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Abstract Nevertheless, these communication characteristics

This paper examines the explicit communication[9] are critically important to the design of large scale
characteristics of several sophisticated scientific computing systems for three reasons. First, design
applications, which, by themselves, constitute atradeoffs for any computer architecture hinge on
representative suite of publicly available benchmarksspecific properties of the system’s proposed workload.
for large cluster architectures. By focusing on the Second, application developers must use algorithms
Message Passing Interface (MPI) and by usingappropriate for their target system architecture. Third,
hardware counters on the microprocessor, we observéystem software, such as the MPI library, must be
each application's inherent behavioral characteristics: optimized for the target architectuaedthe application
point-to-point and collective communication, and workload.
floating-point operations. Furthermore, we explore the . _—
sensiti%i'ﬁes ofpthese characteristics to both probleml'1 Key _InSIg.hts_and Contrlbuthns _
size and number of processors. Our analysis reveals 1he main objective of our efforts is to quantify the
several striking similarities across our diverse set of COmmunication characteristics of several scientific
applications including the use of collective operations,aPplications from the perspective of MPI and
especially those collectives with very small dataindependent of the target architecture. In particular, for
payloads. We also highlight a trend of novel @ wide range of existing scientific applications, we
applications  parting with regimented, static quantify their |nh_erer_1t behawor_al Characten_shc_s: point-
communication patterns in favor of dynamically to-p(_)int communlcatlo_n,collectlve communication, and
evolving patterns, as evidenced by our experiments ofioating-point  operations. To expose the key
applications that use implicit linear solvers and relationships among experiment parameters, we also
adaptive mesh refinement. Overall, our Studystudy the effects of scaling both the pro_blem size and
contributes a better understanding of the requirementdhe number of processors. Our experiments include

of current and emerging paradigms of scientific @pplications that simulate radiation transport,
computing in terms of their computation and turbulence, materials modeling, and fluid dynamics. We

communication demands. also compare and contrast an adaptive mesh refinement
framework against traditional uniform  mesh
1 Introduction applications.

L . L Earlier work [9] claimed a wide range of

Historically, —users have —written scientific .ommunication characteristics across a set of smaller
applications for large distributed memory computers,gyjications. Our findings strengthen these results and
using explicit communication as the programmingye congribute several new observations for
model. This trend crystallized with the creation of the .ommynication characteristics, such as small collective
Message Passing Interface .(MPI) specification [11’ .22] ayload sizes, which is strikingly consistent across
which simplified numerous issues for both application applications. In addition, we highlight the impact of
developers and system designers. As a resullyyantive methods on communication requirements.
application ~ developers stabilized on the MPl " \ip hrovides a unique opportunity to study these
programming model and this has facilitated the ongoing,spects. First, although applications can use a variety of
development of a considerable number of applicationgommunication routines to achieve similar types of
based on MPI. Although MPI provides a common .,mmunication, users typically strive to minimize the
foundation for explicit communication, its wide range jmount of communication. Second. MPI provides

of functionality promotes a diverse set of application pigher |evels of abstraction that hide implementation
communication characteristics due to variations incomplexity. This allows us to identify complex

application domain, algorithm, software design, andgperations, such as reductions, which we previous
problem size.



studies were not able to consider. 2.2 Data collection
The core of this paper discusses these issues in At the highest level, we empirically measure our

more detail. In Section 2, we outline our experimenty,i3 py tracing both the MPI and computation activity
methodology. Following this, we introduce our gring” execution. For communication, we record all

applications in Section 3. Then, in Section 3.5, Weyp| operations with their respective parameters. For
present the results of our evaluation and describe ou(i]

! . X ) omputation, we use hardware counters on the
important observa_ltlons. Section 5 describes relate icroprocessor to capture specific data about each
work. Finally, Section 6 concludes.

block of computation between significant MPI call
sites. This strategy allows us to collect relevant yet
2 Methodology limited information about application communication

We empirically evaluated five scientific @nd computation.

applications on one platform; our results are not from  During execution, our tra]t:c:er re(r:]ordshfixed-sized
simulation or analytical modeling. In order to obtain the events to a local memory b_u er. When this memory
results presented later in the evaluation section, Wfuffer is filled, the tracer writes thl§ information to a
created a list of important characteristics that we wished!€_Storéd on the node’s local disk. Many of our
to quantify. We then analyzed each application with aap_pllcatlons never fill their local buff_er, SO they never
number of experiments to capture characteristics ofPill to local disk. At the end of application execution,

interest, varying parameters, such as problem size, tfe tracer collects these events from each node and
explore relationships among characteristics. merges them into one trace file. We then analyzed the

