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ABSTRACT
Analyzing the performance of large-scale scientific applications is
becoming increasingly difficult due to the sheer size of performance
data gathered. Recent work on scalable communication tracing ap-
plies online interprocess compression to address this problem. Yet,
analysis of communication traces requires knowledge about time
progression that cannot trivially be encoded in a scalable manner
during compression.

We develop scalable time stamp encoding schemes for commu-
nication traces. At the same time, our work contributes novel in-
sights into the scalable representation of time stamped data. We
show that our representations capture sufficient information to en-
able what-if explorations of architectural variations and analysis for
path-based timing irregularities while not requiring excessive disk
space. We evaluate the ability of several time-stamped compressed
MPI trace approaches to enable accurate timed replay of communi-
cation events. Our lossless traces are orders of magnitude smaller, if
not near constant size, regardless of the number of nodes while pre-
serving timing information suitable for application tuning or assess-
ing requirements of future procurements. Our results prove time-
preserving tracing without loss of communication information can
scale in the number of nodes and time steps, which is a result with-
out precedent.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
parallel programming; D.4.8 [Operating Systems]: Perfor-
mance—measurements

General Terms
Measurement, Performance
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1. Introduction

Analyzing parallel applications is becoming increasingly difficult
for large-scale systems. Most analysis tools either succinctly cap-
ture performance data or support pinpoint identification of ineffi-
ciencies, yet to combine both capabilities has been an elusive goal.
These limitations arise from the techniques to obtain performance
data. Aggregated data provides overall statistical information within
a single data set of small size in a scalable manner for large numbers
of nodes. Detailed traces, in contrast, on a per-node basis facilitate
the detection of bottlenecks in time and location, yet inhibit scala-
bility due to the large number and size of trace files.

Recent advances in online trace compression promise a solution
for lossless trace recording [18]. This technique scalably achieves
the “best of both worlds” by combining a succinct representation
while retaining temporal ordering and location-specific information.
Its scalable compression of communication traces captures detailed
data in a single data set of small size and provides the ability to re-
play communication events. However, its representation lacks time
stamp information for communication events, which is essential to
determine bottlenecks and to facilitate what-if analyses that assess
the impact of changing key system architecture aspects such as net-
work bandwidth or latency.

This paper contributes a set of time-preserving compression tech-
niques for communication traces. Our techniques record “delta”
times representing the respective communication and computation
between and during communication events instead of traditional
time stamps. A first technique utilizes simple statistical delta times
on a per-event basis. A second approach employs histograms with
a fixed number of bins for delta times. We combine this with a
dynamic rebalancing scheme to equalize the number of items per
bin while adjusting their value range constraints. A third method
refines the previous one by distinguishing histograms not only per
call stack but also by path sequence. Path-sensitivity allows the dis-
tinction of deltas whose values vary significantly depending on path
origination with respect to loops.

We evaluate these techniques in the context of both per-node
compression with distinct trace files per node and global compres-
sion, which consolidates data from different nodes over a reduction
tree into a single trace file. Our experimental evaluations on the
BlueGene/L (BG/L) platform demonstrate that the schemes capture
sufficient timing information to detect communication inefficiencies
and to locate their source while incurring scalable costs as the num-
ber of nodes or time steps increases. Timed replay of the traces is
highly accurate with wall-clock time errors between -8% to 14% for
per-node and -20% to 7% for global compression for a wide array
of applications.

Overall, these results demonstrate that timed tracing without loss
of communication events can scale in the number of nodes and time



steps. The replay accuracy demonstrates that what-if emulators
such as Dimemas [19] could use our delta-based traces with little
loss in accuracy. We also could easily use them with timeline-based
trace analysis tools commonly employed in today’s development
cycle of high-performance applications, like Vampir [16] or Jump-
shot [24]. Importantly, our small trace files would allow the display
and efficient scrolling of communication events without decompres-
sion from a single workstation. No longer will these tasks require
complex visualization back-ends currently employed to handle long
traces from many nodes.

The paper is structured as follows. Section 2 summarizes the
scalable trace compression approach. Section 3 details methods to
scalably record timing information. Sections 4 and 5 present the
experimental framework and results. Section 6 contrasts this work
with prior research.

2. Scalable Trace Compression
We build on recent work on scalable MPI tracing that showed

online trace compression can result in trace file sizes an order of
magnitude smaller than previous approaches or, in some cases, even
near constant size regardless of the number of nodes or application
run length [18]. We refer to this toolset as ScalaTrace. While the
original approach successfully compressed large-scale traces, one
of the open questions was how scalability could be retained when
timing information was encoded in such traces. We concisely de-
scribe ScalaTrace to provide the context for this challenge.

