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Abstract

Characterizing the communication behavior of large-
scale applications is a difficult and costly task due to
code/system complexity and their long execution times. An
alternative to running actual codes is to gather their com-
munication traces and then replay them, which facilitates
application tuning and future procurements. While past
approaches lacked lossless scalable trace collection, we
contribute an approach that provides orders of magnitude
smaller, if not near constant-size, communication traces re-
gardless of the number of nodes while preserving structural
information. We introduce intra- and inter-node compres-
sion techniques of MPI events and present results of our im-
plementation for BlueGene/L. Given this novel capability,
we discuss its impact on communication tuning and beyond.
To the best of our knowledge, such a concise representation
of MPI traces in a scalable manner combined with deter-
ministic MPI call replay are without any precedence.

1 Introduction and Overview

Scalability is one of the main challenges to petascale
computing. One central problem lies in a lack of scaling
of communication. However, understanding the commu-
nication patterns of complex large-scale scientific applica-
tions is non-trivial. An array of analysis tools have been
developed, both by academia and industry, to aid this pro-
cess. For example, Vampir is a commercial tool set includ-
ing a trace generator and GUI to visualize a time line of
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MPI events. While the trace generation supports filtering,
trace files, which are stored locally, grow with the number
of MPI events in a non-scalable fashion. Another example
is the mpiP tool that uses the profiling layer of MPI to gather
user-configurable aggregate metrics for statistical analysis.
Locally stored profiling files are constrained in size by the
number of unique call sites of MPI events, which is in-
dependent of the number of nodes. However, mpiP does
not preserve the structure and temporal ordering of events,
which limits its use to high-level analysis. Other commu-
nication analysis tools have similar constraints: either their
storage requirements do not scale or they are lossy with re-
spect to program structure and temporal ordering.

In contrast to prior work, we propose a scalable trace-
driven approach to analyze MPI communication. While
past approaches fail to gather full traces for hundreds of
nodes in a scalable manner or only gather aggregate infor-
mation, we have designed a framework that extracts full
communication traces orders of magnitude smaller, if not
near constant size, regardless of the number of nodes while
preserving structural information and temporal event order.

Our trace-gathering framework (Figure 1) utilizes the
MPI profiling layer (PMPI) to intercept MPI calls dur-
ing application execution. Profiling wrappers trace which
MPI function was called along with call parameters within
each node. This intra-node information (task-level) is com-
pressed on-the-fly. We perform inter-node compression
upon application termination to obtain a single trace file that
preserves structural information suitable for lossless replay.

We assess the effectiveness of our framework through
experiments with benchmarks and an application on Blue-
Gene/L. Our results confirm the scalability of our on-the-
fly MPI trace compression by yielding orders of magnitude
smaller or even near constant size traces for processor scal-
ing and problem scaling.
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Figure 1. Interaction of Components

We have also designed a tool that replays our compressed
trace independent of the original application and without
decompressing the trace. Our replay mechanism, verifies
our trace compression’s correctness, can assist performance
tuning MPI communication and facilitate projections of net-
work requirements for future large-scale procurements.

To the best of our knowledge, such a concise, scalable
representation of MPI traces combined with deterministic
MPI call replay are without any precedence.

The paper is structured as follows. Section 2 and 3 detail
intra- and inter-node trace compression. Sections 4 and 5
present the experimental framework and results. Section 6
contrasts this work with prior research. Section 7 summa-
rizes our contributions.

2 Intra-Node/Task-Level Trace Compression

Lossless, yet space-efficient trace compression must pre-
serve the structure and temporal order of events. Nonethe-
less, repetitive MPI events in loops with identical param-
eters should only require near constant size. We use the
PMPI layer to provide wrappers of MPI calls that trace the
source and destination of communication and other param-
eters of each MPI operation other than the actual message
content. We compress these MPI call entries, generally re-
peated due to an application’s loop structure, on-the-fly.

We extend regular section descriptors (RSDs) for single
loops to express MPI events nested in a loop in constant
size [5] while power-RSDs (PRSDs) are utilized to specify
recursive RSDs nested in multiple loops [7]. MPI events
may occur at any level in PRSDs. For example, the tu-

ple RSD1 :< 100, MPI Send1, MPI Recv1 > denotes
a loop with 100 iterations of alternating send/receive calls
with identical parameters (omitted here), and PRSD1 :<
1000, RSD1, MPI Barrier1 > denotes 1000 invoca-
tions of the former loop (RSD1) followed by a barrier.