We characterize our applications along four trace files offline. Most trace-based performance
dimensions: point-to-point communication, collective 212lysis systems, including PICL, Pablo, Tau, and

communication, memory load operations, and floating”araver [10, 16, 19, 21], use this approach.

point operations. For communication activity, our tracing system

« For point-to-point communication, we measure,ta]t(es a?vantatl)getof ME' iﬂgerﬁ“If;g;ayer b)r/1 C'arl)atlurmﬁ]
distributions for number of messages, type, Information about eac call. =or eac ca

payload size, and size of destination clique site, the tracer captures the type of MPI call, parameters

* For collective communication, we determine the fsc:;ctl?t?;cga"’TﬂirgeStracl)r\?iz’escagquiL::riaetrI]?n}n?or:crjnz:'[?(lylnSI:g
distributions for type, frequency, and payload size. : P

* To understand the amount of computation in theidentifydifferent communication phases.
o P For computation, we capture data from hardware
application, we measure the number of memory

load operations and the number of floating pointcounters periodically. This measurement paradigm
! o . provides precise information with low overhead and at

operations between significant MPI call sites. - :

In addition, we expose how these four dimensions scalésl sufficient level of granularity. :

) ! X To capture this data, we rely on eight hardware
with both input problem size and the number of tasks. counters in the IBM Power3 and program them to count
2.1 Platform events of interest to our study. First, we capture the
pumber of cycles and completed instructions. Second,
we capture the number of floating point operations,

machine is composed of sixteen 222 MHz IBM Power3WhiCh are typically less sensitive to compiler

8-way SMP nodes, totaling 128 CPUs. Each processo?ptimization than other instructions. Third, we measure
has three integer units, two floating-point units, and twothe number of memory loads. From this set of hardware
load/store units. Its 64 KB L1 cache is 128 way events, we can calculate valuable measures that include

associative with 32 byte cache lines and L1 uses gycles per instruction and flop to load ratio.

round-robin replacement scheme. The L2 cache is 8 This accurate information hé!s been carefu'lly
MB in size, which is four-way set associative with its selected to allow us to reduce the size of our trace files

own private cache bus. At the time of our tests, theWhlle still_allowing us to relate computation to

batch partition had 15 nodes and the operating systerﬁommun.'cat'on' Furthermore’ we  can ~use this
was AIX 4.3.3. Each SMP node contains 4GB mainmformanqn to 'c.jetermme 'scallng effects_ for
memory for a total of 64 GB system memory. A Colony computation emp!rlcally. In this work, we define a
switch--a proprietary IBM interconnect--connects thebIOCk .Of ppmputatlon as any work tha}t oceurs betvyeen
nodes. We compiled the various tests with the IBM XL two significant MPI call S|tes._We distinctly identify
and KAl Guide compilers using IBM's MPI library in these blocks by using the call site stacktraces.
user-space mode. Our test jobs ran on dedicated node3,3  Application Phases

although other jobs were concurrently using the
network.

We ran our tests on an IBM SP system, located a
Lawrence Livermore National Laboratory. This

Virtually all scientific applications maintain a
notion ofsimulation timeand for many applications, the



communication and computation activity for each (www.linl.gov/CASC).
timestep is static. For this reason, we focus our

measurements on the activity for one timestep of eac@'1 sPPM

application. For those applications that have changing SPPM[18] solves a 3-D gas dynamics problem on a
communication patterns [20], such as adaptive mestyniform Cartesian mesh, using a simplified version of
refinement, we pay special attention, and report théhe Piecewise Parabolic Method. The algorithm makes
communication characteristics for several differentuse of a split scheme of X, Y, and Z Lagrangian and
timesteps of the application. remap steps, which are computed as three separate
sweeps through the mesh per timestep. Message passing
provides updates to ghost cells from neighboring
domains three times per timestep.

3 Applications

For our investigation, we targeted a substantial

number of very sophisticated scientific applications.3-2 SMG2000

Table 1 provides an overview of our applications. The ~ SMG2000 [4] is a parallel semicoarsening
languagefor the application represents the bulk of the multigrid solver for the linear systems arising from
languages used in the application source code, althougiinite difference, finite volume, or finite element
most of these complex applications are mixed languagediscretizations of  the diffusion equation
Observed phase of application executidentifies the ] [{DOu) +ou = f on logically rectangular grids.
specific phase of application’s execution we measured.l.he code solves both 2-D and 3-D problems with
Primary MPI functionality shows the significant MPI discretization stencils of up to 9-point in 2-D and up to
calls detected during the observed phase. The respecti\ﬂaz_point in 3-D. Applications where such a solver is

references provide more detail on each application. Irheeded include radiation diffusion and flow in porous

add_ition, the source code for each application is a.lscfnedia. Our examination includes both the setup of the
available from the ASCI Purple Benchmark Webs'telinear system and the solve itself. Note that this setup