ScalaTrace uses the MPI profiling layer (PMPI) to intercept MPI
calls during application execution. On each node, profiling wrap-
pers trace all MPI functions, recording their call parameters, such
as source and destination of communications, but without record-
ing the actual message content. This intra-node information (task-
level) is compressed on-the-fly. In addition, inter-node compression
is performed upon application termination to obtain a single trace
file that preserves structural information suitable for lossless replay.
Intra-Node Compression: ScalaTrace exploits application loop-

ing behavior to compress MPI call entries on-the-fly within each
node. Regular section descriptors (RSDs) capture MPI events
nested in a single loop in constant size [10] while power-RSDs
(PRSDs) specify recursive RSDs nested in multiple loops [14].
MPI events may occur at any level in PRSDs. For exam-
ple, the tuple RSD1 :< 100, MPI_Send1, MPI_Recv1 >
denotes a loop with 100 iterations of alternating send/receive
calls with identical parameters (omitted here), and PRSD1 :<
1000, RSD1, MPI_Barrier1 > denotes 1000 invocations of the
former loop (RSD1) followed by a barrier. These constructs corre-
spond to the code in Figure 1.

compute_1();
for (i = 1; i < 1000; i++) {

for (k = 1; k < 100; k++) {
MPI_Send(...); /* send call 1 */
MPI_Recv(...); /* recv call 1 */
compute_2();

}
MPI_Barrier(...); /* barrier call 1 */
compute_3(...);

}
Figure 1: Sample Code for PRSDs

ScalaTrace uses several optimizations to compress events effi-
ciently. These include efficient representations of stack walks,
location-independent end-point encodings and aggregation of con-
structs, like MPI_Waitsome, for which the repetitions can vary from
run to run. The algorithmic details of intra-node compression can
be found elsewhere [18].

Inter-Node Compression: ScalaTrace combines local traces into
a single global trace upon application completion within the PMPI
wrapper for MPI_Finalize. This approach is in contrast to generat-
ing local trace files, which results in linearly increasing disk space
requirements and does not scale as traces must be moved to perma-
nent (global) file space. The I/O bandwidth, particularly in systems
like BG/L with a limited number of I/O nodes, could suffer severely
under such a load. ScalaTrace provides scalability through cross-
node compression in a step-wise and bottom-up fashion over a bi-
nary tree. ScalaTrace merges events and structures (RSD/PRSDs)
of nodes when events, parameters, structure and iteration counts
match. Another set of generic and domain-specific optimizations,
including the use of a radix tree in the merge step, ensures efficient
inter-node compression. Further algorithmic details on the inter-
node compression scheme are again available elsewhere [18].
The Challenge of Scalably Encoding Timing Information: Tra-

ditional tracing techniques annotate each event with a time stamp.
ScalaTrace’s compression schemes complicate encoding this infor-
mation. Both mechanisms exploit repeated behavior to capture tem-
poral event ordering in limited space. Time stamps necessarily vary
with each event. Even the interval between events will vary due to
system interference and other effects that are not repeated behavior,
which makes them counter to ScalaTrace’s underlying philosophy.

3. Preserving Time
The focus of this paper is the challenge posed by incorporating

time information into the trace. To provide information on a time-
line, we depart from traditional absolute time stamps in favor of
relative “delta” time. At the beginning of each MPI wrapper, we
capture the compute delta, the length of time since the end of the
last MPI event. We then measure the time for the actual MPI event,
the communicate delta, by bracketing the PMPI call of the wrapper.

Repetitive event sequences often have similar delta timings in
regular SPMD codes. However, a fine-grained clock skews delta
times sufficiently to inhibit compression. Thus, we use statistical
methods with increasing precision but also storage cost instead of
recording the exact deltas. Our primary objective is to trade space
for increasingly precise retention of timings. We also intend to pre-
serve location information (such as node IDs) about outliers that
may indicate communication inefficiencies, such as load imbalance.

We have augmented ScalaTrace and its associated replay engine
(discussed below) with three timing encoding methods. First, we
designed a low-cost statistical approach to capture delta times. Sec-
ond, to capture computational imbalance, we developed a variation-
preserving recording scheme using time delta histograms, still with
a constant size trace representation, yet with a higher constant fac-
tor. Third, we extended the histogram approach with additional con-
text information to distinguish different preceding MPI calls.

3.1 Statistical Delta Times
Our first technique records simple statistics of delta times on a

per-event basis. We annotate each trace record with a single value
for its associated compute and communicate deltas. Thus, we cap-
ture the program’s entire compute and MPI timing characteristics
through per-record annotations.

We associate compute and communicate deltas with each trace
event corresponding to the wrapper in which it is captured. When
combining trace records, we encode in the new RSD aggregate sta-
tistical time information including the maximum, minimum, aver-
age and variance of deltas in the records. Similarly, we encode these
aggregate statistics when trace records are merged across nodes.

Compute deltas are collected for event pairs. For the example in
Figure 1, we capture two compute deltas: (a) from the send to the
receive and (b) from the receive to the send (between consecutive



loop iterations). Further, we distinguish timing deltas from different
entry paths and store the statistics for each path separately. This
enables us to treat loop iterations differently from the actual loop
bodies and hence leads to higher accuracy.

