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ABSTRACT

Extreme-scale computing poses a number of challenges to
application performance. Developers need to study appli-
cation behavior by collecting detailed information with the
help of tracing toolsets to determine shortcomings. But not
only applications are “scalability challenged”, current tracing
toolsets also fall short of exascale requirements for low back-
ground overhead since trace collection for each execution en-
tity is becoming infeasible. One effective solution is to clus-
ter processes with the same behavior into groups. Instead
of collecting performance information from each individual
node, this information can be collected from just a set of
representative nodes. This work contributes a fast, scalable,
signature-based clustering algorithm that clusters processes
exhibiting similar execution behavior. Instead of prior work
based on statistical clustering, our approach produces pre-
cise results nearly without loss of events or accuracy. The
proposed algorithm combines low overhead at the clustering
level with log(P) time complexity, and it splits the merge
process to make tracing suitable for extreme-scale comput-
ing. Overall, this multi-level precise clustering based on sig-
natures further generalizes to a novel multi-metric clustering
technique with unprecedented low overhead.

Categories and Subject Descriptors

1.5.3 [Clustering]: Algorithms; D.1.3 [Programming
Techniques]: Concurrent  Programming; D.4.8
[Performance]: Measurement

General Terms
Measurement, Performance
Keywords

High-Performance Computing, Message Passing, Tracing,
Clustering Algorithms

1. INTRODUCTION

Scientific computing applications continue to push the en-
velope on ever increasing demand for computational power.
This trend is driven by a need to increase model resolution
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by orders of magnitude combined with multi-level simulation
combing models at different granularity. High-performance
computing (HPC) hardware platforms are struggling to keep
peace with these demands as a number of challenges are
posed in terms of hardware and software advances for next-
generation HPC at exascale Flops (Floating-point opera-
tions per second) rates. To effectively utilize such extreme-
scale HPC platforms, developers need to observe and tune
application behavior to ensure their algorithms still scale to
larger number of nodes and cores, a process that is typically
repeated for each order-of-magnitude increase in compute
capability (Flops). This process is generally aided by col-
lecting detailed information with tracing toolsets to deter-
mine algorithmic, software and hardware resource shortcom-
ings. This allows developers to study application behavior of
such performance information utilizing performance analy-
sis tools. While applications may be considered “scalability
challenged” when exposed to yet another larger platform,
current tracing toolsets also fall short of exascale require-
ments: They can no longer ensure a low background over-
head of their tool workload since trace collection for each
execution entity is becoming infeasible at extreme scales for
hundreds of thousands of cores and beyond. Most tools ei-
ther obtain lossless trace information at the price of limited
scalability, such as Vamipir [3], or preserve only aggregated
statistical trace information to conserve the size of trace files,
as in mpiP [21].

At extreme scale, tracing tools, linked with applications,
could severely affect the efficiency and scalability of the sys-
tem. The tracing background workload may compete with
the application for resources, which can perturb the applica-
tion’s behavior. Moreover, due to the large I/O requirement
of tracing data required for applications on top-end HPC
platforms, collecting detailed performance information com-
prehensively may not be feasible from a scalability perspec-
tive. Therefore, tool designers need to develop new strate-
gies to address these problems.

One effective solution is to cluster processes with the same
behavior into groups; then, instead of collecting performance
information from all individual nodes, such information can
be collected from just a single node (or a set of representative
nodes) per cluster group.

This paper proposes a fast, scalable, signature-based clus-
tering algorithm that clusters processes exhibiting similar
execution behavior. We apply our clustering algorithm on
trace files created by the public release of ScalaTrace V2 [24],
a state-of-the-art MPI message passing tracing toolset. Sca-
laTrace V2 provides orders of magnitude smaller if not near-
constant sized communication traces regardless of the num-
ber of nodes while preserving structural information.

ScalaTrace employs a two-stage trace compression tech-
nique, namely intra-node and inter-node compression [16,



25]). It utilizes Regular Section Descriptors (RSDs) to cap-
ture the loop structures of one or multiple communication
events. Power-RSDs (PRSDs) are utilized to recursively
specify RSDs in nested loops (see Section 2). After each
node has created its own compressed trace file and the pro-
gram is completing, ScalaTrace performs an inter-node com-
pression over a radix tree rooted in rank 0. During this
reduction, internal nodes combine their traces with other
task-level traces that they receive from child nodes. While
intra-compression is fast and efficient, inter-node compres-
sion is a costly operation with O(n2 log P) time complex-
ity, where n (typically a constant) is the number of MPI
events in PRSD compressed notation and P is the number
of processes. Our clustering algorithm addresses the high
overhead due to scaling out to 100,000+ processor cores by
significantly reducing P to a constant for most cases (or a
sub-linear term of P for the remaining ones), thereby effec-
tively eliminating this bottleneck.

The proposed clustering algorithm has two levels, the first
of which employs call-path clustering based on the stack sig-
nature of MPI events. We use the stack signature to distin-
guish events originating from different call sequences with
associated call paths. The call-path signature is the ag-
gregated composition of stack signatures of different events.
The first level of clustering distinguishes processes with dif-
ferent execution structures.