(www.lInl.gov/asci/platforms) with the exception of phase can often be done just once, thus amortizing the

SAMRAI,  which is  available from  CASC cost of the setup phase over many timesteps. This trait
o _ is relatively common in implicit
Table 1: Application Overview timestepping codes.
>
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sPPM F77 3-D gas dynamics problem | One double MPI_Allreduce Fhfough a spherical domam that
on a uniform Cartesian timestep. MPI_lsend is cylindrically symmetric on a
mesh using a simplified MPI_Irecv logically rectilinear, 2-D mesh.
version of the Piecewise MPI_Wait Monte Carlo transport solves
Parabolic Method th Boltzmann transport
SMG2000 | C Semicoarsening multigrid | Solve of one MPI_Allreduce ¢ bolzma ransp
solver for linear systems. linear system MPI_Isend equation t_)y directly mimicking
including setup | MPI_lrecv the behavior of photons as they
°f“t”eaf mg:_wg!ta” are born in hot matter, move
system. _Wai . .
SPHOT F77 2-D photon transport code One timestep. MPI_Barrier through and scatter in different
using Monte Carlo MPI_Irecv materials, are absorbed or
transport MPI_Reduce escape from the problem
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aita H H
- - n ener nd direction that are
Sweep3D F77 Solver for the 3-D, time- One timestep. MPI_Allreduce 3 te e. gyda S d . d
independent, particle MPI_Bcast etermine y using random
transport equation on an MPI_Send numbers to sample from
orthogonal mesh using a MPI_Recv appropriate distributions. This
;;g'rci’t'}:“rﬁns'ona' wavefront code tracks particles through a
Samrai C++ 3-D shock tube One problem at | MPI_Allreduce lOglc_a”_y reCtanQUIar’ 2-D mesh
implemented with two non- MPI_lsend that is internally generated.
structured adaptive mesh consecutive MPI_Irecv
refinement timesteps. MPI_Test
MPI_ W ait




3.4 Sweep3D 3.5 Samrai

Sweep3D[13, 14] is a solver for the 3-D, time- The SAMRAI (Structured Adaptive Mesh
independent, particle transport equation on anRefinement Application Infrastructure) library [23] is
orthogonal mesh and it uses a multidimensionalan object-oriented C++ software framework for the
wavefront algorithm for  "discrete ordinates" development of computational physics applications
deterministic particle transport simulation. Sweep3Dusing structured adaptive mesh refinement (AMR)
benefits from multiple wavefronts in multiple technology. SAMR dynamically adapts its hierarchy of
dimensions, which are partitioned and pipelined on aspatial and temporal refinement levels to follow
distributed memory system. The three dimensionainteresting features in the evolving simulation, focusing
space is decomposed onto a two-dimensionatomputer resources on these localized regions of the
orthogonal mesh, where each processor is assigned owemputational domain. This hierarchy consists of
columnar domain. Sweep3D exchanges messagexeveral mesh levels where all cells at a particular level
between processors as wavefronts propagate diagonalhave the same mesh resolution. Each level is composed
across this 3-D space in eight directions. of a collection of patches, each of which is a logically

