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Abstract—Benchmarks are essential for evaluating HPC
hardware and software for petascale machines and beyond. But
benchmark creation is a tedious manual process. As a result,
benchmarks tend to lag behind the development of complex
scientific codes.

This work contributes an automated approach to the cre-
ation of communication benchmarks. Given an MPI applica-
tion, we utilize ScalaTrace, a lossless and scalable framework
to trace communication operations and execution time while
abstracting away the computations. A single trace file that
reflects the behavior of all nodes is subsequently expanded
to C source code by a novel code generator. This resulting
benchmark code is compact, portable, human-readable, and
accurately reflects the original application’s communication
characteristics and runtime characteristics. Experimental re-
sults demonstrate that generated source code of benchmarks
preserves both the communication patterns and the wallclock-
time behavior of the original application. Such automatically
generated benchmarks not only shorten the transition from
application development to benchmark extraction but also
facilitate code obfuscation, which is essential for benchmark
extraction from commercial and restricted applications.

I. INTRODUCTION

Benchmarks are widely used for evaluating and analyzing

system performance. They also assist in assessing migration

costs of HPC applications to new platforms with different ar-

chitectures. Benchmarks tend to be easy to port, modify and

run, and they are said to closely resemble the characteristics

of HPC applications.

But most benchmarks do not capture the complexity and

scale of realistic HPC applications as they do not feature the

intricate interplay of computation, communication and I/O

operations. Many benchmarks also tend to lag behind the

development cycle of their corresponding full-scale appli-

cation. To some extent, this is due to the excessive manual

effort involved in manually extracting benchmarks from full-

scale applications. To another extent, benchmarks derived

from applications subject to distribution restrictions require a

lengthy review process before they can be released. To over-

come these challenges, an automated method for benchmark
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generation from applications is needed. As benchmarks are

created from application traces, the generated source code of

such benchmarks obfuscates the original application source

code.

This paper contributes a novel auto-generation process for

communication benchmarks. The resulting benchmarks are

human readable, compact and easier to port across architec-

tures than their full-fledged application counterparts. They

closely resemble the execution time and communication

characteristics in terms of message frequencies and sizes of

the original application. Yet, their source code is obfuscated

in the auto-generation process, which supports an expedited

release for otherwise restricted application domains.

Our auto-generation process works with HPC applications

that utilize message passing communication via MPI (Mes-

sage Passing Interface) [1]. This is illustrated in Figure 1.

During an application run, the application’s communication

patterns/events and elapsed wallclock times between events

are captured in a communication trace. The obtained trace

provides the input to the benchmark generator, which is the

central focus of this work. The generator outputs a com-

munication benchmark in C code (including MPI calls for

communication) that can be executed on a target machine.

Figure 1: Benchmark Generation Workflow

We utilize ScalaTrace [2] to collect communication traces.

ScalaTrace is a unique approach to parallel application

tracing as this scalable framework captures the commu-

nication in lossless and near constant size in terms of

trace representation independent of the number of the nodes

while preserving the structural information of the nodes and

iterations. It also employs pattern-based intra-node and inter-

node compression techniques to extract the application’s

communication structure.

Our communication benchmark generator is evaluated us-

ing the NAS Parallel Benchmark Suite [3] and Sweep3D [4].

We show that an auto-generated benchmark preserves the

application’s semantics in terms of its communication pat-



tern along with communication volume and the ordering of

events relative to the original HPC application. Furthermore,

the overall execution time of benchmarks is close to that of

their original applications. Thus, the communication bench-

mark generator is able to generate benchmarks that closely

resemble the original application in terms of communication

behavior and execution time.

The contributions of this work are (1) a demonstration

and evaluation of the feasibility of automatically converting

parallel applications into human-readable benchmark codes

and (2) an approach and algorithmic description of generic

portions for auto-generated benchmark codes that resemble

the original application performance. This process becomes

feasible due to structural, domain-specific compression of

traces.

The benefits of this work extend to application develop-

ers, communication researchers, and HPC system designers

alike. Application developers can benefit in multiple ways.

First, they can quickly gauge the application performance

of a target machine before investing in the effort to port

their applications to that machine. Second, they can use

the generated benchmarks for performance debugging as

the benchmarks can separate communication from com-

putation to help isolate observed performance anomalies.

