sensors provide data on temperature, fan speed, atajeol
IPMI provides a portable interface for reading these senspob-
tain data for health monitoring.

OpenlPMI [2] provides an open-source higher-level absitsac
from the raw IPMI message-response system. We use the QyénlP
API to communicate with the Baseboard Management Controlle
of the backplane and to retrieve sensor readings. Basedeon th
readings obtained, we can evaluate the health of the systéen.
have implemented a system with periodic sampling of the BBIC t
obtain readings of different properties. OpenlPMI alsovjafes an
event-triggered mechanism allowing one to spedify, a sensor
reading exceeding a threshold value and register a notdicae-
guest. When the specified event actually occurs, notificasitrig-
gered by activating an asynchronous handler. This eveggered
mechanism might offload some overhead from the applicata® s
since the BMC takes care of event notification. Unfortunatel
OpenlPMI did not provide stable event notification at theetiof
writing. Hence, we had to resort to the more costly periodias
pling alternative.

2.3 Load Balancing with Ganglia

When a node failure is predicted due to deteriorating heakh
indicated by the sensor readings, a target node is seleated-t
grate the virtual machine to. We utilize Ganglia [1], a widaeted,
scalable distributed monitoring system for HPC systemsgtect
the target node in the following manner. All nodes in the ®us
run a daemon that monitors local resoureeg( CPU usage) and
sends multicast packets with the monitored data. All nodseri
to such messages and update their local view in response, @hu
nodes have an approximate view of the entire cluster.

By default, Ganglia measures the CPU usage, memory usage anq)]c

network usage among others. Ganglia provides extengibilthat
application-specific metrics can also be added to the datent-
ination system. For example, our systems requires the dapab
to distinguish whether a physical node runs a virtual maetdn
not. Such information can be added to the existing Gangfiasn
tructure. Ganglia provides a command line interface, gimeto

this respect. An attribute specified through the gmetrid odi-
cates whether the guest VM is running or not on a physical node
Once added, we obtain a global view (of all nodes) available a
each individual node. Our implementation selects the targde

for migration as the one which does not yet host a guest Virtua

machine and has the lowest load based on CPU usage. We can fur-

ther extend this functionality to check if the selected ¢éhngode

has sufficient available memory to handle the incoming sirtna-
chine. Even though the Xen migration mechanism claims talche
the availability of sufficient memory on the target machireddoe
migration, we encountered instances where migration wtatied

and the guest VM crashed on the target due to insufficient mem-
ory. Furthermore, operating an OS at the memory limit is kndav
adversely affect performance.

2.4 PFT Daemon Design

We have designed and implemented a proactive fault toleranc
daemon (PFTd). In our system depicted in Figure 2, each node r
an instance of the PFTd on the privileged VM, which servesas t
primary driver of the system. The PFTd gathers details rjmets

PFT Daemon

|
!
i Initialize ;
i
|
!
Baseboard Mgmt ‘ Health Monitor !
Controller (continuously) i

hreshold
Breach?

: i
‘ Load Balance i
|

Raise Alarm / Maintenance of the
deteriorating node

Figure 3: Proactive Fault Tolerance Daemon

and load balancing (see Figure 3). After initializatione tAFTd
monitors the health state and checks for threshold vialati©nce

a violation is detected, Ganglia is contacted to deterntieddrget
node for migration before actual migration is initiated.

Upon PFTd initialization, a configuration file containingist |
parameters to be monitored is consulted. In addition t@a p
rameter name, the lower and upper thresholds for that pdetic
parameter can also be specified. For example, for dual ppoces
machines, the safe temperature range for two CPUs and tltk val
speed range for system fans is specified. Next, the PFTédlinés
the OpenlIPMI library and sets up a connection for the spebifies-
work destination (determined by the type of interfaeg, as LAN,
remote hostname and authentication parameters, suchrisarsg
password). A connection to the BMC becomes available after s
cessful authentication. A domain is created (using the do@El)

so that various entities (fans, processors, etc.) aretegtao it. The
sensors monitor these entities.