rectangular collection of computational cells. A patch
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SPPM 32| 1.00| 10554| 2.91| 2652| 2.92| 6887| 2.93 30| 0.88] 26.3| 1.87 5/ 0.88 2 1.00) 14/ 1.00
SPPM 48| 1.50| 7081| 1.95| 1773| 1.95| 4617| 1.97 321 094 20.2| 1.43| 533|094 2| 1.00 14| 1.00
SPPM 64| 2.00| 5356| 1.48| 1340| 1.47| 3483| 1.48 331 097 17.2| 1.22 5.5 0.97 2| 1.00| 14| 1.00
SPPM 80| 2.50| 4317| 1.19| 1081| 1.19| 2800| 1.19 33 097 15.3] 1.09 5.6 0.99 21 1.00) 14| 1.00
SPPM 96| 3.00] 3630| 1.00| 909| 1.00{ 2349| 1.00 34| 1.00] 14.1] 1.00] 5.67| 1.00] 2| 1.00] 14| 1.00
SMG2000 | 32| 1.00| 177| 1.11 52| 1.11 0.4| 4.00( 16722| 1.09 2.2| 0.76/ 23.5| 0.37| 15( 1.00| 8.11| 0.99
SMG2000 | 48| 1.50{ 171 1.08 50| 1.06 0.3] 3.00( 16535| 1.08 2.5 0.86| 35.75( 0.56| 15| 1.00| 8.25| 1.01
SMG2000 | 64| 2.00{ 168| 1.06 49| 1.04 0.2| 2.00( 16444| 1.07 2.7/ 0.93| 41.88( 0.65| 15( 1.00| 8.17| 1.00
SMG2000 | 80| 2.50| 164 1.03 48| 1.02 0.2| 2.00( 15787| 1.03 2.8/ 0.97| 55.35/ 0.86| 15| 1.00| 8.18| 1.00
SMG2000 | 96| 3.00f 159| 1.00 47| 1.00 0.1] 1.00| 15306| 1.00 2.9/ 1.00| 64.33| 1.00/ 15| 1.00| 8.19| 1.00
Sphot 32| 1.00| 14031| 0.87| 2888| 0.77| 5676| 1.00 4] 1.00 360b| 1.00/ 0.97| 098 4| 1.00 0] 1.00
Sphot 48| 1.50( 14050| 0.87| 2896| 0.78| 5675| 1.00 4] 1.00 360b| 1.00| 0.98| 0.99| 4| 1.00 0] 1.00
Sphot 64| 2.00| 14841| 0.92| 3209| 0.86| 5676| 1.00 4] 1.00 360b| 1.00/ 0.98| 0.99| 4| 1.00 0] 1.00
Sphot 80| 2.50| 14780| 0.92 3185| 0.85| 5676| 1.00 4] 1.00{ 360b| 1.00/ 0.99| 1.00| 4| 1.00 0] 1.00
Sphot 96| 3.00| 16151| 1.00{ 3727| 1.00| 5677| 1.00 4] 1.00] 360b| 1.00| 0.99| 1.00| 4| 1.00 0] 1.00
Sweep3D 32| 1.00] 1397| 2.66| 536| 2.73| 766| 2.99| 156| 0.91 52| 168 325/091] 5[ 1.00/ 28.8| 0.36
Sweep3D 48| 1.50f 956 1.82| 366| 1.87| 511 2.00{ 164| 0.95 41| 1.32| 3.42| 0.96 5| 1.00| 41.6| 0.52
Sweep3D 64| 2.00] 742| 1.41| 281| 1.43| 383| 1.50| 168| 0.98 3.6( 1.16 35/ 098 5| 1.00| 54.4| 0.68
Sweep3D 80| 2.50] 607 1.15| 230| 1.17| 307 1.20| 170| 0.99 33| 1.06) 355/ 099 5(1.00f 67.2| 0.84
Sweep3D 96| 3.00] 526| 1.00f 196 1.00| 256| 1.00] 172| 1.00 3.1/ 1.00, 358 1.00/ 5| 1.00 80| 1.00
Samrai 4 32| 1.00| 1677| 0.78| 553| 0.68| 171| 2.95| 131| 3.05| 0.87| 3.00| 9.875| 3.00| 47| 1.00| 39.7| 1.00
Samrai 4 48| 1.50| 1756| 0.81| 629| 0.77| 114| 1.97 87| 2.02| 0.58| 2.00| 6.58| 2.00| 47| 1.00| 39.7| 1.00
Samrai 4 64| 2.00| 2432| 1.13| 909 1.12 86| 1.48 65| 1.51| 0.43| 1.48| 4.94| 1.50| 47| 1.00| 39.7| 1.00
Samrai 4 80| 2.50| 3298| 1.53| 1259| 1.54 70 1.21 521 121 0.35| 1.21| 3.95| 1.20| 47| 1.00| 39.7| 1.00
Samrai 4 96| 3.00] 2158| 1.00f 815| 1.00 58| 1.00 43/ 1.00| 0.29] 1.00| 3.29| 1.00/ 47| 1.00| 39.7| 1.00
Samrai 8 32| 1.00| 4370| 0.60| 1505/ 0.54| 377| 2.90| 136| 2.19| 1.06| 259, 19.2| 1.67| 11| 1.00| 69.1| 1.00
Samrai 8 48| 1.50( 5798| 0.80| 2123| 0.77| 256/ 1.97| 106/ 1.71| 0.81] 1.98] 20.9| 1.82| 11| 1.00| 69.1| 1.00
Samrai 8 64| 2.00] 5794| 0.80| 2151| 0.78| 192| 1.48 93| 150 0.61| 1.49| 17.3| 1.50| 11| 1.00| 69.1| 1.00
Samrai 8 80| 2.50| 4208| 0.58| 1569| 0.57| 154| 1.18 741 119 049|120 138 1.20| 11| 1.00| 69.1| 1.00
Samrai 8 96| 3.00] 7244| 1.00| 2762| 1.00{ 130| 1.00 62| 1.00| 0.41| 1.00f 11.5| 1.00| 11| 1.00| 69.1| 1.00

Table 2: Task scaling results with constant global problem size. Values are per task.