Parameter clustering is the second level of clustering. At
this level, we use a different signature called the parameter
signature. This signature composes parameters of the MPI
call event, such as count (number of data elements), type
(data type), source, destination, etc., excluding the message
content itself. Once the algorithm has clustered processes
with different execution structures, with the help of param-
eter clustering, we distinguish processes with the same exe-
cution structure but different parameters.

To evaluate the accuracy and scalability of our algorithm,
we also designed a reference clustering approach based on a
reference signature. The reference signature covers call-path
signatures by adding a sequence number to each MPI event
as well as parameter clustering by keeping each MPI event’s
parameters uncompressed. Detailed implementation infor-
mation about call-path-+parameter clustering and reference
clustering algorithms are discussed in the following sections.
Contributions: e We provide a novel multi-level clustering
algorithm. By separating aspects in a multi-level approach,
the algorithmic complexity of clustering is reduced.

e We develop a unique signature-based clustering method-
ology. Signatures address the shortcoming of past singular
metric approaches to clustering. This allows clustering to
be extended to multi-dimensional domains of diverse met-
rics and equally diverse application scenarios. Signatures
again reduce computational clustering overheads since sig-
natures are of constant length.

e We design call-path clustering of call sequence signatures
suitable for program tracing in general. We further compose
domain-specific data via parameter signatures and derive
clusters capturing common behavior across different execu-
tion instances in a highly parallel environment.

e We evaluate the composition of call-path+parameter clus-
tering for a set of HPC benchmarks showing that their effec-
tiveness is capturing representative application behavior for
communication events. The number of clusters is a constant
for most benchmarks and scales sub-linearly in the number

of processes for the remaining ones, a significant improve-
ment over linear increases without clustering.

e We demonstrate that application performance is preserved
when execution traces composed of a set of just one task per
cluster are replayed over the entire original number of pro-
cessors, where the behavior of other tasks in a cluster is
derived from just the singular sampled one.

Overall, a novel technical approach for multi-dimensional
clustering is shown to deliver low algorithmic complexity
enabling communication tracing at extreme scale in an un-
precedented manner.

2. BACKGROUND

Our work builds on ScalaTrace as an MPI tracing toolset.
Here, we briefly introduce several of the key ideas and tech-
niques relevant to I/O tracing.

ScalaTrace captures MPI events in the innermost loop as
Regular Section Descriptors (RSD), while power-RSDs cap-
ture RSDs (PRSDs) of higher-level loop nests represented as
a constant sized data structure [15]. Consider the example
in the following code snippet:

for i = 0 — 1000 do
for k=0 — 100 do

MPI_Send(...);
MPI_Recv(...);
end for
MPI_Barrier(...)
end for

Trace compression with PRSDs results in the following tu-
ples: RSD1:<100, MPI Send1, MPI Recv1> denotes a loop
with 100 iterations of alternating send/receive calls with
identical parameters (omitted here), and PRSD1:<1000,
RSD1, MPI_Barrierl> denotes 1000 invocations of the for-
mer loop (RSD1) followed by a barrier.

ScalaTrace has the following three main properties: (1)
ScalaTrace provides location-independent encodings: Com-
munication end-points (task IDs) in SPMD programs often
differ from one node to another. However, their position
relative to the MPI task ID often remains constant. There-
fore, ScalaTrace leverages relative encodings of communica-
tion end-points, i.e., an end-point is denoted as +c for a
constant c relative to the current MPI task ID [16]. Con-
sider Fig. 1 with relative encoding of nodes 5 and 9 in terms
of communication end-points —4, —1, +1 and +4, i.e., these
nodes have identical relative communication end-points.
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Figure 1: Communication End-point Encoding

(2) ScalaTrace features calling sequence identification:
MPI calls, such as a Send, may be scattered over various
locations in a program; to distinguish between events from
different locations, just recording the MPI event type itself
is insufficient. ScalaTrace captures the calling context by
recording the calling sequence that leads to the MPI event,
which is obtained from the stack backtrace of an MPI event.
Each location is represented as a unique signature of the
stack trace called the stack signature [16].



(3) ScalaTrace provides communication group encoding:
ScalaTrace leverages a special data structure called ranklist
to represent a communication group. Using EBNF nota-
tion, a rank list is represented as (dimension, start_rank,
iteration length, stride, iteration length, stride), which de-
notes the dimension of the group, the rank of the starting
node, and the iteration and stride of the corresponding di-
mension, respectively [22]. In Fig. 2(a), the shaded nodes
are presented as ranklist (2 5 2 4 2 1), and in Fig. 2(b), they
are presented as ranklist (2 0 4 4 4 1). The former reads
as a 2D ranklist starting at task 5, two entries in the first
dimension with a stride of 4 (implying tasks 5 and 9) and
two entries in the second dimension with stride 1 (implying
tasks 6 and 10).
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Figure 2: Ranklists for Communication Group

3. A NOVEL CLUSTERING ALGORITHM

This section details design and implementation of the
call-path+parameter clustering and reference clustering al-
gorithms. Call-path+parameter clustering has two main
phases. A first call-path clustering phase discovers processes
with different numbers or sequences of events, and a second
phase distinguishes processes with the same call-path clus-
ter but different event parameters. As noted previously, the
reference signature is the uncompressed version of the call-
path+parameter signatures.
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Figure 3: Overview of Proposed Clustering Algorithm
3.1 Call-Path Clustering

Figure 3 illustrates that call-path-+parameter clustering
has different phases. During the first phase, the algorithm
clusters processes with different sequences of MPI calls,
which creates so-called “main clusters”.