OpenlPMI, as we discussed earlier, provides an event+ugys-
tem interface, which is somewhat involved, as seen next. &¢e n
to register a handler for an event with the system. Whenéwer t
event occurs, that particular handler will be invoked. \Whiteat-
ing a domain, a handler is registered, which will be invokdden-
ever a connection changes state. The connection changéehand
will be called once a connection is successfully estabtisiéthin
the connection change handler, a handler is registerechfentty
state change. This second handler will be invoked when new en
tities are added. (Upon program start, it discovers estitiee by
one and adds them to the system.) Inside the entity changkenan
a third handler is registered that is triggered upon stataghs of
sensor readings. It is within the sensor change handleRad
discovers various sensors available from the BMC and rescibweir
internal sensor identification numbers for future refegendlext,

them and makes decisions based on the data gathered. The PFT{,q |ist of requested sensors is validated against the fiigiase

provides three components: Health monitoring, decisiokinga

system-specific (x86 Linux) and may be less powerful. Alsskd
monitoring can be realized portably with SMART.

available to report discrepancies. At this point, PFTdsegs a fi-
nal handler for reading actual values from sensors by sgagithe
identification numbers of the sensors indicated in the canditjon



file. Once these values are available, this handler will lied¢and
the PFTd obtains the readings on a periodic basis.

After this lengthy one-time initialization, the PFTd goega a
health monitoring mode by communicating with the BMC. Itrthe
starts monitoring the healthia periodic sampling of values from
the given set of sensors before comparing it with the thrielsbed-
ues. In case any of the thresholds is exceeded, controhisféraed
to the load balancing module of the PFTd. Next, a target nede i
selected to migrate the guest VM to. The PFTd then contaats Ga
glia to determine the least loaded node. The PFTd next issues
migration command that initiates live migration of the guesde
from the “unhealthy” node to the identified target node. Aftee
migration is complete, the PFTd raises an alarm to informaithe
ministrator about the change and also logs the sensor vitiaes
caused the disruption pending further investigation.

3. EXPERIMENTAL FRAMEWORK

Experiments were conducted on a 16 node cluster. The nodes
are equipped with two AMD Opteron-265 processors (each dual
core) and 2 GB of memory interconnected by a 1 Gbps Ethernet S
switch. The Xen 3.0.2-3 Hypervisor/Virtual Machine Mornitie
installed on all the nodes. The nodes run a para-virtualizedx
2.6.16 kernel as a privileged virtual machine on top of the Xg-
pervisor. The guest virtual machines are configured to rarséime
version of the Linux kernel as that of the privileged one. yhee
constrained within 1 GB of main memory. The disk image for the
guest VMs is maintained on a centralized server. These §(Mst
can be booted disklessly on the Xen hypervisor using PX&rit-
boot via NFS. Hence, each node in the cluster runs a privil&té
and a guest VM. The guest VMs form an MPICH-2 MPD ring on
which MPI jobs run. The PFTd runs on the privileged VM and
monitors the health of the node using OpenlPMI. The pritkg
VM also runs Ganglia’s gmond daemon. The PFTd will inquire
with gmond to determine a target node in case the health ofla no
deteriorates. The target node is selected based on resosage
considerations (currently only process load). As the sielecri-
teria are extensible, we plan to consult additional metiicthe
future (most significantly, the amount of available memoiyeg
the demand for memory by Xen guests). In the event of health
deterioration being detected, the PFTd will migrate thestjiM
onto the identified target node.

We have conducted experiments with several MPI benchmarks
executed on the MPD ring over guest VMs. Health deteriomatio
on a node is simulated by running a supplementary daemoneon th
privileged daemon that migrates the guest VM between thygrai
node and a target node. The supplementary daemon synaésoniz
migration control with the MPI task executing on the guest VM
by utilizing the shared file system (NFS in our case) to inidica
progress / completion. To assess the performance of ouerayst
we measure the wallclock time for a benchmark with and with-
out migration. In addition, the overhead during live migpatcan
be attributed to two parts: (1) overhead incurred due tosirat
ting dirty pages and (2) the actual time for which the guest M
stopped. To measure the latter, the Xen user tools comtgothie
so-called “managed” migration [12] are instrumented tmrddhe
timings. Thus, the actual downtime for the VM is obtained.

Results were obtained for the NAS parallel benchmarks (NPB)
version 3.2.1 [42]. The NPB suite was run on top of the expenim
tal framework described in the previous section. Out of tHeBN
suite, we obtained results for the BT, CG, EP, LU and SP bench-
marks. Class B and Class C data inputs were selected for runs o

4, 8 or 9 and 16 nodes.Other benchmarks in the suite were not
suitable,e.g, IS executes for too short a period to properly gauge
the effect of imminent node failures while MG required mdnarn

1 GB of memory (the guest memory watermark) for a class C run.

4. EXPERIMENTAL RESULTS

Our experiments focus on various aspects: (a) overheads ass
ciated with node failures — single or multiple failufegb) the
scalability of the solution (task and problem scaling on naiipn)
and (c) the total time required for migrating a virtual mawhi Be-
sides the above performance-related metrics, the coesstof the
results was also verified. We noted that in every instaner ait-

W/o Migration

gration, the benchmarks completed without an error.