contains data that represent simulation quantities in théhe left and right subcolumn, respectively.

region of the simulation domain covered by the patch  The instruction frequency measurements illustrate
region. Because AMR problems are extremely sensitivesimilarities and differences for our choice of a variety
to their input, we study problems at different time steps.of scientific applications. On average, every third to
Our initial problem is a sinusoidal shock wave traveling fifth instruction is a load reference, regardless of
down a 3-D tube. The important point for this study is problem and task scaling. This indicates a good
that the number of grid points remains relatively breakdown of large-grain parallelism by the
constant even though the mesh is refined andhpplications while the potential for instruction
repartitioned as the shock wave travels down the tubeparallelism remains constant during  scaling

For this problem, we consider timesteps 4 and 8. experiments. The varying degree of floating-point
intensity during execution illustrates our choice of a
4 Evaluation and Implications wide variety of applications, ranging from three to one

) ) . floating point operation per load (sPPM, Sphot to
We present our evaluation along the dimensionsgyeen3d) over only a fraction of floating ops per fixed
described in Section 2. We try to preserve a realisticop (Samrai) to largely fixed-point intensive applications
execution environment for our applications by running (snMG2000).
them with typical input parameters and at rea_so_nable The adaptive application Samrai also exhibits
levels of concurrency. For example, we use a minimuMchanging ratios with a decrease in float ops relative to
of 32 tasks for our experiments. _ loads for an increasing number of tasks. For this
First, Table 2 provides an overview of the effects gppjication, dynamic changes over timesteps resulted in
of scaling the number of processors while holding theyroportional increases in computational overhead for
global pro_blem size constant for each appllcatlon. Nexteach task but the ratios between instruction types
Table 3 illustrates the effects of scaling the localyemained constant. This illustrates the challenge of
problem size while holding the number of processorsicreasing demand for adaptive methods, which should

constant for each application. For each metric, Wepe met by dynamically changing support to meet these
report the absolute humbers and normalized values in
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SPPM 64/ 1.00] 1926] 1.00] 493] 1.00] 1226] 1.00] 33[ 1.00/ 88] 100 55 1.00] 2] 1.00] 14] 1.00
SPPM 80| 195 3695 1.92| 924| 187| 2304| 195 33[ 1.00/ 135| 153] 55| 100 2| 1.00] 14| 1.00
SPPM 96| 3.38| 6272| 326 1584 321 4066| 3.32| 33[ 1.00] 193|219 55| 100 2| 1.00] 14| 1.00
SPPM 112| 536 9864| 512\ 2473] 502| 6441| 525| 33| 1.00] 26| 2.95] 55| 1.00] 2| 1.00] 14| 1.00
SPPM 128| 8.00| 14565 7.56| 3743] 759 9429] 7.69] 33| 1.00] 338384 55/ 100 2| 100 14| 1.00
SMG2000 | 2| 100] 65 100] 195 100 001] 1.00[ 5996] 1.00] 11| 1.00] 41.88[ 1.00] 16] 1.00] 8.2] 1.00
SMG2000 3| 3.38 126 1.94| 37.7 193] 0.07| 7.00{ 11231| 1.87 1.7| 1.55 55| 1.31| 16| 1.00{ 8.1| 0.99
SMG2000 | 4| 800 159| 245 473 243 o0.19] 10.00 15446 2.58] 25| 2.27| 41.88| 1.00] 16| 1.00] 8.1 0.99
SMG2000 | 5| 1563 264] 406] 787 4.04| 051] 51.00] 25636 4.28] 38| 345] 55| 1.31] 17| 1.06] 8.1] 0.99
SMG2000 | 6] 27.00] 292| 449 899| 461] 087| 87.00| 27004 450 4| 364] 47| 112| 17| 106] 8| 0.98
Sphot 5| 1.00] 16006] 1.00] 3842] 1.00] 5722[ 1.00 4] 1.00] 4E-04] 1.00] 098] 1.00] 4] 1.00] 0] 1.00
Sphot 10| 4.00] 25542] 151| s5659] 147 9231 161 4] 1.00] 4E-04] 1.00] 098] 1.00] 4] 1.00] o 1.00
Sphot 15| 9.00] 34552 2.04| 7451 1.94] 13001 2.29 4] 1.00] 4E-04] 1.00] 098] 1.00] 4] 1.00] o 1.00
Sphot 20| 16.00| 40807| 2.41] 8768 2.28] 15644] 273 4] 1.00] 4E-04] 1.00] 098] 1.00] 4] 1.00] 0] 1.00
Sphot 25| 25.00] 53187 3.15] 11649] 3.03] 20017] 3.50 4] 1.00] 4E-04] 1.00] 098] 1.00] 4] 1.00] 0] 1.00
Sweep3D | 50/ 1.00] 12[ 1.00 4] 1.00 3] 100] 84] 1.00] 0.25] 1.00] 35[ 1.00] 5] 1.00] 54.4] 1.00
Sweep3D | 75| 338 35| 292| 12| 300 12| 400 126] 1.50] 057|228 35| 1.00] 5| 1.00] 54.4| 1.00
Sweep3D | 100] 800] 75] 625 27| 675| 30| 10.00] 168 2.00] 1.01| 4.04] 35| 100 5[ 1.00] 54.4] 1.00
Sweep3D | 125| 1563 136 11.33] 49| 12.25| 58| 19.33| 210 2.50| 1.58| 6.32] 35| 1.00] 5| 1.00] 54.4] 1.00
Sweep3D | 150] 27.00] 227/ 1892] 82| 2050| 100| 33.33] 210 2.50] 1.89] 7.56] 35| 1.00] 5| 1.00] 54.4] 1.00