The compression algorithm maintains a queue of MPI
events and attempts to greedily compress the first matching
sequence, an approach that is loosely based on the SIGMA
scheme for memory analysis [3]. Our algorithm proceeds
in four steps as depicted in Figure 2. First, head and tail of

Compress Queue(Queue Op Queue)
Target Tail = Op Queue.tail
Match Tail = Search Op Queue for Target Tail match
if (Match Tail)

Target Head = Match Tail.next
Match Head = Search Op Queue for Target Head match
if (Match Head)

Sequence Matches = TRUE
Target Iter = Target Tail
Match Iter = Match Tail
while (Target Iter && Target Iter != Target Head)

if (Target Iter does not match Match Iter)
Sequence Matches = FALSE
break

Target Iter = Target Iter.prev
Match Iter = Match Iter.prev

if (Sequence Matches)
Increment iteration count on Match Head
Delete elements Target Head to Target Tail

Figure 2. Intra-Node Compression on MPI
Events

a match are determined by iteratively inspecting queue el-
ements from the “target tail” (end of the queue) backwards
till a match is found (the “match tail”) immediately suc-
ceeded by the “target head”. Second, the “match head” is
determined as the element following the “match tail” that
matches the target head. Third, an element-wise compari-
son is conducted between head and tail of the “target” and
the “match”. Fourth, upon a complete match, the “match” is
merged into the target by incrementing the RSD (or PRSD)
counter — or by creating an RSD (or PRSD) upon initial
match of two sequences.

For the first step, we impose a maximum window size for
this search before entries are flushed (stored without com-
pression). This ensures that long mismatches do not result
in quadratic online search overhead.

We use several encoding techniques to represent MPI
events. These encodings, which enable inter-node compres-
sion as we detail in the next section, are performed at the
intra-node level.



Calling Sequence Identification: Identically named
MPI calls, such as MPI Send, may be scattered over vari-
ous locations in a program. To distinguish the location of
MPI events, our tracing framework further records the call-
ing sequence by logging call sites of the calling stack. This
call stack creates a unique signature of an MPI call chain.
We require them to match when compression is attempted.

Location-independent Encodings: Communication
end-points in SPMD programs often differ from one node
to another. However, their position relative to the MPI task
ID is often constant. Hence, our framework uses relative
encodings of communication end-points, i.e., an end-point
is denoted as ±c for a constant c relative to the current
MPI task ID. This fosters effective compression of location-
specific parameters. Consider the communication pattern in
Figure 3 depicting a 2D stencil where both nodes 9 and 10
communicate with relative neighbors -4, -1, +1 and +4.
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Figure 3. Communication Endpoint Encoding

Request Handles: We cannot simply record the
invocation-dependent handles for asynchronous MPI calls.
Instead, we record these handles in a buffer and find the
matching invocation-dependent pointer in that handle buffer
when a completion references the handle. The MPI event
then records its handle offset relative to the last element
of the buffer. Relative indexing again enables subsequent
cross-node compression. We recreate this buffer on-the-fly
during message replay and use the offset in the trace to ob-
tain the correct handle pointer.

Certain MPI operations (e.g., MPI Waitall) allow an ar-
ray of request handles to be specified. We observed that
for some programs the size of these arrays depends on the
number of nodes. Since handles are already represented as
relative indices into the handle buffer we can effectively
compress long arrays of handles using PRSDs. Here, the
PRSDs specify (via indices) which handles in the buffer
participate in the MPI operation. While originally moti-
vated by handles, we apply this PRSD compression to ar-
bitrary MPI parameters that must be retained in the trace

We actually use a recursive definition of iterators with a start point,
depth and a sequence of n pairs of (stride, iterations) for this purpose,
which is equivalent to nested PRSDs of the same depth.