Third, application developers can examine the impact of

alternative application implementations, such as different

data decompositions (causing different communication pat-

terns) or the use of computational accelerators (reducing

computation time without directly affecting communication

time). Communication researchers can benefit by being

able to study the impact of novel messaging techniques

without the need to build complex applications and without

access to source code that is not freely distributed or even

classified. Finally, procurement of HPC systems can benefit

by contracting vendors to deliver a specified performance on

a given auto-generated benchmark without having to provide

those vendors with the actual application.

In summary, we have developed a tool that automatically

generates C code of a communication benchmark with MPI

calls from HPC applications such that the characteristics of

the original application are preserved in terms of time and

structure. The generated code is human readable, compact,

easily portable and obfuscated with respect to the original

application.

II. SCALATRACE

Our work builds on ScalaTrace, an MPI tracing toolkit

with aggressive and scalable trace compression. ScalaTrace’s

compression can result in trace file sizes orders of magnitude

smaller than previous approaches or, in some cases, even

near constant size regardless of the number of nodes or

application run time [2].

The tool collects communication traces using the MPI

Profiling layer (PMPI) [5] through Umpire [6] to intercept

MPI calls during application execution. On each node,

profiling wrappers trace all MPI functions, recording their

call parameters, such as source and destination of commu-

nications, but without recording the actual message content.

ScalaTrace performs two types of compression: intra −
node and inter−node. For the intra node compression, the
repetitive nature of timestep simulation in parallel scientific

applications is used. Intra-node compression is performed

on-the-fly within a node. Further, the inter-node merge ex-

ploits the homogeneity in behavior across different processes

running the application due to the HPC-prevalent single-

program-multiple-data (SPMD) programming style. Inter-

node compression is performed across nodes by forming a

radix tree structure among all nodes and sending all intra-

node compressed traces to respective parents in the radix

tree. At the parent, the respective trace representations are

merged, reduced and then compressed exploiting domain-

specific properties of MPI. Once propagated to the root of

the radix tree, this results in a single compressed trace file

capturing the entire application execution across all nodes.

The compression algorithms are discussed in detail in other

papers [7], [8].

As a result of these techniques, ScalaTrace achieves near

constant size traces by applying pattern based compression.

It uses extended regular section descriptors (RSD) to record

the participating nodes and parameter values of multiple

calls to a single MPI routine in the source code across

loop iterations and nodes in a compressed manner [9].

Power-RSDs (PRSD) recursively specify RSDs nested in a

loop [10].

Example: Consider the code snippet shown in Figure 2

with ring-style communication across N nodes.

for(i=0; i<100; i++){

MPI_Irecv(LEFT, ...);

MPI_Isend(RIGHT, ...);

MPI_Waitall(...);

}

Figure 2: Ring-style MPI Communication Code

ScalaTrace represents these events as three RSDs in the

trace (see Figure 3) to denote the non-blocking send, receive

and waitall MPI operations of a single loop iteration, where

�rank� represents a value within 0 . . .N−1 in each per-node
trace. ScalaTrace then detects the loop structure and outputs

a single PRSD to denote a single loop of 100 iterations. This

intra-node compression is performed on-the-fly to reduce the

time for trace generation and the memory overhead.

RSD1: {�rank�, MPI Irecv, LEFT}
RSD2: {�rank�, MPI Isend, RIGHT}
RSD3: {�rank�, MPI Waitall}
PRSD: {100, RSD1, RSD2, RSD3}

Figure 3: Intra-node Compressed Trace



Further, during the inter-node compression, the local

traces on each node are combined into a single global trace

when the application terminates (i.e., within the PMPI inter-

position wrapper for MPI Finalize). Inter-node compression

detects similarities among the per-nodes traces and merges

the RSDs by combining their participant lists in a final

participant list. For the example above, each MPI routine

is called on each node with the same parameters resulting

in the following inter-node trace depicted in Figure 4.

RSD1: {0, 1, . . . , N − 1, MPI Irecv, LEFT}
RSD2: {0, 1, . . . , N − 1, MPI Isend, RIGHT}
RSD3: {0, 1, . . . , N − 1, MPI Waitall}

Figure 4: Inter-Node Compressed Trace

The participant node information is encoded and repre-

sented as a ranklist. A ranklist is a recursive representa-

tion that describes the participating ranks by showing the

starting rank, the nesting depth, and the iteration count and

stride along each dimension. Hence, even multi-dimensional

information is captured in this encoding format. There are

special cases in which events with matching calling context

can have non-matching function parameters. These non-

matching function parameters are compressed using a vector

representation so that the particular event can be concisely

represented in the trace.