Table 3: Problem size scaling results at 64 tasks. Values are per task.



resource requirements. from the fact that it must send more data because the
For an increasing number of tasks (Table 2), adecomposition becomes more fragmented at higher
decrease in computational work can be observed fonumbers of processors, requiring additional
most applications (sPPM, Sphot, Sweep3D). SMG200@ommunication to converge to a solution [12], even
only exhibits this decrease for the number of floatingthough the amount of local work decreases. Not
point operations during task scaling. For Samrai, thesurprisingly, Sphot has a constant send volume.
adaptive application, an increase in computation was The average number of distinct destinations
observed for the total number of instructions. Loadsapproximates the number of distinct recipients of point-
fluctuated for timestep 4 and increased for timestep 8o-point sends for a task. Sphot tasks always send all
with increasing tasks. Most notably, float ops data to a single master task (0.98). Predictably, sPPM
decreased, as in most other applications, which showbas an average number of distinct destinations that
the effectiveness of task parallelism for adaptiveapproach six for the 3-D mesh structure of SPPM's data
methods. The increase in adaptation overhead drivedecomposition. Likewise, Sweep3D approaches four
this increase in overall instructions. This causes morealue to its 2-D mesh decomposition. On the other hand,
loads on the adaptation phase while loads decrease fohe number of destinations for a SMG2000 task appears
the floating-point intensive calculations. to grow in proportion with the task count. The average
For an increase in problem size (Table 3), allnumber of destinations for a Samrai task decreases as
instruction categories increase at the same rate for athe task count increases. More important are the
tested applications, except for float ops in the case ofiifferences between timestep 4 and timestep 8. At
SMG2000. SMG2000 results in dramatic increases intimestep 8, Samrai has two to three times as many
float ops for problem size scaling but the overall ratio todestinations as at timestep 4 on average.
other operations is still relatively insignificant. (We had Table 3 shows the impact on changing problem
to limit the problem sizes for our SMG2000 sizes on each application. Either the number of
experiments because, in our existing experimentamessages or the message volume (or even both of
framework, tracefiles sizes grew unmanageable.) them), depending on the algorithms, increases at the
. . . same growth rate as the input. For example, as the input
4.1  Point-to-Point (P2P) Communication size increases by a factor of 8 (from 3w 128 for
The majority of applications in our study use point- sPPM), the send volume increases at approximately
to-point communication for sending the lion's share ofone-half the rate (factor 3.84) while the number of
their data. Even though all of the applications usemessages stays constant. For SMG2000 and Sweep3D,
similar MPI functionality, we see a diverse set of both volume and number of messages increase with the
characteristics with respect to the patterns thesénput. In contrast, Sphot exhibits constant overheads
applications exploit in their utilization of point-to-point independent of the problem size. In general, the
communication. referenced end-points remain constant (except for
The average number of messages sehbws the insignificant variations for SMG2000) with a fixed
number of point-to-point messages sent by a task whileyumber of tasks.
the average send volumguantifies the amount of data In summary, these tables show that varying the
sent by one task during the observed phase. For taskumber of processors or the problem size alters the size
scaling in Table 2, the majority of the applications showof messages sent by each application. As Figure 1 (with
a relationship between processor scaling and théne corresponding numerical values in Table 4)
number of messages sent. The number of messag@fustrates, there is a wide range of message sizes for
decreases sharply for Samrai as the number ofhese applications when running at 64 tasks. sPPM and
processors increases. In contrast, sSPPM and Sweep38weep3D have large messages that reflect their data
appear to be growing yet reaching an asymptotic limitdecomposition structure while SMG2000 and Samrai
as the task count increases. The number of messages faave smaller messages. Traditionally, communication
SMG2000 declines as the number of tasks increasegwverhead within the communication library dominates
but the trend is relatively slow. Sphot remains constanperformance for smaller messages. Our results show
at 4 messages per task. The send volume for sPPMhat with this trend toward smaller messages,
Sweep3D, and Samrai decreases as processor cousmmunication libraries should improve support for
grows; this indicates that the amount of data sent is tiedhese messages. For example, small messages can
to the local problem size as revealed by the decrease igapitalize on eager protocols, and suffer when buffer
floating point operations. SMG2000 send volumemanagement algorithms use ill-suited allocation
increases slightly as the number of tasks expandsstrategies.
Interestingly, we believe that SMG2000 is suffering
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Figure 2: Payload size distribution for collective communication