A stack signature consists of a number of backtrace ad-
dresses of the program counters (return addresses), one for
each stack frame. Our call-path signature is a 64-bit sig-
nature. To represent large stack signatures as 64 bits, we
computed the exclusive or (XOR) of each part with the
current 64-bit signature value.

After creating the 64-bit version of stack signatures, in or-
der to create the call-path signature, we compute the XOR
of all 64-bit stack signatures. In most benchmarks, captur-
ing the calling context is sufficient for distinguishing MPI
events from each other. However, the Multi-Grid (MG)
benchmark from the NAS Parallel Benchmark (N PB) suite
features a case where two processes with same number of
events and similar calling contexts experience different or-
ders among their events. Therefore, to capture not only the
calling context but also the order of events, we multiply the
sequence number of each event by the 64-bit stack signature
and then use this value in the call-path signature.

Fig. 3 provides a simple illustration of call-path cluster-
ing, where processes of different shapes are grouped into dif-
ferent clusters. This operation occurs on a radix tree, i.e.,
each node receives the call-path signatures of its children.
Then, it compares its own call-path signature with those of
its children. Finally, it sends different signatures and corre-
sponding ranklists to its parent. At the top of the tree, node
0 receives all of the different signatures and their ranklists.

Node 0 broadcasts the overall clustering result, so all
nodes are informed of their respective cluster membership.
In our implementation, we considered the start rank of each
cluster ranklist the head of the cluster. The computational
cost of these two operations is O(log P), where P denotes
the number of processes.

During the second phase, our algorithm applies parameter
clustering. We use a different signature called the param-
eter signature, which, similar to the call-path signature, is
64 bits long. This signature is composed of the parameters
of the MPI event, such as its count, type, source, desti-
nation, etc., see Table 1. Note that we did not include the
TAG parameter in the parameter signature. While we could
easily add the TAG parameter to the signature, we found
few differences in the call-path signatures and observed that
SRC/DEST parameters could capture the TAG differences
in practice for our benchmark set.

3.2 Parameter Clustering

Parameter clustering is the second phase of the proposed
algorithm. Similar to the first phase, this phase was imple-
mented over a radix tree. The main difference was that each
cluster had similar operations on parameter signatures over
a radix tree of its own members. At the end of this phase, the
head of the clusters identified in phase one know all of the
different parameter signatures in their own “territory” (clus-
ter). Therefore, with the help of parameter clustering, we
were able to distinguish processes with the same execution
structure but different parameters. Fig. 3 illustrates param-
eter clustering symbolically, where processes with the same
shape but different colors are grouped into different clusters.
The computational cost of our clustering algorithm at this
phase was also O(log P).

By the end of this stage, the algorithm has clustered all
processes with disjoint behavior. Then, the algorithm cre-
ates the complete trace based on the cluster information.

3.3 Creating a Complete Trace

The next phase consists of selecting a head of each clus-
ter as the representative rank. We choose the start rank
from each different sub-cluster. Unlike traditional cluster-
ing, which is a top-down process, creating the full trace is
a bottom-up process. All similar processes are grouped to-



Table 1: Components of Parameter Signature

Component Descriptions

Bit Positions

Average COUNT sent or received for MPI events 0-15
DEST: XOR of the relative address of destinations of MPI events 16-31
SOURCE: XOR of the relative address of sources of MPI events 32-47
MPI Data Types: such as 48:MPI_CHAR, 49:MPI_INTEGER, etc. 48-54
MPI Operation Types: such as 55:MPI. MAX, 56:MPI_MIN, etc. 55-61
MPI Communicator Type: such as 55:MPI COMM_SELF, etc. 62-63

gether after call-path+parameter clustering, and each rep-
resentative updates the ranklists accordingly to include the
members of its own sub-cluster.

After this process, the representatives are merged within
each main cluster. Sub-clusters with different parameters,
such as Al and A2, are merged pairwise linearly at a node
within a radix tree (facilitation relative encoding matches
[16]) so that the overall reduction over the tree is logarithmic
in complexity. For instance, at the reduction phase in Fig. 3,
two triangles with different colors are merged into a single
triangle. The cost of these two operations is O(nlog P),
where n denotes the size of the PRSD-compressed intra-
node event trace (typically a constant) and P is the number
of processes.

The inter-compression reduction of ScalaTrace [16] at each
node in the radix tree is a costly operation with O(n?) com-
plexity, where n is the size of the PRSD-compressed intra-
node event trace. When using ScalaTrace without cluster-
ing, all processes participate in this operation over a radix
tree. The cost of operation is O(n? log P). With the cluster-
ing algorithm, on the other hand, only a set of representa-
tives with different call-path signatures have to participate
in this operation. During the last phase of Fig. 3, three
different shapes are merged.