(well beyond handles) and also in the cross-node compres-
sion framework. MPI parameters that increase linearly with
the number of nodes are, of course, an impediment to appli-
cation scalability. This is precisely where our tracing tool
can provide a “red flag” to developers suggesting to replace
point-to-point communication with collectives. Hence, our
tool can be used to detect certain scalability problems in an
algorithm’s communication design.

Event Aggregation: Our approach must preserve event
ordering and program structure information. However, non-
deterministic repetitions of MPI calls, such as instances
of MPI Waitsome, present a challenge to cross-node com-
pression. Depending on the number of completed asyn-
chronous calls, a loop that terminates upon completion
of n corresponding asynchronous calls may result in 1 to
n MPI Waitsome calls within its body. To address this
problem early, we squash these MPI call sequences into a
single event that records the number of completed asyn-
chronous calls. This count preserves compression capabil-
ities while exploiting MPI-specific semantics. Even during
replay, successive MPI Waitsome calls are aggregated until
the recorded number of completions is reached.

3 Inter-/Cross-Node Trace Compression

Local traces are combined into a single global trace
upon application completion within the PMPI wrapper for
MPI Finalize. This approach is in contrast to generating lo-
cal trace files, which results in linearly increasing disk space
requirements and does not scale as traces must be moved to
permanent (global) file space. The I/O bandwidth, partic-
ularly in systems like BG/L with a limited number of I/O
nodes, could severely suffer under such a load. To guaran-
tee scalability, we instead employ cross-node compression,
step-wise and in a bottom-up fashion over a binary tree.

Events and structures (RSD / PRSDs) of nodes are
merged when events, parameters, structure and iteration
counts match. First, the compressed trace of one child
(slave queue) is merged into the local trace of the cur-
rent node (master queue), then the trace of the other child
(slaved) is similarly merged into this new master queue. We
use the algorithm depicted in Figure 4 for each merge oper-
ation. We identify matching sequences of operations when
merging the queues. This identification uses three iterators:
the master and slave iterators and the slave head. The master
iterator tracks the current operation sequence in the master
queue. The slave head tracks the last matched operation se-
quence in the slave queue. Lastly, we use the slave iterator
to identify matching sequences between the master queue
and the slave queue.

The algorithm starts all iterators at the beginning of their
queues. We increment the slave iterator until we find an op-
eration sequence matching the current master iterator. If a



merge algorithm(master queue, slave queue)
master iter = master queue.head
slave head = slave queue.head
while (master iter && slave head)

slave iter = slave head
while (slave iter)

if (slave iter == master iter)
insert operations between slave head to

slave iter before master iter
add slave iter task participant list to

master iter task participant list
slave head = slave iter.next
break

slave iter = slave iter.next
master iter = master iter.next

Figure 4. Merge Slave/Child into Mas-
ter/Parent Trace

match is found, we first copy all unmatched operation se-
quences into the master queue preceding the master itera-
tor. The unmatched sequences are those between the slave
head (the last matching sequence in the slave queue) and the
slave iterator (the current match in the slave queue). Thus,
we maintain the order of operations of the slave queue. We
then merge the slave iterator’s task participant list with the
match’s (i.e., master iterator’s) list.

Temporal Cross-Node Reordering: The merge al-
gorithm compresses well at lower levels of the reduc-
tion tree but encounters problems at higher levels. The
difficulties arise from merge disjoint sequences of MPI
events in rank order. Consider entries (event;tasks) in
master and slave queues < (A; 1), (B; 2) > and <
(B; 3), (A; 4) >. By matching A, the merged queue is
< (B; 3), (A; 1, 4), (B; 2) > indicating a potential to grow
linearly during the merge. However, the temporal order-
ing between tasks is irrelevant in this example, and another
legal queue would be < (A; 1, 4), (B; 2, 3) >, which pro-
vides a constant-size representation. When different tasks
participate in the operation sequences, any ordering is le-
gal. We test if the intersection of tasks in the unmatched
sequence with those of the matched sequence is empty. If
so, the merge algorithm then allows matches to occur one
event at a time so that the resulting sequence may differ in
the master compared to the original slave. The upper com-
plexity bound of this operation is O(n2) for n events, but,
due to the SPMD regularity of applications, the actual cost
is generally constant.