Statistical aggregation can detect bottlenecks that accompany
events that occur with a repeated temporal order, unlike traditional
profiling techniques. It also supports approximate communication
replay such that relative timing is preserved at a coarse grain. It al-
lows one to determine if significant imbalances exist by consulting
minimum, maximum and variance. However, it does not capture
finer-grained inefficiencies. This simple statistical approach also
does not sufficiently characterize the distribution of time deltas in
the min-max range. A single outlier can affect the average. Sim-
ilarly, the aggregate statistics misrepresent multi-modal distribu-
tions. Even with the standard deviation, we cannot detect several
important types of anomalies or recreate the relative timing of in-
dividual events with high accuracy. Thus, we often need more ad-
vanced techniques to record delta times.

3.2 Dynamically Balanced Histograms
Our second approach uses histograms of delta times. By using

a fixed number of histogram bins per trace entry, we retain Scala-
Trace’s desirable compression properties. The histograms capture
outliers and other timing distribution properties missed by the ag-
gregate statistics and, thus, can provide more insight into bottle-
necks and computational imbalance.

We linearly divide the range of delta times associated with an
event pair into k subrange bins, where k is a user-defined constant
value. We increment the counter corresponding to subrange x when
we observe a delta time of subrange x ∈ {1..k}. This scheme
allows finer-grained analysis of the amount of imbalance between
nodes, and it can be refined in repeated analysis runs by increasing
the number of bins.

A key challenge for this scheme is anticipating the range and dis-
tribution of the delta times for an event pair, neither of which is
known a priori. We address this challenge with a dynamic rebal-
ancing scheme that equalizes the number of items per bin while ad-
justing their value range constraints. Our rebalancing scheme uses
a weighted subrange partitioning scheme to achieve this goal. We
dynamically expand existing value ranges when we observe a new
extreme delta time. In essence, the length of a subrange mono-
tonically increases with each new extreme value, and the existing
histogram is adjusted on-the-fly.

Algorithm 1 shows our rebalancing scheme’s initial stage. We
assume the first value is the center of the delta distribution when we
create the histogram. We set the range to twice that value and create
a fixed number of equal-sized bins.

Algorithm 2 presents the scheme to rebalance histograms dy-
namically. New values may be unevenly distributed across bins.
Thus, bins are dynamically balanced by changing the bin sizes ap-
propriately. When a value is added to a bin, the minimum, max-
imum, average and variance for the bin are updated. By specify-
ing a smooth_interval threshold (normally expressed as a percent-
age; when the bin sizes are very small, an absolute value is used as
a threshold), one can control when rebalancing is triggered in re-
sponse to bin sizes. Upon a rebalance action, the algorithm locates

Algorithm 1 HistogramCreate(value v, numbins k)

range← 0− 2 ∗ v
num-bins← k
bin-size← 2v/k

Algorithm 2 HistogramAdd(value v)

find bin such that binmin ≤ v and v ≤ binmax

binfreq ← binfreq + 1
avg = binavg

if binfreq = 1 then
binavg = v

else

binavg = binavg+(v − binavg)/binfreq

end if

if binfreq = 1 then
binvariance = 0

else

binvariance = binvariance + (v − avg) ∗ (v − binavg)
end if

if binfreq mod smooth_interval = 0 then
find B, such that Bfreq is highest
find b1, b2 such that |b1freq − b2freq| < m1

and b1freq + b2freq ≤ k ∗Bfreq

merge b1, b2 into b such that
bmin = b1min, bmax = b2max

split B into B1, B2 such that
B1min = Bmin, B1max = Bavg

B2min = Bavg, B1max = Bmax

update bavg, B1avg, B2avg

update bvariance, B1variance, B2variance

end if

small, adjacent bins that can be combined and a large bin that can
be split. While merging bins, the new bin takes the extreme values
from the appropriate bins, the new average is the weighted average,
and the new variance is updated accordingly assuming a uniform
distribution [13]. Splitting a bin is more complex. We split the bins
along the old average. Assuming a uniform distribution, we set the
new bin averages to be at a distance of sigma/2 on either side from
the old average and the new bin sigma to be half the old sigma value.

Besides bin rebalancing during intra-node compression, his-
tograms are merged during inter-node compression. Deltas from
one histogram are moved to another while preserving node-
imbalance information. More specifically, histograms retain anno-
tations with a node for the minimum and one for the maximum delta
times. The complexity of the algorithms is O(1) for bin creation, ad-
dition of elements and rebalancing (i.e., merging and splitting bins)
since the number of bins is constant. The inter-node merge opera-
tion on histograms is O(freq), i.e., linear in the items per bin. We
are exploring O(1) inter-node merging in order to reduce the Sca-
laTrace library overheads. Overall, this method effectively creates
bins that span the entire value range and hold a similar number of
samples.

3.3 Path-Sensitive Delta Times
Our third method refines the previous one by distinguishing his-

tograms not only by call stack but also by path sequence. Hence, the
entry path to and the exit path from a loop can be distinguished from
the iteration path within the loop. This facilitates the distinction of
compute deltas that vary significantly per the execution path.