As previously mentioned, the cost of the clustering algo-
rithm is O(log P), the cost of the first level of merging is O(n
log SC), where SC is the maximum number of sub-clusters
within a main cluster, and the cost of the second level is
O(n? log MC'), where MC' is the number of different call-
path signatures or main clusters.

Due to the nature of parallel programs, as we expected
and observed in most of the parallel benchmarks, the num-
ber of processes with different execution structures is very
small. Since the set of different call-path signatures is so
small (mostly just a constant), the clustering algorithm re-
duces the computation time significantly.

Given the space complexity, the best scenario would be to
capture application behavior in only one cluster, meaning
there is only one execution sequence / parameter set. In
this case, at the root node, there will be one signature and
one ranklist containing all the node ranks. The exact size
will be eight bytes for the signature and ten bytes, or five
integer values, for the ranklist.

In the worst case scenario in which each program has its
own unique behavior, processes at different levels of the tree
have different complexities. At the bottom of the tree, each
leaf node has one ranklist and one signature. On the other
hand, the root node has P ranklists and P signatures.

3.4 Reference Signature

As noted previously, to evaluate the accuracy and scala-
bility of our algorithm, we create a reference clustering ap-
proach that uses a reference signature. The reference signa-

ture is a sequence of events, covers call-path signatures by
adding a sequence number to each MPI event, and features
parameter clustering by keeping each MPI event’s parame-
ters uncompressed. The computational complexity of this
clustering is O(n X m X s), where n is the number of events
after intra-node compression, which is proportional to the
number of call-paths leading to MPI calls, m is the number
of disjoint events’ parameters and s is the number of disjoint
reference signatures. The space complexity is a function of
the total number of events.

In Section Section 5, we provide the results of the ex-
periments conducted on different benchmarks to compare
the results of space complexity for the multi-level call
path+parameter clustering approach and the reference sig-
nature.

4. EXPERIMENTAL SETUP

We utilized a state-of-the-art cluster at our exposure to
conduct experiments. All machines were 2-way SMPs with
AMD Opteron 6128 processors with 8 cores per socket. Fach
node is connected by QDR InfiniBand. This is the largest
platform was were able to obtain access to at this time. We
tested call-path-+parameter clustering, reference clustering
and no clustering, which is the default version of Scalatrace
for the NAS Parallel Benchmarks (NPB) and Sweep3D.
Each experiment was run five times, and the average value
and standard deviation were reported. The aggregated wall-
clock times across all nodes for the mentioned benchmarks
is calculated and reported. We conducted experiments
with the NPB suite (version 3.3 for MPI) with class C in-
put size [2] and Sweep3D [10]. Sweep3D is a solver for the
3-D, time-independent, particle transport equation on an
orthogonal mesh. It uses a multidimensional wavefront al-
gorithm for “discrete ordinates” in a deterministic particle
transport simulation. In our experiments, the problem size
is 100x100x1000.

S. RESULTS AND ANALYSIS

As previously noted, ScalaTrace’s inter-compression is a
costly operation with O(n? log P) complexity, where n is the
size of the PRSD-compressed intra-node event trace and P
is the number of processes. To remove this effective bottle-
neck, we applied our logarithmic algorithm to find processes
that exhibit different behavior. Also, we divided the merge
process into two steps: (1) merging sub-clusters into main
clusters over a local radix tree with O(nlog SC) complexity,
where SC' is the maximum number of sub-clusters within a
main cluster, and (2) merging main clusters over a radix tree
with O(n?log MC) complexity, where MC is the number of
main clusters. The second level of merging is the most costly
operation. Therefore, our first experiment was to determine
MC for different benchmarks.



Fig. 4 depicts the topologies of different benchmarks at
size 16 (processes). In this figure, main clusters are sepa-
rated by solid lines, and sub-clusters are separated by dotted
lines (e.g., BT has one main cluster and three sub-clusters).
Table 2 shows the number of main clusters M C' and sub-
clusters SC for these benchmarks. According to our ex-
periments, for both weak and strong scaling, the reported
number of clusters is constant. Also, the number of clus-
ters is constant for the Sweep3D benchmark with different
problem sizes. Notice that the total number of clusters is
given by max(MC,SC), which indicates how many differ-
ent traces ultimately have to be collected for communication
characterization.
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Figure 4: Topology of Different Benchmarks for 16 Processes
Through Call-path+Parameter Clustering
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Table 2: Number of Main and Sub Clusters

Benchmarks Sweep3D BT CGISLU SP FT MG
# of Main Clusters M C 9 1 139 1 1 2
# of Subclusters SC 1 3 411 3 1 8

Sweep3D: Problem size: 100x100x 1000, # processes: any
valid one

BT,IS,SP,FT: Class: any, # processes: any valid one
MG,CG: Class: any, # processes: 16

Fig. 4 and Table 2 indicate the following:

(1) Integer Sort (IS) has three main clusters and no sub-
clusters. These three groups of processes display very sim-
ilar execution behavior, except when each process sends its
largest key value to the next process. In this phase of the
code, process zero does not receive any value, and process
comme_size — 1 does not send any value.