Table 5: Cumulative distribution of payload
(64 tasks).

sizes for collective (64 tasks).

4.2 Collective Communication in Figure 2 (with the corresponding numerical values in
All of our applications use collective operations. T_able 5): it has one broadcast operation whose payload
Many applications that simulate physical systems musfi2€ Scales linearly with the number of tasks.
make several calculations across the domain at every Al Of the communicator groups were the width of
timestep to preserve the integrity of the physical systen'© MPI_COMM_WORLD. Although s_everal of the_
and to determine the length of the next timestep.2Pplications did create new communicators, they did
Although these calculations are global, the payload siz&©t partition the space of the original communicator.
is typically only a few double precision numbers. The collective operations t_hat perforr_n an operation on
In this regard, we found that virtually all of the the data, such as a reduction, were limited/t®@X and
collective operations have very small payloads thatsUM- ) )
change neither with the number of tasks nor with the  NeW architectures with tens of thousands or even
problem size. As Figure 2 illustrates, most collective Millions of processord1] must have special support
operations send data payloads of less than 256 bytefor these types of global operations, whether this
One exception is Sweep3D, which it is the only outlier support draws on either hardware assistance or new



algorithms for collectives, such asPl_Allreduce. Our ~ computation relative to communication activity, we
evidence demonstrates that these applications rely on analyzed the number of floating point operations
very limited region of the design space: simple performed between communication operations as Table
reduction operators and very small data payloads6 depicts. Many of the applications execute few
Improved performance of collectives may also floating-point operations, if any, between two

encourage their use in applications. communication operations. This situation often appears
. when multiple communication operations occur in a
4.3 Computation series, usually following a computational time step.
To correlate the communication activity with Both sPPM and Sphot show that 5-8% of their

computation, we counted several types of eventgomputational blocks are very large, containing over
between significant MPI call sites. As Tables 2 and 3536M floating-point operations. In contrast, Samrai and
illustrate, the number of floating point operations is SMG2000 perform modest amounts of floating point
closely tied to the problem size. The executioncomputation between communication operations.
overhead (both instructions and floating-point only) Compared to these other applications, Sweep3D
decreases at the same rate that the number of tasksecutes over 50% of its floating-point operations in
increases, which indicates good scaling at the local taskhultiple blocks of 1024 or greater.

level. Samrai presents an exception as it exhibits  These results indicate that the dynamic and implicit
increased integer overhead for more tasks (Table 2) thafpplications tend to communicate more frequently
results from additional overhead of the mesh refinementelative to its number of floating point operations. That

between time steps. is, Samrai and SMG2000 do no more than 8M and 1024

5 ® 5 floating-point  operations, respectively, between
& = = S ?(%l significant communication operations.
- ] © ~ s 4
17} = = [N} o .
5 ElE| S| 8] ¢ s 4.4 Observations
o n n ) ) ) n . o
First, we found contemporary, large-scale scientific
of 894 9385 87p o94f0 3g3 8§.2 . . e .
= applications have a wide range of characteristics, which
2| 8934 933 875 940 383 8§2 ; L |
a] 804 935 oof oao 336 g2 range from small, frequent messages to large,
8l 894 935 031 940 386 852 infrequent messages. As similar findings were reported
16 804 939 o957 o940 396 852  for previous studies of scientific applications [9], it is
32 903 947 981 948 386 921  remarkable that our results not only strengthen them but
64 9593 095. ; 99-§ 955 346 9‘;-1 also provide novel characteristics, as discussed earlier.

128 96.3 6. 9 DS 386 9% Second, our experiments revealed that collective

256 974 972 9938 955 3d6 921 o .

51 978 977 99 955 386 oke COMMunication operations are used by all the
1024 984 98l 1000 955 446 obe applications. Further, the payload size of these
2049 987 o98b 10000 995 446 ope  collective operations is very small and this size remains
4009 989 98p 100/0 995 621 9p.6  practically invariant with respect to the problem size or
8192 991 990 1000 995 699 996  the number of tasks. Our results show thditeduce

= .