Another important feature of ScalaTrace is the time

preservation of captured traces. Instead of recording absolute

timestamps, the tool records delta time of computation du-

rations between adjacent communication calls. During RSD

formation, instead of accumulating exact delta timestamps,

statistical histogram bins are utilized to concisely represent

timing details across the loop. These bins are comprised

of statistical timing data (minimum, maximum, average

and standard deviation). ScalaTrace records histograms of

delta times for each instance of a particular computation,

i.e., distinguishing disjoint call paths by separate histogram

instances.

III. BENCHMARK GENERATOR DESIGN

In this section, we introduce the system design in detail

and discuss the considerations behind the design decisions.

A. System Overview

The process of automatic benchmark source code genera-

tion from communication traces is accomplished by travers-

ing through the trace of a parallel application obtained from

ScalaTrace. The trace traversal framework is designed to

walk through all the RSDs and PRSDs. For each RSD

and PRSD, the code generator is invoked to generate the

respective C code and MPI calls. The code generator uses the

predefined interfaces provided by the traversal framework,

making the code generator a pluggable module. Thus, the

same platform can be used to generate the code for different

languages by writing code generators for those languages

providing flexibility in generating code other than C.

While a trace can be seen as a linked list of RSDs

and PRSDs, the trace traversal framework does not simply

linearly traverse the list. Instead, it follows the hierarchical

trace structure by traversing “into” PRSDs. In essence,

PRSDs captures the loop structures in the source code.

Hence, the traversal occurs recursively and code is emitted

for each node (PRSD) to reflect the original program struc-

ture within the generated benchmark. At the entry and exit

points of the recursive invocations, for loop entries/exits are

generated:

for(in = 0; in < x; i++){}

The nesting depth is tracked and a series of iterator variables

that are dynamically assigned/reassigned:

i1, i2, ..., in

The corresponding declarations are added to the header

file that is generated after the traversal. The trace traversal

framework can be configured to iterate only once or multiple

times for a PRSD. The latter is typically used in dynamic

scenarios such as trace replay.

During traversal, the RSDs that represent point-to-point

communication are converted to respective point-to-point

MPI calls in C code. For example, blocking sends and

receives are transformed to MPI Send and MPI Recv. Col-

lective calls are generated using MPI collective routines in C,

such as MPI Barrier, MPI Reduce, MPI Alltoall and so on.

The generation of MPI request handles and communicators

will be discussed in Section III-B. Behavioral constraints

captured by traces are reflected in the generated code using

conditionals on ranks of the processes participating in a

particular event:

if(is member(myrank, ranklist)).

Figure 5 is a simple example of a C program generated from

a trace. The delta-time sleep simulates a computational phase

in the original application. In a nutshell, because ScalaTrace

traces structurally resemble the original source codes, the

benchmarks generated from them are concise and highly

readable. Table I provides a list of the generated program

files and their respective functions.

Figure 5: The Code Generation



Table I: The Generated Files and their Functions

File Name Function

main.h Header file with declarations of iterator variables
main.c Main function implementing the communication skeleton
util.h Header file with declarations of utility functions
util.c Utility functions including the request handle management,

communicator management, MPI function wrappers, etc.

B. Request Handles and Communicators

MPI Isend and MPI Irecv generate request handles. Sub-

sequently, MPI Wait and MPI Waitall use those handles

to block the processes until the sending or receiving is

complete.

Instead of analyzing how many MPI Request variables

are needed and generating unique names for them, we

employ a ring buffer to hold all the request handles in

the generated code. During benchmark execution, a request

handle is added to the tail of the ring buffer. An index into

this buffer signifies the location of the request pointer for

a non-blocking event. This pointer is used within matching

MPI Wait and MPI Waitall calls. After the wait call, the

request handle is invalidated in the request buffer to ensure

that the same request handle can be reused (reinitialized) by

subsequent wait scenarios.

Communicators are handled in a similar way. In the

generated code, each communicator, including the default

ones such as MPI COMM WORLD and the user-defined

ones, is assigned an index that specifies the location where

the communicator is stored within an array. This index is

subsequently used to locate a communicator handle passed

to an MPI routine as a parameter. Whenever a new com-

municator is generated by events such as MPI Comm split

or MPI Comm dup, the next unused element in the com-

municator buffer will be assigned. With the values of the

color and key parameters recorded in the trace, the generated

code is thus able to correctly recreate the user-defined

communicators.