Task ID Compression: In order to capture which subset
of nodes participated in some set of events, we encode task
IDs as PRSDs similarly to request handles during the merge
process. Thus, we concisely represent cross-node similar-

ities, even for stencil codes. Assuming non-wrap-around
communication for the 2D stencil in Figure 3, interior nodes
5, 6, 9 and 10 have an identical communication pattern.
Any pair of nodes between corners on the boundary as well
as any corner nodes also have a unique pattern. Thus, we
record nine different patterns for 2D stencils, regardless of
the number of nodes. This approach makes cross-node com-
pression feasible and results in a single concise trace file (in
some instances of constant size) that is far more efficient
than storing per-node trace files for later consolidation.

Reduction over a Radix Tree: We use a binary radix
tree internally for the reduction (compression) step. The
radix tree representation has several advantages over an ar-
bitrary reduction tree. First, the tree is already balanced,
which also balances computational compression cost dur-
ing cross-node compression. Second, the compression of
task IDs as RSDs is naturally facilitated by a radix tree.
Any subtree of the radix tree has a constant, uniform dis-
tance between task IDs of the nodes in the subtree, which
supports a single-RSD representation to describe matching
events during task ID compression.

4 Experimental Framework

We gathered experimental results for 1D, 2D and 3D
stencil benchmarks, codes from the NAS Parallel Bench-
mark suite and the Raptor application.

The 1D stencil has a one-dimensional logical space
based on a task’s MPI rank. Each task communicates with
to its two left neighbors and two right neighbors (five-point
stencil) during each time step. The communication step
consists of sending and receiving from these neighbors. A
task proceeds to its next time step only after it completes its
sends and receives for the current time step.

The 2D stencil has a two-dimensional logical space in
which each task’s logical address (communication end-
point) is: x = rank/dim; y = rank mod dim for di-
mension dim. Communication occurs with all eight neigh-
bors (including diagonal neighbors) for a nine-point stencil.
Other details are the same as with the 1D stencil.

The 3D stencil has a three-dimensional logical space
in which each task’s logical address is: x = rank mod
dim; y = rank/dim; z = rank/dim2. Communication
occurs with all 26 neighbors (including diagonal neighbors)
for a 27-point stencil. Other details are the same as before.

The NAS Parallel Benchmark (NPB) codes were se-
lected from NPB version 3.2.1 for MPI [12]. We use class
C inputs except for DT, where BG/L only had enough mem-
ory to allow a selection of class B. Raptor is a framework
implementing a modern Godunov method for shock-flow
simulations in a C++/Fortran hybrid with optional adaptive
mesh refinement (AMR) support [4]. It supports MPI and
pthreads parallelization and communicates on a 27-point



stencil via asynchronous communication. We use these ca-
pabilities in a hydro-dynamics simulation with a constant
problem size per node while varying the number of nodes.

We conducted our experiments on a 1024-node Blue-
Gene/L (BG/L) machine [1]. Each node has only 512MB of
memory, which restricts application problem sizes. Hence,
our traces must only consume small amounts of this mem-
ory. We report the task-0 (root node of the reduction tree),
minimum, maximum and average memory consumption of
the compression subsystem. We also report trace file sizes.

First, we varied the number of processors (nodes) to as-
sess the effects of instrumentation (PMPI wrappers) on trace
file sizes and memory usage. The number of processors was
chosen as powers of two (for Raptor and NPB codes, ex-
cept for BT due to input constraints) or nd processors (for
the stencil benchmark) for a d-dimensional stencil with a
base of n, e.g., 73 = 343 nodes. For the stencil benchmarks
we additionally vary the number of time steps to assess the
effect of the number of iterations on trace file sizes.

5 Experimental Results

We conducted three sets of experiments. We assessed the
effectiveness of our compression techniques by examining
trace file sizes. We determined the overhead of inter-node
compression in terms of memory consumption and for the
overall time incurred for trace collection and file I/O. For
the later, we assessed the cost of writing compressed traces,
one per node, to I/O nodes over a Lustre parallel file sys-
tem, which is the fastest global file system available on our
experimental platform. Finally, we verified the correctness
(lossless compression) of our approach during replay.

5.1 Trace Sizes & Memory Requirements

Fig. 5 depicts the size of trace files and the memory re-
quirements on a per-node basis on BG/L for the tests de-
scribed in the previous section.