(2) The Block Tri-diagonal solver (BT') and the Scalar
Penta-diagonal solver (SP) each have only one main clus-
ter, meaning that all processes have the same sequence of
MPI events. However, parameter clustering captures three
sub-clusters with different communication patterns. An-
other issue is the COUNT value, which could differ slightly
for some events of processes with the same communication
pattern (e.g., 9526 and 9500). To compensate for such negli-
gible differences, we implemented a filter that considers two
COUNT values to be similar if they differ by only a small
percentage (threshold-based filtering), and we record their
average. The difference threshold in our experiments is 5%.

(3) The Sweep3D neutron-transport kernel and the
Lower-Upper Gauss-Seidel solver (LU) have nine main clus-

ters and no sub-clusters, meaning that processes within the
same main cluster display the same communication pattern.
Sweep3D is a stencil code in which each process must wait
for boundary information from neighboring processes to the
north and west before computing values within its subdo-
main [8]. Similar to Sweep3D, LU is also a stencil code [18]
that creates nine different main clusters.

(4) The number of main Multi-Grid (M G) clusters is not
constant; as shown in Fig. 4, for 16 processes, there are
two clusters, and this number increases sublinearly (e.g.,
(P=32, MC=4), (P=64, MC=8), (P=256, MC=16), etc.)
while SC = 4 x MC for this benchmark. MG is a simplified
multigrid kernel that solves 3D Poisson equations. This code
requires 2" processes, where n is an integer number. The
partitioning of the grid into processes occurs such that the
grid is repeatedly halved along the Z, Y, and X dimensions,
respectively [2]. This behavior is due to the following two
main reasons [4]: (i) The number of processes assigned to
each grid depends on the problem size and the total number
of processes P. MG might reduce the number of processors
assigned to compute on a coarser grid in order to increase the
computation-to-communication ratio. Therefore, some pro-
cesses may participate in more MPI events; (ii) Two types
of communication occur in MG: a boundary exchange and
an inter-processor extrapolation/interpolation between two
adjacent grid levels. Because MG changes the grid reso-
lution at each iteration of the algorithm, these boundaries
change. As the algorithm moves from coarser to finer, more
boundaries are created.

(5) Conjugate Gradient (C'G) and Fast Fourier Transform
(FT) each only have one main cluster, meaning that there
is only one execution structure. However, many sub-clusters
exist within the main cluster. In C'G, each process has its
own unique communication pattern. FT" has one main clus-
ter and several sub-clusters.

It is beneficial to our approach that these benchmarks
only have one main cluster, as this reduces the computa-
tional complexity from O(n?) to O(n). To further reduce
the cost of linear compression at the parameter clustering
level, one solution is to forcibly “merge” events with different
parameters. For example, for CG, the parameter signature
indicates that events differ in SOURCFE and DEST; there-
fore, all events with SOURCE or DEST may be merged,
while other parameters are preserved. This may still result
in a large numbers of clusters.

The alternative is for users to supply a plug-in function
capturing unique parameters that otherwise would increase
the total number of clusters because they can (at best) be
merged forcibly. For instance, Fig. 6 shows a CG com-
munication matrix as a heat map for 64 processes, where
the x- and y-axes denote mutual communication end-points,
and the communication intensity is depicted within a color
range (cold/blue=low to hot/red/yellow=high). The orange
points (close to the diagonal) in this figure indicate commu-
nication occurring with a high frequency. The clustering
algorithm can capture the iterative behavior of the orange
points easily. However, even though we are using relative
addresses for SOURCE and DEST, the blue points (fur-
ther from the diagonal) indicate infrequent communication
unique to each process. To capture this secondary commu-
nication pattern while simultaneously reducing the number
of sub-clusters, we can use the following formula (as a user-
provided plug-in function for the CG code):
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if npcols.eq.nprows then
exch_proc = (me%nprows) X nprows + me/nprows
else

exch.proc = 2 x ((me/2%nprows) x mnprows +
me/2/nprows) + (me%2)
end if

Here, npcols denotes the number of processes per column,
and nprows is the number of processes per row. In CG, the
total number of processes equals the number of processes
per row times the number of processes per column. If the
total number of processes is not a square, then the number
of processes per column is twice that of the number of pro-
cesses per row. exch_proc is the transpose exchange process,
and me is the process rank. The information in Table 3 in-
dicates that once this function is supplied, the number of
sub-clusters decreases significantly.

F'T solves a three-dimensional partial differential equation
(PDE) using fast Fourier transform (FFT). Because all of
the processes have the same sequence of events, there is only
one main cluster. However, two parameters, COLOR and
KFEY used in two M PI_Comm_Split events, have different
values for different processes. Similar to CG, we can use
the following formula (as a user-provided plug-in function
for the FT code):

if np.eq.1 then

np2 =1

else if np.le.nz then
np2 = np

else
np2 = np/nz

end if

mel = me/np2

me2 = (me%np2)

Here, me is the process rank, mel and me2 are process
coordinates, np is the number of processes and nz is the size
of the z dimension. Furthermore, mel and me2 are assigned
to KEY and COLOR in one call and vice versa in another
call to M PI _Comm_Split. We also kept track of the global
state to assign these values correctly.