For many scientific codes, the time spent in a loop is generally
uniform across iterations, but the time spent in different loops or
at different nesting depths can vary significantly. Consider Figure
1 where the MPI_Send call lies on multiple execution paths: on
the first entry into the inner loop; on subsequent entries into it; and
on repeated iterations of that loop. The associated compute delta
depends on the preceding function call: compute_1; compute_2;



or compute_3. Each call to compute_1 might consume a similar
amount of time, but calls to compute_1 and compute_2 might vary
substantially.

In our third method, we keep a list of delta histograms, each stor-
ing the timing information for a different path sequence. Each call
site is annotated with a stack signature, which results from XORs
of the PCs upon call stack traversal [18]. These stack signatures
facilitate the distinction of call paths as signature difference is suf-
ficient for call path inequality (while a matching signature requires
per-call PC comparison along a call path). We annotate each trace
record with a list of histograms, and each histogram has an associ-
ated stack signature, which must be the same as the stack signature
of the previous operation when being combined by the compression
algorithm. While merging records, a delta must be inserted into the
appropriate histogram. This is determined by matching the previ-
ous operation’s stack signature with the histograms in the list. If no
matching histogram is found, a new one is created.

3.4 Time-Preserving Replay
An objective of collecting communication traces is their off-

line analysis. Analysis tools, including timeline-based visualiza-
tion tools, can directly operate on the trace. Communication traces
also support generic replay of communication events without using
the application code. This mechanism supports what-if analyses, as
with Dimemas [19].

We have designed and implemented a replay engine that issues
communication calls in the same order that they were originally is-
sued by an application. Our replay engine does not decompress the
trace. Instead, it interprets the compressed trace on-the-fly to issue
communication calls. In effect, the replay engine implements the in-
verse functions of the compression algorithms. When it encounters
an RSD or PRSD, it issues calls iteratively observing the structure,
frequency and parameters of communication calls. Consider the tu-
ple RSD1:<100, MPI_Send1, MPI_Recv1> again. Upon replay,
100 pairs of MPI_Send and MPI_Recv calls are issued with the re-
spective parameters (omitted here for presentation purposes). Simi-
larly, the tuple PRSD1:<1000, RSD1,MPI_Barrier1> is replayed
by issuing 1000 pairs of RSD1 events and MPI_Barriers. The
structure-preserving compression scheme is key to a scalable replay
methodology, which does not require excess amounts of memory.
In fact, the compressed trace size, which is often constant, loosely
bounds its memory requirement.

Replay triggers all MPI calls over the same number of nodes with
original payload sizes, yet with a randommessage content. We cap-
ture any data dependence arising from the communication in the
traced message schedule so the replay reflects it. Thus, the replay
incurs comparable bandwidth requirements on communication in-
terconnects. However, the communication could exhibit different
contention characteristics in the absence of timing information.

Our timing encoding methodologies provide a means to address
this shortcoming. Our replay engine emulates computation by
sleeping using nanosleep() to delay the next communication event
by the proper amount of time (BG/L does not support nanosleep() so
we use a busy-wait loop instead). It simply replays communication
using the same end points.

Our timed replay implementation varies with the time encoding
scheme. With aggregate statistics, we simply replay the average
times and ignore the extreme values. More sophisticated replay is
possible, including the use of extreme values or choosing delays
from a distribution. We select replay delays to reflect the distribu-
tion across bins accurately for histogram-based replay. Similar to
our use of aggregate statistics, we replay average times within each
bin. For inter-node compressed traces, we have the extreme node

information, which we utilize to replicate the imbalance in compute
deltas. Path-sensitive replay adds another level of complexity. By
considering the current communication event in conjunction with
the previous one, we select the appropriate histogram to determine
the correct delta value.

Overall, our replay mechanism is extremely portable, which can
benefit rapid prototyping and tuning, albeit without any guarantee
to resemble equivalent computational overhead when record and re-
play platforms are heterogeneous. Further, it serves as a guide for
using our traces with emulators, which also require some method to
scale compute deltas. Scaling compute deltas would require perfor-
mance prediction, which is an area beyond the scope of this paper.

3.5 Search in Time
Searching on the time axis is a common operation in trace vi-

sualization. Many visualizers perform a binary search on flat traces
consisting of all events. Due to traditional trace file sizes, this search
may be out-of-core (often on hard disk), which presents a significant
performance impediment. Recent work has improved this approach
by indexing trace files, which allows an in-core search on the in-
dices. Our compressed trace (and not just a selected index set), in
contrast, fits in core memory and has a much lower complexity.

To accelerate searches over a compressed trace, we construct a
timing tree. Leaf nodes represent events (with delta times), inte-
rior nodes correspond to loops with weights (number of iterations
of the loop), the root represents the main application level with one
iteration, and edges are connecting loops to events or inner-more
(nested) loops with weights (aggregate delta time range within cur-
rent loop).