Figures 5(a), 5(c) and 5(e) depict the trace file sizes of
the 1D, 2D and 3D stencil codes, respectively, for varying
stencil sizes (number of nodes). We show trace sizes on
a logarithmic scale for the nodes (a) without compression
(none), (b) only with intra-node (task-level) compression
and (c) with the additional step of inter-node compression.
We observe a significant increase of two orders of mag-
nitude in storage space without compression in the tested
node range. Intra-node compression reduces this overhead
by two orders of a magnitude, but trace sizes still increase
by two orders of magnitude across the node range. Hence,
neither approach is scalable with the number of nodes. The
fully compressed trace sizes, in contrast, are constant in size
independent of the number of nodes, which illustrates that
our combined intra- and inter-node compression technique

scales well. The resulting trace sizes, 2KB, 4KB and 12KB,
for 1D, 2D and 3D stencils, concisely represent MPI events,
in contrast to trace size ranges obtained without compres-
sion of 0.3-19MB, 0.3-29MB and 2MB-61MB. Increases
between stencil sizes reflect the number of distinct patterns
required to represent corner nodes, boundary nodes and in-
terior nodes as RSDs.

As BG/L is a memory-constrained architecture with only
512 MB RAM per node, keeping the memory pressure low
during on-the-fly compression is as important as the result-
ing trace file size. Figures 5(b), 5(d) and 5(f) depict the
memory usage on a logarithmic scale reflecting the com-
bined intra- and inter-node compression components for
the 1D, 2D and 3D stencil benchmarks, respectively, over
varying stencil sizes. We report minimum, average, maxi-
mum and node-0 (root node) memory usage over all nodes.
Within each of these categories, memory usage is constant
over different node sizes, which reinforces the claim of scal-
ability of the approach. The average usage decreases as
the number of nodes grows, which is a result of increas-
ing height in the reduction tree where more nodes are at
lower levels performing less inter-node compression work
and, hence, requiring less memory. Besides the average, all
other numbers remain constant when the number of nodes
grows. The memory requirements at task-0, the root node,
are generally close to the maximum memory usage, though,
occasionally, a node at level 1 (child of the root) may re-
quire insignificantly more memory. We measured a mini-
mum (maximum) memory usage of 1.6KB (6.4KB), 1.6KB
(11.4KB) and 1.4KB (26KB) for the 1D, 2D and 3D sten-
cil problems, respectively. This metric includes the merge
queues for intra- and inter-node compression but excludes
storage of the actual trace, which we reported as trace file
sizes.

Figure 5(h) depicts the memory usage for Raptor con-
firming our prior observations with a complex application
code. We also see a slight increase in the maximum mem-
ory usage of 38MB for 128 nodes to 55MB for 1024. Minor
inefficiencies of inter-node compression, which we are cur-
rently addressing, cause this increase.

Figure 5(g) depicts the trace file size as we vary the num-
ber of time steps (i.e., the iteration bound of the outer-most
convergence loop) and hold the number of nodes constant
at 125 for the 3D stencil problem. While the uncompressed
trace does not scale, both task-level (intra-node) and full
compression provide constant-size, scalable results. This
confirms that the number of loop iterations has no effect
on compression after RSDs and PRSDs are formed, irre-
spective of inter-node compression. Results for the other
benchmarks are equivalent and, therefore, omitted here.

Figure 6 depicts the trace file sizes for the NPB suite on
a log-scale. We can distinguish three categories of codes,
those that result in near constant-size traces, regardless of
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(a) 1D Stencil Trace File, Varied Number of Nodes
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(b) 1D Stencil Memory Usage, Varied Number of Nodes
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(c) 2D Stencil Trace File, Varied Number of Nodes
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(d) 2D Stencil Memory Usage, Varied Number of Nodes
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(e) 3D Stencil Trace File, Varied Number of Nodes
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(f) 3D Stencil Memory Usage, Varied Number of Nodes
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(h) Raptor Application

Figure 5. Trace File Size and Memory Usage per Node on BlueGene/L



the number of nodes, those with sub-linear scaling of trace
size as the node count increases and those that do not scale
(yet).