16384 992 998 1000 995 733 O9P6  gndBcast have very small payloads. This result clearly

32708 993 998 1000 995 733 %S shows that all of the applications in our study could

65534 994 998 10000 995 713 9p6 : . ppiicat y

131074 997 99k 1000 945 713 opo DPenefit from improvements in the performance of

262144 99y 99fy 1000 945 713 930 collective communications, whether those

524284 99y 99f 1000 995 716 980 improvements come in hardware or software.
1048576 998 99,7 1000 935 789 930 Historically, collective communication often suffered
igggg: gg-; gg-g 188-8 gi g 13-’3—?) Zi-g from high performance overhead due to a lack of

' : - 3 — scalability, which often forced application programmers

8388604 99b 99 1000 9035 10D0 €30 o llect ith . £ oointt ot
16777216 100D 100j0 100.0 965 1do.0 ¢3.0 (O hand-code collectives with a series or point-to-poin
33554432 1000 1000 100.0 965 1d0.0 30 Mmessages. Once _these Iegac_:y COmme_WICEltIOﬂ patterns
67108864 1000 100[0 109.0 955 100.0 930 are transformed into collectives, the importance of
1.34E+0§ 100p 100[0 1040 955 1000 93.0 collectives is most likely to grow.
2.68E+0§ 100.0 1000 100.0 9%.5 100.0 93.0 Third, we also note a substantial difference in
537E+0§ 100p 10000 1040 10p0 1000 930  5iqqrithms in terms of their increasing message and
1.07E+049 100D 100[0 104.0 10p.0 1d0.0 100.0

computation activities over consecutive time steps:
Table 6:Cumulative distribution of blocks of floating point  implicit versus explicit methods, and uniform mesh

operations between communication points (64 tasks). versus adaptive mesh. Sweep3D and sPPM use explicit

_ o methods and uniform meshes, which lead to easily
In an effort to determine the distribution of predicted communication patterns. On the other hand,



Samrai's adaptive mesh refinement can make both thgcaling problem size and the number of processors for
communication patterns and computational loadthese application characteristics. Our results strengthen
difficult to predict as Table 2 shows. Likewise, the these previous results in showing their validity for
implicit techniques used in SMG2000 have larger scientific applications on contemporary clusters
considerably different communication requirementsand indicate new trends in application behavior well
than the explicit techniques. beyond previous work.

5 Related Work 6 Conclusions

Characterization of applications and architectures  In this paper, we evaluated explicit communication
is an ongoing and important process as evidenced bgharacteristics across a set of diverse, large-scale
the considerable amount of previous work [3, 5, 7, 9,scientific applications, primarily from the perspective
15, 24-26]. With the broad range of design parameter®f message passing via MRIhd independent of the
for today's computer systems and the fact that bottarget architecture. By focusing on the MPI activity of
applications and architectures evolve, these quantitativthese  applications along  with  coarse-grain
evaluations help focus attention on important designmeasurements of the computation, we separate the
points. application behavior from the architecture behavior and

In the past, synthetic kernel benchmarks were ofterpresent the inherent communication signatures of these
used to evaluate and compare architectures, e.g., usirdiverse applications.

Linpack on parallel machines [2]. The NAS parallel Our results do not only strengthen findings of
benchmarks [3] consist of small kernels andstudies with smaller applications and reinforce
applications; they have been used by a large number dfifferences in application behavior. We also uncovered
groups for performance evaluation of architecturesstriking similarities, such as the trend of small payload
These benchmarks have been adapted to a wide rangees for collective operations, which are significant due
of platforms and programming models [5, 6]. Theto the increasing acceptance of more efficient
SPLASH-2 suite of parallel applications is anotherimplementation of collectives. Collectives with
example of widely used benchmarks [25], which arecompetitive scaling capabilities should ensure that
targeted toward centralized and distributed sharedeollectives become more widely used. We also
address-space multiprocessors but does not capture théhlight novel applications parting with regimented,
challenges of parallelism in cluster computing. Worley static communication patterns in favor of dynamically
[26] presents a detailed comparison of a climateevolving patterns as evidenced by our experiments on
modeling application that uses explicit communicationapplications that use implicit linear solvers and adaptive
on two different platforms. Prior work has also focusesmesh refinement. Clearly, these investigations will
on the differences between commercial and scientificcontinue to be important as new applications,
workloads [8, 17]. Our choice of scientific applications architectures, and software becomes available.

for benchmarks specifically considers appropriate  Overall, our study contributes a better
programming paradigms for clusters with an emphasisinderstanding of the demands for current and emerging
on message passing, large scientific codes and paradigms of scientific computing in terms of their
diversity in application characteristics as well ascomputation and communication demands.

domains.
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