Figure 4: Execution Time for NPB Class C on 16 Nodes (stan-
dard deviation for wallclock time was 0-5 seconds — excludig
migration — and less than 1 second for migration overhead)
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As a base metric for comparison, all the benchmarks were run
without migration to assess a base wallclock time (averayed
10 runs per benchmark). The results obtained from variopsm@x
ments are discussed in the following.

4.1 Overhead for Single-Node Failure

The first set of experiments aims at estimating the overhead i
curred due to one migration (equivalent to one imminent rfade
ure). Using our supplementary PFT daemon, running on thv pri
leged VM, migration is initiated and the wallclock time izceded
for the guest VM including the corresponding MPD ring preces
the guest. As depicted in the Figure 4, the wallclock timesfa@cu-
tion with migration exceeds that of the base run by 1-4% deéipen
on the application. This overhead can be attributed to trgrani
tion overhead itself. The longest execution times of 16-1futes
were observed for NPB codes BT and SP under Class C inputs for
4 nodes (not depicted here). Projecting these results tolenger-
running applications, the overhead of migration can becalmest
insignificant considering current mean-time-to-failuMI(TF) rates.

4.2 Overhead for Double-Node Failure

In a second set of experiments, we assessed the overhead of
two migrations (equivalent to two simultaneous node fairin

3Some NAS benchmarks have 2D, others have 3D layout8%or
or 3% nodes, respectively.

“We use the term failure in the following interchangeablyhviin-
minent failure due to health monitoring.



terms of wallclock time. The migration overhead of singtela
and double-node failures over 4 base nodes is depicted ird-ig
5. We observe a relatively small overhead of 4-8% over the bas
wallclock time. While the probability of a second failureahode
decreases exponentially (statistically speaking) wheyda mad al-
ready failed, our results show that even multi-node faduran be
handled without much overhead, provided there are enougtesp
Wr/o Migration

nodes that serve as migration targets.
BT CG EP LU SP

Figure 5: Execution Time for NPB Class B on 4 Nodes
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4.3 Effect of Problem Scaling

We ran the NPB suite with class B and C inputs on 16 nodes
to study the effect of migration on scaling the problem sizee(
Figure 6). Since we want to assess the overhead, we depjctrenl
absolute overhead encountered due to migration on top dfdke
wallclock execution time for the benchmarks. Also, we digtiish
the overhead in terms of actual downtime of the virtual maelsind
other overheads (due transferring modified pages, cache-wpr
at the destination, etc.), as discussed in the design gsectio

The downtime was determined in a ping-pong migration sgéenar
since the timestamps of a migration source nodes and of attarg
node cannot be compared due to insufficient clock synchatioiz.
Hence, we obtain the start time, s1A, of the stop & copy phas
within the first live migration on node A, the finish, f1B, ofeffirst
and the start, s2B, of the second stop & copy phase on nodelB, &
the finish time, f2A, of the second migration on node A againe T
total downtime per migration is calculated the durationdach of
the two downtimes divided by two:

(f2A —s1A) — (s2B — f1B)

d time = .
owntime 5

Since the two timestamps on A and the two timestamps on B a
consistent with one another in terms of clock synchronirgtive
obtain a valid overhead metric at fine time granularity.

Figure 6 shows that, as the task size increases from Class B

to Class C, we observe either nearly the same overhead or an in
crease in overhead (except for SP). This behavior is expePi@b-

lem scaling results in larger data per node. However, thaanig
tion mechanism indiscriminately transfers all pages of esgiyM.
Hence, problem sizes per se do not necessarily affect riagrat
overhead. Instead, the overhead is affected by the modficedte

of pages during live migration. The overhead further degen
whether or not page transfers can be overlapped with apiaica
execution and on the moment the migration is initiated. Hraiion

coincides with a global synchronization point (a colleefisuch as

a barrier), the overhead may be smaller compared than that of
migration initiated during a computation-dominated regi@8].

SP under class C input appears to experience a migratiort poin
around collective communication while memory-intensivetes

may dominate for others, such as CG and — to a lesser extent —
BT and LU.