A search for an instance in time then has a time complexity of
O(h × log(v)), where h is the maximal horizontal dimension (se-
quence of timed events in one nesting level) and v is the maximal
vertical dimension (number of nesting levels of loops containing
traced operations). The former is loosely bounded by the number
of calls in the source program, irrespective of their calling context
(i.e., without considering the call stack or any dynamic information)
while the latter is bounded by the depth of loops (number of nest-
ing levels) over the program’s call graph. Since the nesting depth is
generally small (typically no larger than ten), the complexity is in-
dependent of properties of the uncompressed, flat trace. In contrast,
the complexity of a binary search is logarithmic to the size of the
flat trace, which can be prohibitively large in terms of memory re-
quirements as explained above so that the trace is forced out of core
memory. Even if selected indices are utilized, the search remains
logarithmic with a tunable constant factor (the fraction of selected
indices), which does not change the complexity and also requires
a second-level finer-grained search within the range between two
selected indices.

To illustrate a search over a timing tree, consider a compressed
trace consisting of pairs of (event,delta time) of (e1,1) and (e2,2) at
the level of the program and events (e3,1), (e4,2) and (e5,2) within
a loop of ten iterations or simply:

PRSD1 = ((e1, 1), (e2, 1), PRSD2, iters = 1)
PRSD2 = ((e3, 1), (e4, 2), (e5, 2), iters = 10)
We represent the trace by the timing tree depicted in Figure 2 to

perform search in the time dimension. A search for time t = 16
then traverses the tree from the root to the third child (2 ≤ t ≤
52), which represents the inner loop with ten iterations. Solving
inequation 2 + i ∗ 5 ≤ t ≤ 2 + (i + 1) ∗ 5 for t = 16 yields i = 2,
i.e., the target time is within the second iteration of the loop. More
specifically, t = 2 + i ∗ 5 + k yields k = 2 where 1 ≤ k ≤ 3
is matching subrange 1..3. Hence, the second child is traversed to
yield event e4 in the second iteration of the loop as the search target.
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Figure 2: Search over Timing Tree for t=16

4. Experimental Framework
For all following experiments we use the MPI version of the NAS

Parallel Benchmark (NPB) suite [23] (version 3.2.1) with class C
inputs as well as UMT2k [1]. The latter is an unstructured mesh
transport code, which is a real-world test case known to exhibit load
imbalance. It therefore both stresses our tracing approach and pro-
vides an interesting target to show the analysis techniques enabled
by our approach. We use powers of two node counts for all codes,
except for BT due to input constraints. We do not report results for
DT class C with 32 and 64 tasks due to memory requirements.

We conducted our other experiments on a 2048-node BlueGene/L
(BG/L) machine [2] with 1GB of memory per node. Correctness
of replay was derived from showing that aggregate MPI statistics
obtained via mpiP [22] from the application match that of the mpiP-
instrumented replay.

5. Experimental Results
We evaluate our methods to encode timing information with six

experiments. First, we compare our timing techniques by loop-
ing over a message send and receive and varying the computation
time per iteration, which evaluates the accuracy of using aggregate
statistics versus histogram bin counts. Our next experiments study
the benefits of using path-sensitive histograms, particularly with in-
creasing MPI task counts. We compare replay times with and with-
out path-sensitive histogram lists. We then compare replay accu-
racy when using a coarse-grained timer (gettimeofday) to using
a fine-grained timing mechanism (rts_gettimebase). In the
fourth and fifth experiments we vary the task count to assess both
the accuracy and the effectiveness of compression in the presence of
delta times. Our metrics are the accuracy of replay execution time,
excluding the time to read the trace over the BG/L parallel file sys-
tem, and trace file size. Finally, in the last experiment we analyze
the runtime overhead of our tracing and compression mechanism.

5.1 Aggregate Statistics vs. Histograms
Figure 3 shows the replay accuracy of a send/receive microbench-

mark with three different approaches for various run lengths (5 to
40 time steps). We generate three types of traces: aggregate statis-
tics; 5 histogram bins; and 10 histogram bins. The first bar shows
the uninstrumented application computation and MPI times, and the
next three bars show replay times using our three trace types. We
measure all times with mpiP [22]. The trace containing aggregate
statistics deviates significantly from the original application time
compared to the other two cases. We use 5 histogram bins to limit
memory consumption in our remaining experiments since the replay
results achieve reasonable accuracy.