C. Generating the Computation Phases

As was discussed in Section II, ScalaTrace preserves

the timing information of an application. The length of

a computation phase between consecutive MPI events is

recorded as a delta time associated with the latter event.

An event may be associated with multiple time records if

it has multiple different preceding events, i.e., the event can

be reached from disjoint execution paths.

In a trace replay scenario, the replay engine chooses the

correct sleep time by searching the call stack signature of

the previous event in the list of time records of the current

event. However, it cannot be done by the code generator

for two reasons: (1) Unlike the replay engine, the code

generator traverses a loop structure only once so that certain

execution paths will never be reached during the traversal.

(2) Unlike the replay engine in which each node preloads its

per-node trace, the code generator is a single-node program

that traverses the complete trace. As a result, an event ea
immediately preceding eb at runtime may be recorded far
ahead in the trace.

Algorithm 1 Computation Phase Generation Algorithm

Precondition: T : input trace, e: current event

1: procedure GENERATE COMPUTE TIME(T , e)
2: T imeRecords = e.timeRecords
3: for t ← T imeRecords.head, T imeRecords.tail do
4: rl = e.ranklist
5: iter = e.prev
6: while iter != NULL && rl != NULL do
7: intersec = rl.INTERSECT(iter.ranklist)
8: if intersec != NULL && iter.SIGMATCH(t.sig)

then
9: GENERATE(“if(is member(myrank, intersec”))
10: GENERATE(“compute(t.time);”)
11: rl = rl.SUBTRACT(intersec)
12: end if
13: iter = iter.prev
14: end while
15: end for
16: end procedure

To address this problem, Algorithm 1 was designed for

the code generator. For each time record ti of an MPI
event e, the code generator traverses the trace backward
as far as necessary. During traversal, it searches for events

whose call stack signature matches that of ti, but only the
events whose ranklist has a non-empty intersection with the

ranklist of e are considered. Every time such an event is
found, a conditional on the common ranks is generated so

that these ranks (under a particular permutation of iterator

values) will sleep for the corresponding time units. The

backward traversal continues until every participating rank

of e has found its preceding event with the matching call
stack signature.

for(i1=0;i1<a;i1++) {

for(i2=0;i2<b;i2++) {

if(is_member(myrank, "...")){

if(i2 == 0 && i1 == 0)

compute(x);

if(i2 != 0)

compute(y);

if(i2 == 0 && i1 != 0)

compute(x);

...

}

}

}

Figure 6: Compute Times Generated for Multi-nest Loops

Events at the beginning of the multi-nest loops are as-

sociated with multiple time records as they can be reached



from loops of different depth. For these events, we generate

conditionals on particular permutations of the iterator values,

as illustrated in Figure 6. This is implemented by comparing

the call stack signature of each time record with each of the

tail events of loops of different depth. Once a match is found,

a predicate (conditional) of the iterator variables is generated

according to the depth of the loop.

During code generation, it is helpful to exploit the sta-

tistical information that was recorded as histograms within

the trace, particularly for applications with drastically dif-

ferent timing behavior across nodes. With this capability,

unbalanced workloads can be accurately represented in the

generated code.

D. Generating Concise and Readable Programs

The conciseness of the generated benchmarks is primar-

ily decided by the degree of compression ScalaTrace can

achieve. For example, the most aggressive lossless com-

pression techniques are supported by ScalaTrace with the

following configuration options:

1) Ranklist encoding of the participant list: efficiently

describes the spatial distribution of nodes instead of

listing ranks one by one.

2) Ignore call stack signatures: match events according to

their types instead of by call stack signatures.

3) Vectorization of MPI parameters: record the non-

matching function parameters across loop iterations

with vectors

4) WLCS-based recursive inter-node compression: gener-

ate shortest traces during inter-node compression [11].

With these techniques, the final trace tends to be struc-

turally very simple and similar to the original source code.

Thereby, the generated code also resembles the original

program.