Class
B C B C B C B C B C
16 S
14
—
127 "~ |m Actual Downtime
10 4 Overhead
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2
S 8
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|| ||
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04 | | . — _—
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Figure 6: Problem Scaling: Migration Overhead for NPB on 16
Nodes

4.4 Effect of Task Scaling

We next examined the behavior of migration by increasing the
number of nodes involved in computation. Figure 7 depicts th
overhead for the benchmarks with Class C inputs on varyimg-nu
ber of nodes (4, 8/9 and 16).

No. of Nodes
4 9 16

4 8 16

4 9 16
30 I . .

4 9 16

4 8 16

25

W Actual Downtime
Overhead

20

Seconds

BT CG EP LU SP

Figure 7: Task Scaling: Migration Overhead for NPB Class C

As with problem scaling, we distinguish actual downtimenfro
other overheads. For most of the benchmarks (BT, EP, LU and SP
we observe a trend of decreasing overheads for increasimépe
of nodes. Only for CG, we observe an increasing overheads Thi
can be attributed to additional communication overheadtioet
with smaller data sets per nodes. This communication oeerhe
adversely affects the time required for migration. Theseilts in-
dicate the potential of our approach for when the number déso
is increased.



Next, we examine the overall execution time for varying nemb
of nodes. Figure 8 depicts the speedup on 4, 8/9 and 16 nodes no
malized to the wallclock time on 4 nodes. The figure also shbe's
relative speedup observed with and without migration. Téetlly
colored bars represent the execution time of the benchniartke
presence of one node failure (and one live migration). Thgrexg
gate value of the light and dark stacked bars present thaugzac
time without node failures. Hence, the dark portions of thesb
represent the loss in speedup due to migration. The resdlitsate
an increasing potential for scalability of the benchmavkish(in the
range of available nodes on our cluster) that is not affebtethe
overhead of live migration.

No. of Nodes
4 8 16 4 9 16 4 9 16 4 916 4 8 16

4 1 1 1 1 1 1 1 1 1 1 \7\ 1 1 1 1 1 1
M Loss in speedup ‘

0.5

BT CG EP LU SP

Figure 8: Speedup for NPB Class C

4.5 Cache Warm-up Time

The reported overhead (in previous measurements) inchalsee-
warm at the migration target. To quantify the cache warm4{tgre
due to starting the guest VM and then filling the caches with th
application’s working set, we consider architectural effe The
Opteron processors have 64KB split 1+D 2-way associativedches
and two 16-way associative 1IMB L2 caches, one per core. We
designed a microbenchmark to determine the warm-up ovdrhea
for the size of the entire L2 cache. Our experiments indicate
approximate cost of 1.6 ms for a complete refill of the L2 cache
Compared to the actual downtime depicted in Figure 6, thisrwa
up effect is relatively minor compared to the overall restasst.

4.6 Total Migration Time

We already discussed the overhead incurred due to the naigrat
activity. We next provide insight into the amount of timeakes
on the host VM to complete the migration process. On averkge,
seconds are required for relocating a guest virtual machitte 1
GB of RAM that does not execute any applications. Hencehall t
migration commands have to be initiated prior to actualfailby
at least this minimum bound.

In addition to live migration, Xen provides another way ofyna-
tion called stop & copy migration. This essentially is thstlphase
of the live migration, wherein the execution of the VM is gtep
and the image is transferred before execution restartseatiéis-
tination side. The attractive feature about this mode ofratign
is that, no matter how data intensive or computation intenttie
application, migration takes the same amount of time. It tacs
time is constrained by the amount of memory allocated to atgue
VM, which is currently transferred in its entirety so thaethost

is mostly constrained by network bandwidth. The memory page
of a process, while it remains inactive, simply cannot be ifiextl
during stop & copy. In contrast, live migration requires eaped
transfers of dirty pages so that its overhead is a functiothef
write frequency to memory pages. Our experiments confirnh tha
the stop & copy overhead is nearly identical to the base @aath
for relocating the entire memory image of the guest OS. Hewev
the application would be stopped for the above-mentionetbghe
of time. Hence, the completion of the application would bewged

by that period of time.

We have obtained detailed measurements to determine tlee tim
required to complete the migration command for the abovelpen
marks with (a) live and (b) stop & copy migration. These dianag
were obtained in ping-pong migration experiments simitathe
ones for determining the downtime, yet the starting timessnen
the respective migration is initiated (and not at a latenpduring
migration, as in the earlier downtime measurements).

Figure 9 shows the time taken from initiating migration téued
completion on 16 nodes for the NPB with Class B and C inputs.
Live migration duration ranged between 14-24 seconds inpawm
ison to stop & copy with a constant overhead of 13-14 seconds.
This overhead includes the 13 seconds required to transfes@
inactive guest VM.