5.2 Contrasting Timing Techniques
Figure 4 shows that replay more accurately reflects application

performance, particularly for larger number of nodes, for path-
sensitive histograms vs. path-insensitive ones (one-path). Except
for the uninstrumented case, computation (dark/maroon) and com-
munication (light/yellow) times are distinguished in stacked bars.
The bars depict aggregated execution times across all nodes for
uninstrumented and mpiP-instrumented execution followed by re-
play with single-bin histograms and with single-bin path-sensitive
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Figure 3: Using Histograms Increases Delta Accuracy

histograms. We show the LU benchmark since it has a nested loop
with widely varying compute times at different nesting levels, which
emphasizes the impact more dramatically than other benchmarks.
The loops contain send/receive pairs, which lead to substantial er-
ror in the MPI timings with inaccurate replay of the compute deltas
when only a single bin is used.
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Figure 4: LU: Path-sensitive Histogram Benefits

5.3 Granularity of Timing
Figure 5 depicts results for the aggregated wall-clock times of LU

using different timing sources. The different bars (in order) show
uninstrumented execution, mpiP-enhanced application execution,
replay with coarse-grained time (gettimeofday) and with fine-
grained time (using the high-resolution BG/L timer) . The latter two
utilize inter-node/globally compressed traces with additional mpiP
instrumentation. The results illustrate that the overhead of reading
the time from whatever source becomes more relevant as the num-
ber of nodes increases. We infer this from the significant change
in computation time while the communication time is unaffected.
This experiment demonstrates that the tolerance for timer overhead
decreases as the task count increases. We discuss the differences
between uninstrumented, mpiP-instrumented and replay times for
LU in the following.
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Figure 5: LU Times, Different Clocks
5.4 Timing Accuracy

Figures 6 and 7 depict the aggregated wall-clock times across all
nodes for UMT2k and the NPB codes. For each set of results, five
bars are shown:

Bar 1: Original aggregated application execution time;
Bar 2: Aggregated execution time when linked with mpiP;
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(b) CG
Total MPI Compute

  0

  500

  1,000

  1,500

  2,000

  2,500

  3,000

g
lo

b

n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b

n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b

n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

E
x
ec

u
ti

o
n
 t

im
e

Number of CPUs
128 256 512

(c) DT

Total MPI Compute

  0

  500

  1,000

  1,500

  2,000

  2,500

  3,000

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

E
x
ec

u
ti

o
n
 t

im
e

Number of CPUs
32 64 128 256 512

(d) EP
Total MPI Compute

  0

  500

  1,000

  1,500

  2,000

  2,500

  3,000

  3,500

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

E
x
ec

u
ti

o
n
 t

im
e

Number of CPUs
32 64 128 256 512

(e) FT

Total MPI Compute

  0

  50

  100

  150

  200

  250

  300

  350

  400

  450

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

g
lo

b
n
o
d
e

u
n
co

m
p
r

m
p
iP

u
n
in

st

E
x
ec

u
ti

o
n
 t

im
e

Number of CPUs
32 64 128 256 512

(f) IS
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(h) MG

Figure 6: Aggregated NAS PB Wall-clock Times Across All Nodes.

Bar 3: Aggregated replay time with no compression (flat);
Bar 4: Intra-node compression aggregated replay time; and
Bar 5: Global compression aggregated replay time.

Global compression includes both intra and inter-node compression.
We measure the times for bars 2 - 5 with mpiP and report the mpiP-
measured communication and computation time. The data produced
by mpiP also supports comparison of statistical data of call frequen-
cies during replay with the mpiP run. These results validate that
the replay engine correctly emulates the application’s MPI usage.
We varied the task count for each benchmark to assess the affect of
strong scaling on the measured metrics.

The results in Figures 6 and 7 illustrate that aggregated wall-
clock times are preserved well during replay of traces for most
benchmarks. A comparison between uninstrumented and mpiP-
instrumented reveals the overhead of “null” instrumentation. It re-
veals to what extent timing can be expected to be precise, i.e., to
what extent timing dilation is cause by the PMPI layer of instru-
mentation vs. the overhead of our trace compression. As the results
indicate, the overhead stems from the former for most benchmarks.
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Figure 7: Aggregated UMT2k Wall-clock Times

Our replay results are generally very accurate. All benchmarks
except for MG show nearly perfectly matching times regardless of
the number of tasks. EP is a special case since it lacks any com-
munication overhead so that replay is simply a sequence of sleeps,
which is accurate, not surprisingly. IS, LU and BT show slightly
lower global replay than mpiP times due to different communica-
tion overhead. In contrast, CG’s global replay times can be slightly
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Figure 8: NPB Trace File Size per Node on BlueGene/L.

longer (512 nodes) or shorter (256 nodes), due to slightly larger

computation and sometimes smaller communication overhead, ap-
parently due to additional software layers and additional delays at
collectives. Nonetheless, these replay times remain close to their
mpiP counterparts. MG shows slightly increasing communication
times with full compression for a larger number of tasks. The online
replay mechanism may cause this behavior. Instead of decompress-
ing traces, replay is realized by issuing sequences of calls according
to the PRSD trace records. Since PRSDs are nested by virtue of
their structure, the replay is implemented as a recursive routine. The
stack depth resulting from deep recursion may be a factor for timing
in this case. Overall, our replay mechanism reproduces the original
wall-clock times within -8% to 14% for intra-node and -20% to 7%
for full compression.