DT, EP and IS (Figures 6(a), 6(b) and 6(c)) fall into the
first category (DT only runs on ≥ 43 nodes, 32-node re-
sults are omitted). Their trace sizes increase exponentially
with no compression or with only intra-node compression
only. Inter-node compression results in constant trace sizes.
These codes have few, very regular communication calls:
a pipeline of sends and asynchronous receives along the
chains of ranks plus some collective calls.

LU and MG (Figures 6(d) and 6(e)) fall into the second
category. We still observe super-linear trace size increases
without compression but sub-linear increases at orders of
magnitude lower for inter-node compression. Intra-node
compression works well for LU and is similar to our bench-
mark results for MG. We conclude that the main benefit of a
size reduction by more than three order of magnitude stems
from the intra-node scheme for LU.

Results for the remaining codes, BT, CG and FT, also
shown in Figure 6, indicate reductions in trace size with
inter-node compression of 2-4 orders relative to no com-
pression and up to one order of magnitude compared to
intra-node compression. More specifically, CG requires sig-
nificantly larger trace sizes without compression due to a
large number of point-to-point communications, some of
which are asynchronous. FT, on the other hand, benefits
more significantly from inter-node compression due to all-
to-all collectives that are consolidated across nodes. Both
codes show the smallest trace sizes for full compression.
Nonetheless, all techniques show exponential increases (at
different magnitudes), which indicates that there is room for
improvement to obtain near-constant trace sizes.

The non-scalability arises from communication patterns
in some benchmarks that are not sufficiently abstracted with
relative references to end-points. For example, we must
modify the encoding for communications along the diag-
onal of a two-dimensional task layout. Similarly, abso-
lute references, instead of relative indices, sometimes cap-
ture the communication pattern, as with a client-server code
structure. Thus, we have identified minor shortcomings
in our intra-node compression that can prevent inter-node
compression. Current work is addressing these shortcom-
ings.

Figures 7(a) and 7(b) depict the memory requirements
for inter-node compression for EP and BT, respectively, on
a logarithmic scale. For codes whose trace sizes scale, such
as EP, the amount of memory used remains constant irre-
spective of the position of a node in the compression tree.
Hence, our technique compresses well without additional
memory cost for upper-level nodes in the tree. For non-
scaling benchmarks like BT, memory usage is constant at
leaf nodes (minimum metric) but increases for larger node

counts towards the root (node 0). These two benchmarks
are representative of all others, except for MG, which shows
constant memory usage like EP, thereby indicating that our
scheme is missing an opportunity for constant-size com-
pression (since MG’s trace sizes increased sub-linearly).
This reconfirms the prior observation that inefficiencies in
the intra-node scheme currently restrict inter-node merging.
More significantly, we could further reduce costs by off-
loading the inter-node compression to an external reduction
infrastructure. Figure 7(b) indicates a lower average cost,
which shows the intermediate nodes in the compression
(reduction) tree experience more merge overhead than the
leaves (minimum value) but less than the nodes close to the
root. This indicates that performing inter-node compression
on nodes external to the application nodes and connected
using a tree-based overlay network should result in further
improvements. In particular on BG/L, dedicated I/O nodes
that are automatically allocated together with any program
partition can easily be used for this kind of work without
requiring additional resources. In this case, the inter-node
compression could also occur incrementally as traces are
generated, which would allow them to be generated con-
currently to the application’s computation, thereby further
reducing the overhead. MRNet [9] provides a framework
for computation offloading to I/O nodes, an area that is the
subject of future work.

5.2 Inter-Node Merge Overhead

Figures 7(c), 7(d) and 7(e) depict the runtime overhead
on a logarithmic scale for EP, LU and BT with no com-
pression (none), with only intra-node compression and with
inter-node compression. The first two include the overhead
of writing a trace file per node to the parallel file system
while inter-node includes the overhead of inter-node com-
pression and that of writing the compressed trace at the root
node. These times were measured as the difference between
an instrumented run and an uninstrumented run of the re-
spective benchmark. The three benchmarks are representa-
tive for the three classes of benchmarks.