30
m Class B Inputs (L' )

M Class C Inputs (Li

bl

Figure 9: Migration Duration for NPB on 16 Nodes (with a
standard deviation of 0.5-3 seconds)
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In case of live migration, we observe that the duration foynau
tion increases for BT and SP from Class B to Class C. In cantras
for CG, EP and LU, little variation is observed. In order te in
vestigate this further, we measured the memory usage aodeds
count of pages transferred during live migration to asskeegdte
at which pages are modified for 16-node jobs of these bendtanar
The results are depicted in Table 2. We observe an increasetd m
ory usage from Class B to Class C for all benchmarks except for
EP. Yet, the increase in the number of modified pages, insficiat
the last column, shows significant increases for only BT aRd S
Thus, the page modification rate has a decisive impact on the m
gration overhead explaining the more significant overaitéases
for BT and SP between class B and C under live migration in Fig-
ure 9. The results in the Figure also show that, in contrasit¢o
migration, stop & copy migration results in constant timehead
for all the benchmarks.

Figure 10 shows the migration duration for different nunsber
of nodes for NPB with Class C inputs comparing live and stop &
copy migration modes. In case of live migration, for the itpu



NPB|Memory Usage|% IncreaséNumber of Pagg$o Increass

in MB in Memory| Transferred in Pages

Class BClass @ Usage |Class B Class JTransferreq
BT | 40.81|121.71] 198.23 |295,030513,294 73.98
CG| 43.88| 95.24| 117.04 (266,53Q0277,84§ 4.25
EP | 10.61| 10.61 0.01 |271,493276,313 1.78
LU | 24.15| 61.05| 152.76 |292,070315,533 8.03
SP | 42.54|118.67| 178.93 |315,225463,674 47.09

Table 2: Memory Usage, Page Migration Rate on 16 Nodes

sensitive codes BT and SP, we observe a decreasing durattbe a
number of nodes increases. Other codes experience neadiatd
migration overhead irrespective of the number of nodesabef
stop & copy migration, we note that the duration is constaihese
results again assert a potential of our proactive FT apprdac
scalability within the range of available nodes in the aust
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Figure 10: Migration Duration for NPB Class C inputs

While live migration has a higher overhead than the stop &cop
approach, the application continues to execute in the fobuenot
in the latter. Hence, we next compare the overall executina of
the benchmarks to assess the trade-off between the twoaghE®.
Figure 11 depicts the overall execution times of the bencksna
with Class B and C inputs on 16 nodes, both for live migratiod a
stop & copy migration with a single node failure.

We observe that live migration results in a lower overall lwal
clock execution time compared to stop & copy migration fdr al
the cases (except for nearly identical times for CG undeutif@).
Considering earlier results indicating that the total dorafor mi-
gration in live approach keeps decreasing as the numberd#gso
increases (see Figure 10), live migration overall outpenfothe
stop & copy approach.

Besides the above comparison, the actual migration durktigely

depends on the application and the network bandwidth. Migra

tion duration is one of the most relevant metrics for prosctT.
The health monitoring system needs to indicate deteriggdtealth
(e.g, aviolated threshold of temperatures or fan speeds) prithret
actual failure of a node. Migration duration provides thetmgeo
bound the minimum alert distance required prior to failuesh-
sure successful migration completion. Future work is ndede
the area of observing the amount of lead time between a éetect
health deterioration and the actual failure in practicepast work

in this area is sparse [33].
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Figure 11: Execution Time for NPB on 16 Nodes

5. RELATED WORK

A number of systems have been developed that combine FT with
the message passing implementations of MPI, ranging fram au
matic methods (checkpoint-based or log-based) [38, 34 fbh-
automated approaches [4, 16]. Checkpoint-based methads co
monly rely on a combination of OS support to checkpoint a essc
image €.g., viaBerkeley Labs Checkpoint Restart (BLCR) Linux
module [14]) combined with a coordinated checkpoint negimtn
using collective communication among MPI tasks. Anotheiava
tion to the checkpointing approach is a co-operative cheickimg
scheme [28] wherein the checkpoint operation is not peréariat a
periodic interval. The application instead indicatesatl# points
for a checkpointe.g, at the end of a timestep when data has been
consolidated. The runtime/OS then decides to grant or demnyet-
guest based on system-wide parameterg, network utilization.
Log-based methods generally rely on logging messages asd po
sibly their temporal ordering, where the latter is requifedasyn-
chronous approaches. Non-automatic approaches geniexallye
explicit invocation of checkpoint routines.