5.5 Trace Sizes
An important goal in adding delta times to ScalaTrace was to

maintain its trace size properties [18]. In our previous work, we
showed that applications fell into three categories: near-constant
trace sizes regardless of number of tasks (DT, EP, and IS); sub-linear
scaling with number of tasks (LU and MG); and those that do not
scale (BT, CG, and FT). We have since made significant basic com-
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Figure 9: UMT2k Trace File Size per Node on BlueGene/L.

pression improvements with the exception of IS, as described below.
Figures 8 and 9 show trace sizes after inclusion of time information
and this trace compression optimization. The three sets are now
(DT, EP, LU, BT, FT) for near-constant, (MG, CG) for sub-linear
and (IS, UMT2k) for non-scalable sized traces.

One optimization encodes wildcard communication end-points
(ANY_SRC) directly instead of storing them as offsets. The LU
benchmark profited significantly from this optimization. Another
improvement omits tags from point-to-point records as they were
often redundant and adversely affected compression. This change
significantly improved intra-node compression for BT. However,
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(b) CG
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(h) MG
Figure 10: NAS PB wall-clock times at root node.

the LU benchmark uses tags to distinguish end-points so they can-
not be omitted for it; currently we explicitly record tags only for
LU. We have designed (but not yet implemented) a method for au-
tomatic detection of the relevance of tags to record them only when
required. The most significant improvements came from an opti-
mization in inter-node compression. We relaxed the prior strategy
that required exact matches of all parameters to allow mismatches
in selected parameters (e.g., source/destination) complemented by
an ordered list of (value, ranklist) pairs to record the generally rare
mismatches separately. Since the ranklists are stored as PRSDs in
compressed format, this representation of constant size for regular
patterns of end-points, otherwise it grows sub-linearly in size.

IS is non-scalable due to its dynamic rebalancing of work, which
results in different sized payloads for an MPI_Alltoallv() collective
upon each call (incorrectly encoded in constant size in a previous
version of ScalaTrace). UMT2k falls into the non-scalable cate-
gory in terms of trace sizes, as depicted in Figure 9. For these
non-scalable cases, there is still room for improvement subject to
ongoing investigation. But even for these cases, our compressed
traces are three orders of magnitude smaller than currently used flat
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Figure 11: UMT2k wall-clock times at root node.

traces. Most significantly, delta times did not adversely affect trace
sizes (even for the non-scalable traces), i.e., non-compressible com-
munication events were the same before and after time inclusion.

5.6 Tracing Overhead
Since task 0 performs the final stage of the inter-node compres-

sion and hence incurs the highest overhead, we measure its execu-
tion times during tracing runs to study our tracing overhead. Fig-
ures 10 and 11 show these runtimes for the uninstrumented baseline
and the three trace options split into overall application runtime,



which includes both tracing and intra-node compression overhead,
I/O time, and inter-node compression within MPI_Finalize.

Our trace compression mechanism incurs negligible overhead for
applications with small (DT and EP) or modest (FT and IS) num-
bers of communication events and hence trace sizes. For applica-
tions with larger traces, we observe an increase in runtime similar to
flat tracing for applications with good intra-node compression (BT
and LU) and only slightly higher with less successful compression
(CG, MG, and UMT2k). Similarly, inter-node compression has lit-
tle overhead when compression works well, while applications with
less scalable traces (IS, MG, and UMT2k) show significantly larger
overhead. The high overhead stems in both cases from searching
trace records for potential matches, which are more prevalent when
compression is poor, leading to higher search overhead. We are cur-
rently investigating additional algorithmic enhancements that ex-
ploit semantic properties of MPI traces to alleviate this overhead.
We have already identified a significant improvement for inter-node
compression, although its overhead, which is particularly high for a
few cases, occurs in MPI_Finalize. Hence, it does not perturb the
actual application timings.

5.7 Detecting Communication Inefficiencies
An important application of encoding time deltas in compressed

traces is to detect imbalances in communication. Traditional tracing
tools generate flat traces per node. Hence, it would be necessary to
look at hundreds or thousands of trace, each of which could be a
few gigabytes or longer, to locate communication anomalies.

Figure 12: Delta histogram at one MPI_Barrier in UMT2k

Our trace representation simplifies this task considerably: inspec-
tion of only one small compressed trace is required. Within a trace,
the histogram for each record contains load distribution informa-
tion, such as extreme node information and the number of nodes
within a particular range. Simply inspecting the trace suffices, man-
ually or with minimal batch tool and/or visualization. Such a tool
could be derived from our replay engine’s trace parser.

Figure 12 shows an example from the UMT2k benchmark. As
mentioned earlier, this benchmark is known to have load imbalance.
We took a trace from a run of the benchmark and inspected the delta
histograms of collectives. The figure clearly depicts the imbalance
as we see the nodes falling into two distinct groups with extreme
communication times, a sign of imbalance in computation imme-
diately preceding the collective. The trace also indicates the nodes
responsible for minimum and maximum times.