We observe that inter-node compression has the lowest
overhead for EP, which represents the class of benchmarks
with constant-space compression. This overhead increases
slightly with the number nodes, yet a slower rate (and a
much smaller absolute overhead) than the other schemes.
LU’s overhead is nearly the same, irrespective of the com-
pression scheme. We suspect that there is room for im-
provement for intra- and inter-node compression due to
missed opportunities, as discussed for benchmarks with
sub-linear compression. BT shows the lowest overhead
without compression. Not surprisingly, inter-node compres-
sion is most costly since BT belongs to the class of bench-
marks with super-linear compression space requirements.
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(a) DT Trace File, Varied Number of Nodes
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(b) EP Trace File, Varied Number of Nodes
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(c) IS Trace File, Varied Number of Nodes
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(d) LU Trace File, Varied Number of Nodes
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(e) MG Trace File, Varied Number of Nodes
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(f) BT Trace File, Varied Number of Nodes
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(g) CG Trace File, Varied Number of Nodes
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(h) FT Trace File, Varied Number of Nodes

Figure 6. NPB Trace File Size per Node on BlueGene/L
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(a) EP Memory Usage, Varied Number of Nodes
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(b) BT Memory Usage, Varied Number of Nodes
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(c) EP Compression/Write Time, Varied Num-
ber of Nodes
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(d) LU Compression/Write Time, Varied Num-
ber of Nodes
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(e) BT Compression/Write Overhead, Varied
Number of Nodes
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(f) Avg. Global Compression Overhead, Varied Number of Nodes
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(g) Max. Global Compression Time, Varied Number of Nodes

Figure 7. NPB Memory Usage and Compression Time per Node on BlueGene/L

These benchmarks are representative for their respective
classes, except for MG, which shows results comparable to
those of BT.

Figures 7(f) and 7(g) show the average and max-
imum inter-node compression time measured inside of
MPI Finalize. These results indicate a wide spread of over-
head, which does not necessarily correlate with the com-
pression rate achieved. Consider Figure 7(g). Even though
FT behaves super-linear while MG is sub-linear in compres-
sion, FT’s compression time is smaller. This shows that
the timing overhead is more closely related to the amount
of MPI calls issued by the respective application than scal-
ability of compression. We have identified possible opti-
mizations in the inter-node merge algorithm to further re-

duce this overhead. Also, a discrepancy between aver-
age and maximum overheads (Figures 7(f) and 7(g)), in-
dicates widely diverging loads between mid-level and top-
level nodes during inter-node compression in the tree. Thus,
other potential improvements involve off-loading inter-node
compression to I/O nodes, as discussed previously.

5.3 Verification of Replay Correctness

We conducted additional experiments to verify the cor-
rectness of our approach. We replayed compressed traces
to ensure MPI semantics are preserved, to verify that the
aggregate number of MPI events per MPI call matches that
of the original code and that the temporal ordering of MPI



events within a node are observed. The results of commu-
nication replays confirmed the correctness of our approach.

During replay, all MPI calls are triggered over the same
number of nodes with original payload sizes, yet with a ran-
dom message payload (content). Thus, the replay incurs
comparable bandwidth requirements on communication in-
terconnects, albeit with potentially different contention
characteristics. Communication replay also provides an
abstraction from compute-bound application performance,
which is neither captured nor replayed. This makes the re-
play mechanism extremely portable, even across platforms,
which can benefit rapid prototyping and tuning. It also sup-
ports assessing communication needs of future platforms
for large-scale procurements. We are currently pursuing
these directions, among others to improve communication
performance in a systematic, yet experimental manner on
BG/L and to support procurement of large scale machines.

6 Related Work

RSDs have been used to describe data references in a
loop [5]. PRSDs originally targeted on-the-fly memory
trace compression [7]. While that work introduced the
general concepts and an algorithm for compressing regu-
lar data references, our work uses an entirely different al-
gorithm. Our task, compressing events composed of MPI
call IDs and their parameters, is considerably more com-
plex. We also use semantic-specific encodings, such as for
MPI Waitsome, which are unique to the trace domain. Fur-
ther, our work is the first to utilize the structural information
retained during compression, i.e., our replay mechanism re-
lies on this unique compression property. The approach is
superior to run-length encoding and sliding window com-
pression [13] in that it allows recursive compression while
preserving loop structures in the compressed format.