The next subsections present results under both strong
and weak scaling.
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Figure 6: CG Communication Matrix
Table 3: Number of Clusters for CG
Num. of Processes 16 64 256 1024
Number of Main Clusters 1 1 1 1
Number of Subclusters 4 8 16 64

5.1 Strong Scaling

Under strong scaling, the number of processes is increased
under the same program input. We tested our clustering
algorithm on the NAS benchmarks under strong scaling.
Fig. 5 depicts four bars per configuration: (1) the execu-
tion overhead for the NAS benchmarks during the inter-
compression step for call-path+parameter clustering, (2) ref-
erence clustering, (3) without clustering and (4) applica-
tion execution time with instrumentation. The x-axis of
the graph denotes the number of processes participating in
inter-node compression. The y-axis is the execution over-
head in seconds shown on a logarithmic scale. The execu-
tion overhead of without clustering means regular inter-node
reduction/compression within ScalaTrace V2.

As the figure shows, call-path+parameter clustering has
orders of magnitude smaller overhead than without cluster-
ing. For all benchmarks, the overhead of call-path clus-
tering is less than 50% of total program execution time —
in contrast to the original inter-node compression without
clustering of ScalaTrace, which sometimes exceeds the ap-
plication runtime for larger number of processes. Notice
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that these benchmark runtimes are relatively short (seconds)
while large-scale applications generally run for hours but ex-
perience similar inter-node compression overheads as these
benchmarks. Call-path+parameter clustering also has or-
ders of magnitude smaller execution overhead than reference
clustering for most benchmarks. This is due to the number
of processes involved in inter-node compression, as depicted
in Table 4 for P=256. For MG, call-path+parameter clus-
tering and reference clustering have almost the same number
of parameters. Nonetheless, the overhead is smaller than
that of reference clustering because most of the clusters in
call-path+parameter clustering are sub-clusters. For some
Ps, such as P=256 for BT and LU or P=1024 for SP, the
call-path+parameter clustering overhead is very close to the
reference signature because, after clustering, the number of
processes involved in inter-node compression is in the same
order of magnitude. However, at the end of this section, we
show that call-path+parameter clustering performs signif-
icantly better than reference clustering in terms of space
complexity, including but not limited to these configura-
tions. Notice that that application time of IS is lower at
P=256 than at P=1024 indicating that there is not enough
work per node left at the latter, i.e., it has hit its limit under
strong scaling.

Table 4: # Processes Involved in Inter-Node Compression
for Clustering Approaches, P=256

Pgm Call-path+Param Cl. Ref. Cl. w/o Clustering
BT 3 41 256
CG 16 256 256
FT 1 256 256
IS 3 21 256
LU 9 16 256
MG 64 72 256
SpP 3 53 256

To assess the accuracy of the trace files created by the clus-
tering algorithm, we utilized ScalaReplay, a replay engine
operating on the application traces generated by ScalaTrace.
It interprets the compressed application traces on-the-fly,
issues MPI communication calls accordingly, and simulates

computational overhead as sleeps [23]. We enhanced this
replay capability so that the trace of a single node repre-
senting a cluster is also replayed by all other nodes in the
same cluster. These other nodes re-interpret the single node
trace and transpose any parameters relative to their task ID
automatically because ScalaTrace utilizes relative encodings
of end-points, while all other parameters are taken verbatim
from the lead node of the cluster. The accuracy of the replay

time for traces is defined as
|t —t|
t

ACC =1 -

where t is the replay time without clustering and ¢’ is the
replay time for clustered traces.

Fig. 7 depicts the overall trace-file replay time, depicted
in seconds on a linear y-axis (1) without, (2) with call-
path+parameter, (3) with reference clustering and (4) of the
non-instrumented original application. The x-axis of these
graphs denotes the number of processes participating in the
inter-compression phase for the three different methodolo-
gies. Replay under call-path-+parameter clustering is 88%
accurate relative to application runtime over all benchmarks
and configurations, which is the same accuracy we observe
without clustering, where higher accuracy is observed for
longer-running experiments (more representative) than for
shorter running ones (an artifact of strong scaling). This
equally applies to call-path+parameter clustering with user-
provided functions (CG+FT) and without (all others) show-
ing that replaying with user-provided specification poses no
problems.

5.2 Weak Scaling

Weak scaling typically involves scaling the problem size
and the number of processors at the same rate such that
the problem size per processor is fixed. (Weak scaling may
sometimes also refer to scaling the number of nodes at the
same rate as the memory footprint or computational com-
plexity of some algorithm, which we consider as well in the
following.) Due to input constraints / lack of weak scaling
inputs, we only report these results for the benchmarks for



which weak scaling inputs are available natively through the
benchmark or when available from other work [22].

As Table 5 indicates, weak scaling and strong scaling pro-
duce an equal number of clusters for NAS BT, LU, FT and
Sweep3D. The first row of each table indicates the number
of processes (MPI tasks); the second one the overall problem
size for BT, FT and LU. For Sweep3D, it indicates the per
process size; and the last one the number of clusters. We
observe the number of clusters for both types of scaling have
the same cardinality and identical member sets.