6. Related Work
The mpiP tool, a lightweight profiling library for MPI applica-

tions, collects statistical information about MPI functions [22]. It
reports aggregate metrics including average execution times. Our
work distinguishes path-sensitive execution contexts instead of ag-
gregate profiles. Our timing information is also of finer granularity
in histograms that indicate nodes subject to certain timing ranges.

This added information supports the detection of communication
bottlenecks and their location, in contrast to mpiP.

Geimer et al. [9] obtain per-node traces stored locally at each
node and later replay these communication traces on the same ar-
chitecture with the same number of nodes to detect communica-
tion bottlenecks. Their performance results indicate replay times
for their new analysis approach still diverge from the original ap-
plication time by up to an order of magnitude, even when ignoring
the additional overhead for file I/O with flat trace files. Later work
generalized this approach to Grid environments using distributed
time stamp synchronization [4]. In contrast, our experiments show
closely matching execution times under replay, not only for com-
pressed but also flat local traces. Their trace sizes are reported to
reach 10GB, the same order of magnitude reported by others [7].
In fact, any flat trace representation, including commercial tool sets
such as Vampir [5], is subject to extremely large trace files that are
generally stored locally and increase linearly in size with both the
number of MPI calls made and the number of tasks. This limits
their applicability as scalability is compromised. In contrast, the
technique [18] on which we build compresses traces to sizes that
are three orders of magnitude smaller and do not significantly in-
crease in size, if it all, during strong scaling. Our work shows that
scalability need not be sacrificed even when timing information is
included.

Paraver and Dimemas [19], an MPI tracing tool set, combine trac-
ing functionality similar to Vampir (under the same limitations) with
a discrete-event-based network performance simulator using traces.
Dimemas replays traces in a simulation environment to study archi-
tectural parameters. Tools like Dimemas and Vampir’s trace visu-
alizer could be used in conjunction with our replay time-preserving
traces without having to decompress our trace representation, which
could result in significant speedups for users. Casas et al. [6] recog-
nize multi-level regularities in large, post-mortem trace files. By de-
tecting patterns, they compress these flat trace files offline and can
filter background (operating system) activity artifacts. The com-
pression is reported to take up to an hour for benchmarks compa-
rable to NAS. Our method, in contrast, compresses regularities on-
the-fly and never generates any flat trace file.

The Open Trace Format (OTF) targets scalable tracing, yet with-
out any advanced (domain-specific) compression scheme [11]. In
contrast to our work, it uses regular zlib compression on blocks of
data, which loses structure and limits analysis on the compressed
format. It also does not support inter-node compression schemes.
Hence, the complexity of aggregate trace size over n tasks is O(n).
However, they can produce multiple streams and, hence, store and
load them in parallel with user-defined granularity. An alternate
trace format by the same group uses so-called cCCGs, a structural
compression format that combines regular patterns into common
sub-trees [12]. In practice, the observed storage requirement for
regular event patterns is reported to be logarithmic due to combin-
ing nodes upon matching patterns and deltas. In contrast, our stor-
age overhead is as low as constant when event patterns are regular
regardless of the delta time properties as the number of histograms
is bounded by a constant.

Arnold et al. [3] developed a scalable tool to identify task be-
havior equivalence classes with high similarity based on stack sig-
natures. Their approach utilizes MRNet, a software overlay net-
work that provides efficient multicast and reduction communica-
tions [20]. MRNet uses a tree of processes between the tool’s front-
end and back-ends to improve group communication. MRNet intro-
duces additional complexity, which we decided to avoid in our cur-
rent prototype. MRNet would support on-the-fly and asynchronous
trace compression across tasks. By using MRNet, we would further



reduce the memory pressure of our trace generator. MRNet could

be used in a future version of our tool using P NMPI as the glue

layer between the tools [21].

Freitag et al. [8] describe a window-based compression scheme
and evaluate its applicability to OpenMP traces. Our PRSD com-
pression is more powerful as it allows recursive compression online.
Neyman et al. [17] designed a tool to detect races in PVM codes us-
ing a trace generation and replay tool while recent work by Mesnier
et al. focuses on I/O trace generation and replay [15]. Neither of
these scale as they do not perform any compression. Our approach
could also handle MPI-IO calls similarly to regular MPI events.

7. Conclusion
Storing communication traces with precise time information in

a scalable manner is a significant challenge. Existing work either
omits timing information for the sake of scalability, and thereby
limits the usefulness of the data, or produces trace files with a total
size linear to the number of processors and the overall runtime of the
application, which is clearly infeasible for large scale environments.

In this work we presented three techniques to add timing informa-
tion to a scalable trace format based on PRSDs. In all cases we rely
on delta times rather than absolute time stamps to expose similari-
ties in repeating call patterns. Our methods vary the level of timing
detail encoded in the trace from aggregate statistics to path-specific
histograms. We show that these techniques, particularly the latter,
are sufficient to capture timing characteristics of the target applica-
tion without significantly increasing the required storage space for
the resulting traces. Our solution thus represents the first truly scal-
able tracing mechanism for MPI applications capable of capturing
timing information along with the actual communication structure.
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