The mpiP tool consists of a lightweight profiling li-
brary for MPI applications that collects statistical informa-
tion about MPI functions[11]. It reports aggregate metrics.
Hence, structural information and event ordering are not
preserved. There are many other tools that report aggre-
gate information, often based on the profiling layer of MPI,
as is the case with mpiP. None of these tools are suitable for
lossless tracing and later replay.

Vampir is a commercial tool set including a trace gener-
ator and a display engine to visualize MPI communication
[2]. However, traces are generated in local files such that
total trace file size increases linearly with both the number
of MPI calls made and the number of tasks. This limits the
applicability as scalability is compromised.

Paraver and Dimemas is an MPI tracing tool set from the
University of Barcelona [8]. Paraver provides functional-
ity similar to Vampir; its trace generator has similar limi-
tations. Dimemas is a discrete-event-based network perfor-

mance simulator that uses Paraver traces as input. It is the
most similar existing tool to our replay mechanism. How-
ever, it does not support replaying traces on actual systems.
Instead, it uses a processor ratio and network latency and
bandwidth parameters to simulate the application’s MPI us-
age on a theoretical alternative system. Our tool set pro-
vides scalable MPI tracing; the traces could be used in a
discrete event simulator like Dimemas as well as with our
replay mechanism.

MRNet is a software overlay network that provides ef-
ficient multicast and reduction communications for parallel
and distributed tools and systems [9]. MRNet uses a tree of
processes between the tool’s front-end and back-ends to im-
prove group communication. MRNet introduces additional
complexity, which we decided to avoid in our initial pro-
totype. MRNet would support on-the-fly and asynchronous
trace compression across tasks. By using MRNet, we would
further reduce the memory pressure of our trace generator.
We plan to use MRNet in a future version of our tool set.

The Open Trace Format (OTF) is targeted at scalable
tracing, yet without any advanced (domain-specific) com-
pression scheme [6]. In contrast to our work, it uses regular
zlib compression on blocks of data, which loses structure
and limits analysis on the compressed format. They also do
not support cross-node compression schemes. Hence, the
complexity of aggregate trace size over n processors is O(n).
However, they have the ability to produce multiple streams
and, hence, store and load them in parallel with user-defined
granularity.

A characterization of MPI communication patterns for
the NAS parallel benchmarks has determined that commu-
nication end-points are, if not static, almost exclusively per-
sistent and hardly ever dynamic [10]. Here, persistent de-
notes a set of end-points that, once determined dynamically,
does not change anymore. This is consistent with our find-
ings and explains why our compression techniques are scal-
able within the domain of SPMD programs.

7 Conclusion

One of the central problems in petascale computing is
posed by the requirement for communication to scale to
hundreds, if not thousands of nodes. However, communica-
tion patterns of large-scale scientific applications are often
too complex to analyze at the source-code level. While tools
exist to analyze aggregate metrics statistically in a scalable
manner, temporal ordering and structural information are
generally lost in such an approach. Other tools employ
traces, which grow significantly in size as the problem size
(number of iterations to convergence) increases and become
harder to commit to global file systems as the number of
nodes increases.



In contrast to prior work, we present a trace-driven ap-
proach to analyze MPI communication that scales by ex-
tracting full communication traces orders of magnitude
smaller or even of near-constant size regardless of the num-
ber of nodes while preserving structural and temporal-order
information of events. We employ representations of regu-
lar section descriptors, power-sets of them and a multitude
of relative encoding techniques to enable compact represen-
tations of MPI event sequences. A first intra-node compres-
sion is followed by inter-node compression over a reduction
tree to result in a single trace file that fits into a fraction of
the core memory of a node. Experimental results on Blue-
Gene/L confirm our claim of concise, if not near constant
size, representation for benchmarks and a full-sized appli-
cation. We assessed the correctness of our approach by ver-
ifying the temporal orderings and aggregate counts of MPI
events using our unique replay mechanism. This replay
mechanism may aid performance tuning of MPI commu-
nication and facilitate projections of network requirements
for future large-scale procurements.

To the best of our knowledge, our contributions of orders
of magnitude smaller and sometimes constant-size repre-
sentation of MPI traces in a scalable manner combined with
deterministic replay are without precedence.
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