Different layers have been utilized to implement these eggines
ranging from separate frameworks over the API level to thm-co
munication layer or a combination of the two. While highevel
layers are perceived to impose less overhead, lower-layet$ en-
compass a larger amount of stagay, open file handles. Virtualiza-
tion techniques, however, have not been widely used in HR@-to
erate faults, even though they capture even more stateidiimg) the
entire IP layer). This paper takes this approach and shat®ter-
heads are quite manageable, even in the presence of faaks)gn
virtualization-based FT in HPC a realistic option. LA-MR] pop-
erates at a different abstract level, namely that of the odtnk
layer and, as such, is not designed to transparently prahdek-
point/restart capabilities. It differs in that it providescomplete
MPI implementation and transparently hides network erratiser
than node failures. FT-MPI [16] is a reactive fault-toleraalution
that keeps the MPI layer and the application alive once aga®c
failure has occurred. This is done by reconfiguring the Méta
(MPI Communicator) and by letting the application decidevtio
handle failures. Itis the application’s responsibilityé@over from
failures by compensating for lost data/computation witiénal-
gorithmic framework, which shifts the burden to the prognaen.
Compared to potential resynchronization of MPI layer of atire
machine, the restart of lost process and the roll back of thkko
processes, the performance penalty of our approach is opittie
mal.

Virtualization as a technique to tolerate faults in HPC hasrb



studied before showing that MPI applications run over a Xen v processes automatically migrate from “unhealthy” noddssi@thy

tualization layer [6] result in virtually no overheads [21o make ones. Thisis in contrast to a reactive scheme where recooeys
virtualization competitive for message-passing envirents, OS in response to already occurred failures.

bypassing is required for the networking layer [26, 25].STbaper We have contributed an automatic and transparent mechanism
leverages Xen as an abstraction to the network layer to gedvil for proactive FT for arbitrary MPI applications. Combiningtu-

for MP1 jobs. It does not exploit OS bypass for networkinghas is alization technigues with health monitoring and load-baségra-

not an integrated component of Xen. Yet, it does not prechucbé tion, we assess the viability of proactive FT for contemppidPC
extensions without changes to our work in the future. Our &d-s clusters. Xen'’s live migration allows a guest OS to be reieddo

port leverages the Xen live migration mechanism that, intaud another node, including running tasks of an MPI job. We eixplo

to disk-based checkpointing (and restarting) of an entiesgOS, this feature when a health-deteriorating node is identifigdich
allows a guest OS to be relocated on another machine [12]n®ur  allows computation to proceed on a healthy node, therebiglanp
the lion’s share of the migration’s duration, the guest O8aias a complete restart necessitated by node failures. The ligeam
operational while first an initial system snapshot of all gaand tion mechanism allows execution of the MPI task to progreisisew
then a smaller number of pages (modified since the last sagpsh being relocated, which reduces the migration overhead f8€CH
are transferred. Finally, the guest OS is frozen and lasigbsare codes with large memory footprints that have to be transteaver
communicated before the new target node is activating taeatad the network. Our proactive FT daemon orchestrates the tafsks
guest OS. This guest OS still uses the same IP nhumber (duésto au  health monitoring, load determination and initiation ofegi OS
matic updates of routes at the Xen host level) and is not ewenea migration. Experimental results confirm that live migratibides

of its relocation (other than a short lapse of inactivity)e ¥kploit the costs of relocating the guest OS with its MPI task. The ac-
live migration for proactive FT to move MPI tasks from undeafor tual overhead varies between 1-16 seconds for most NBP codes
unhealthy) nodes to stable (healthy) ones. While the FTheides We also observe migration overhead to be scalable (indepeiod

to MPI cited above focus on reactive FT, our approach empbasi  the number of nodes) within the limits of our test bed. Our kvor
proactive FT as a complementary method (at lower cost)edusof shows that proactive FT complements reactive schemes ffigr lo
costly recovery after actual failures, proactive FT apigtes faults running MPI jobs. As proactive FT has the potential to prgldme

and migrates MPI tasks onto healthy nodes. mean-time-to-failure, reactive schemes can lower theickpoint

Past work has shown the feasibility of proactive FT [27]. Blor  frequency in response.
recent work promotes FT in Adaptive MPI using a combinatién o
(a) object virtualization techniques to migrate tasks djcchusal 7. REFERENCES
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