Table 5: Number of Processes Involved in Inter-Node Com-
pression - Weak Scaling

# Processes 16 64 256 1024
BT Prob. Size  60° 1013 1602 2557
BT # Clusters 3 3 3 3

FT Prob. Size 512 x 2562 5123  1024% x 512 2048 x 10247
FT Clusters 1 1 1 1

LU Prob. Size 643 1283 2562 5123

LU # Clusters 9 9 9 9
Sweep 3D Problem Size Per Process 1002 x 1000

Sw3D # Clus. 9 9 9 9

The execution overheads in seconds on a logarithmic scale
on the y-axis of BT, LU, FT and Sweep3D are reported
in Fig. 8 for different numbers of processors (x-axis). Just
as seen for strong scaling, call-path+parameter clustering
has orders of magnitude shorter execution time than with-
out clustering under weak scaling as well. While call-
path+parameter and reference result in similar overhead for
their cluster formation during tracing, we later show that
the former outperforms the latter significantly in terms of
space complexity.
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Fig. 9 depicts the replay overhead in seconds on a lin-
ear scale (y-axis) for different number of processors (x-axis).
In analogy to strong scaling, it illustrates that the overall
trace-file replay time under call-path+parameter clustering
is 93% relative to application runtime over all benchmarks
and configurations, the same as without clustering.

5.3 Space Complexity

The objective of the last experiment is to assess the space
complexity. We calculated the number of bytes required for
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the different clustering methods. Table 6 shows the space
complexity of all benchmarks for P=256.
Average space per process for without clustering is calcu-
lated as follows:
AvgTraceSize x (P — 1)
P
Here, all processes send their trace files to their parents over

a radix tree, except for the root process itself. For reference
clustering, the average space is as follows:

AvgSpace per Processno ciuster =

P1 = AvgTraceSize x (C' — 1)

P2 = P x AvgSignatureSize

P3 = AvgSignatureSize x C x (P — 1)

P14+ P24 P3
P

where C is the number of clusters, P2 and P3 denote the
space of clustering, and P1 is the space of inter-node com-
pression. Finally, for Call-path+Parameter clustering, we
have

P4 = AvgTraceSize x (MC — 1)
P5 = AvgSignatureSize x (MC + SC) x (P —1)
P2+ P4+ P5
P
where M C'is the number of main clusters, SC' is the number
of sub-clusters, P2 and P5 denote the space of clustering,
and P4 denotes the space of inter-node compression. Table
6 depicts trace sizes and space metrics for the three clus-
tering types with 256 processes. We observe that reference
clustering generally increases the average space per process
over no clustering by a factor of 1.4-10 depending on the
benchmark — except for Sweep3D, IS and LU, which is due
to the small number of clusters involved in inter-node com-
pression for those three benchmarks. Call-path+parameter
reduces average space per process by 2-3 orders of magni-
tudes to 0.1-6% of that without clustering depending on the
benchmark. The small size of the signatures and the small
number of processes involved in inter-node compression ac-
count for this difference. Reference clustering generally sig-

AvgSpace per Processref ciuster =

AvgSpace per ProcessScaii—path+param =



Table 6: Average Space Complexity Per Process - P=256

Call-Path+Parameter Clustering Reference Clustering Without Clustering

Pgm Avg Trace Size | MC SC Avg Space # Clusters Avg Space | # Clusters Avg Space
BT 72 KB 1 3 0.08 KB 41 108.49 KB 256 71.71 KB
CG 44 KB 1 16 0.36 KB 256 376.32 KB 256 43.82 KB
FT 8 KB 1 1 0.06 KB 256 70.46 KB 256 7.96 KB
IS 8 KB 3 1 0.15 KB 21 3.62 KB 256 7.96 KB
LU 72 KB 9 1 2.43 KB 16 25.05 KB 256 71.71 KB
MG 216 KB 16 64 14.23 KB 72 733.83 KB 256 215.15 KB
SP 68 KB 1 3 0.10 KB 53 133.06 KB 256 67.73 KB
Sweep3D 28 KB 9 1 1.06 KB 9 4.86 KB 256 27.89 KB

nificantly increases the average space per process over call-
path+parameter clustering by up to three orders of magni-
tude, i.e., more specifically a factor of 4.5-1356 depending
on the benchmark. The execution overhead for both is com-
parable because the overhead is a function of the number of
clusters, and both clustering methods have a similar number
of clusters. However, overheads for call-path+parameter are
often lower than reference clustering since M C' + SC' tends
to be lower than C in P3 and P5, respectively, as well as
due to more effective multi-level clustering optimizations,
including plugins.

Overall, the small footprints of traces and space require-
ments illustrate the benefits of multi-level clustering, which
facilitates analysis without incurring extra cost during trac-
ing or sacrificing accuracy, as results demonstrate.

6. RELATED WORK

A commonly utilized tracing tool for MPI communication
is Vampir [3], a commercial post-mortem trace visualiza-
tion tool. It uses profiling extensions to MPI and facilitates
the analysis of message events of parallel execution, helping
to identify bottlenecks and inconsistent run-time behavior.
While the trace generation supports filtering on trace files,
which are stored locally, trace complexity increases with
the number of MPI events in a non-scalable fashion. HPC-
TOOLKIT [20] uses statistical sampling to measure perfor-
mance; it provides and visualizes per process traces of sam-
pled call paths. In HPCTOOLKIT, all of the call paths are
presented for all samples (in a thread) as a calling context
tree (CCT). A CCT is a weighted tree whose root is the pro-
gram entry point and whose leaves represent sample points.
As noted previously, sampling cannot produce accurate data
but rather represents a statistical and lossy method. For in-
stance, if the sampling frequency is too low, results may not
be representative. Conversely, if it is too high, measure-
ment overhead can significantly perturb the application. In
HPCTOOLKIT, finding an appropriate rate of sampling is
complicated, and the cost of having a dense CCT is high.
In contrast, clustering with ScalaTrace provides a full trace
file without resorting to sampling and it does so at very low
cost by leveraging a 64-bit stack signature.

Another approach, utilized in [11] and [12], features k-
means clustering to select representative data for migration
of objects in CHARM ++. A density-based clustering anal-
ysis was proposed in [14], [7] and [6] that can use an arbitrary
number of performance metrics to characterize the applica-
tion (e.g., instructions combined with cache misses to re-
flect the impact of memory access patterns on performance).
The proposed clustering algorithms are expensive in terms
of time complexity, especially for extreme-scale sizes. Clus-

tering with ScalaTrace is suitable for exascale computing
because it not only utilizes a low overhead clustering algo-
rithm with a log P complexity, but it also divides clustering
and merge processes into two different phases. Separating
the clustering algorithm reduces the complexity of the merge
process significantly.

Phantom [27], a performance prediction framework, uses
deterministic replay techniques to execute any process of a
parallel application on a single node of the target system.
To reduce the measurement time, Phantom leverages a hi-
erarchical clustering algorithm to cluster processes based on
the degree of computational similarity. First, the computa-
tional complexity for most hierarchical clustering algorithms
is at least quadratic in time, and this high cost limits their
application in large-scale data sets [26]. Second, because
the paper focuses on performance prediction, it emphasizes
computational similarity and does not sufficiently cover com-
munication behavior. Reporting one or two clusters for SP
and BT and one cluster for CG shows how their orthogonal
objectives result in different clustering decisions.

Another scalable clustering algorithm for tracing toolsets
is CAPEK [5], a parallel clustering algorithm based on
CLARA [9] that enables in-situ analysis of performance data
at run time. Even though the algorithm is logarithmic, the
process of clustering and creating the global trace file is
based on trace sampling. The merging overhead and the
process by which the sample traces are expanded to present
the overall behavior of the cluster apply to the duality of
“effort and progress” metrics, but this does not generalize
to n-dimensional clustering of metrics while our signature-
based parameter clustering does.

For instance, a single parameter, such as the count, could
produce a significant difference between two processes with
the same execution structure. In contrast, our algorithm is
not only logarithmic and has low overhead, but it also cap-
tures different parameters within the main clusters by means
of parameter signatures. It then merges them in a linear
manner and captures the different execution structures with
by means of call-path signatures.

Since CAPEK is a variant of k-medoids, finding a proper k
is a challenge solved via the Bayesian Information Criterion
(BIC) [17]. In call-path+parameter clustering, by dividing
the merge process, the number of clusters is a function of
the number of main clusters. As noted previously, the most
costly operation in clustering with ScalaTrace is a function
of events, not a function of clusters. Sub-clusters merge in
a linear fashion within each main cluster.

TotalView [19] and DDT [1] are debugging tools with
demonstrated scalability for large numbers of processes but
are prone to extended response time during simple opera-



tions (e.g., timeline scroll) due to large amounts of data be-
ing processed. The Stack Trace Analysis Tool [13] supports
petascale debugging with lightweight tools on an entire par-
allel application to reduce the problem search space to a
manageable subset of tasks. These tools process the entire
trace data set of all tasks while we operate on a trace of a
small subset of nodes (of just one per cluster).

7. CONCLUSION AND FUTURE WORK

Scalability is one of the main challenges of scientific ap-
plications in HPC. This paper contributes a novel multi-
level clustering algorithm with logP time complexity and
low overhead. The approach relies on signatures to sup-
port n-dimensional metrics for cluster selection, much in
contrast to a single metric of traditional cluster algorithms.
The results of our experiments indicate that our cluster-
ing algorithm provides significant reductions in performance
overheads making it suitable for extreme-scale computing.
Unlike other clustering algorithms designed for large-scale
problems, our approach is based on predominantly exact
matching rather than on random processes or statistical ap-
proaches for sampling with compromised, lower accuracy.
Our clustering algorithm is applicable to both strong and
weak scaling applications.

We currently apply the clustering algorithm at the end
of program execution. However, if we were to group pro-
cesses with the same execution behavior at interim execution
points, e.g., at timestep boundaries of scientific codes, inter-
node compression could be performed online. This would
reduce the execution time by overlapping the I/O and com-
putation time. Such online clustering is the focus of our
ongoing work beyond the scope of this paper.
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