Nonetheless, while the vectorization of communication

parameters , such as src, dest, and count greatly improves

trace compression, it introduces readability problems to the

generated code. To handle the vectorized communication

parameters, there are two options. First, we can unroll the

vectorized parameters by generating a sequence of condi-

tional statements with respect to the iterators. But for highly

compressed traces, this approach may lead to excessively

long programs even for a single RSD. Therefore, we adopted

the second approach. It consults the vector representations

during code generation and lets the generated code parse

them on-the-fly. This approach makes the generated code

much shorter and more readable as long as the parameter

vectors are of moderate sizes. For the events that are called

multiple times in loops, the parameter vectors are parsed

only once when they are reached the first time. To further

improve the readability, we generate wrapper functions for

the MPI events. These wrapper functions call the real MPI

routines while hiding the tedious processing steps, such as

parsing the ranklists and vectorized parameters, retrieving

communicators, generating request handles, and handling

errors.

IV. EXPERIMENTAL FRAMEWORK

To evaluate our communication benchmark generation

tool, we generated C code with MPI calls for the NAS

Parallel Benchmarks (NPB) suite (version 3.3 for MPI)

using class C and D input sizes [3] and for the Sweep3D

neutron-transport kernel [4]. These codes all have either

mesh-neighbor communication patterns or rely heavily on

collective communication. Some of them (e.g., SP and BT)

require communicator handling, others (e.g., IS) require av-

eraging of parameters in MPI Alltoallv and some (e.g., LU)

require the recording of wildcard receives. Hence, the key

features of our code-generation framework are thoroughly

tested in these experiments.

Benchmark generation is based on traces obtained on (a)

ARC, a cluster with 1728 cores on 108 compute nodes, 32

GB memory per node and an Infiniband Interconnect and (b)

Jaguar, a petascale HPC installation at Oak Ridge National

Laboratory with 18,688 compute nodes where each compute

node contains dual hex-core processors, 16 GB memory, and

a SeaStar2+ router. Benchmark generation is performed on

a stand-alone workstation.

V. EXPERIMENTAL RESULTS

We performed the following experiments for the evalua-

tion of our benchmark generation tool.

A. Correctness

Our first set of experiments verifies the correctness of

the generated benchmarks, i.e., the benchmark generator’s

ability to retain the original applications’ communication

pattern. For these experiments, we acquired traces of our

test suite on ARC, generated communication benchmarks,

and executed these benchmarks also on ARC. To verify

the correctness of the generated benchmarks, we linked

both the generated codes and the original applications with

mpiP [12] (see Figure 7, upper half). The mpiP tool is

packaged as a lightweight MPI profiling library that gathers

run-time statistics of MPI event counts and the message

volumes exchanged. Experimental results (not presented

here) showed that, for each type of MPI event, the event

count and the message volume measured for each generated

benchmark matched perfectly with those measured for the

original application.

We then conducted experiments to verify that the gen-

erated benchmarks not only resemble the original appli-

cations in overall statistics but also that they preserve the

original semantics on a per-event basis. To this end, we

instrumented each generated benchmark with ScalaTrace

and compared its communication trace with that of its

respective original application. Due to differences in the call-

site stack signatures between the original application and



Figure 7: Experimental Framework

the generated benchmark, these traces cannot be identical,

they can only be semantically equivalent. Therefore, we

replayed both traces with the ScalaTrace-based ScalaReplay

tool [13] to eliminate spurious structural differences and thus

allow a fair comparison of traces as depicted in Figure 7

(lower half). The results (again, not presented here) show

that the original applications and the generated benchmarks

have equivalent traces. That is, the semantics of each of

the original applications was precisely reproduced by the

corresponding generated benchmark.

B. Accuracy of Timing Results

After evaluating that the generated code preserves the

communication of the original application in terms of or-

dering of events and message volumes, we assessed the

ability of a generated benchmark to retain the performance

in terms of wall-clock time relative to the original ap-

plication. To measure the execution times of the original

applications, we extended the PMPI profiling wrappers of

MPI Init and MPI Finalize to obtain the start and end

timestamps, respectively. The corresponding timing calls

were also added to the generated benchmarks. We executed

both the original application and the generated benchmark

on the ARC system, measured and compared the elapsed

times. The results obtained are shown in Figure 8. The x-

axis shows the node sizes and problem sizes for the NPB

experiments. For example, C-16 means Class C input size

and 16 MPI processes were used. In this set of experiments,

we mostly used Class C input sizes. Nonetheless, for the

NPB CG, EP, IS, and MG codes, whenever Class C is not

large enough to scale to produce a reasonable workload per

MPI task (computation to communication ratio) for a certain

node size, we switched to and report the results obtained

from Class D inputs.

We observe from the graphs that the timings obtained

for the generated benchmarks are very close to that of the

original applications indicating very high accuracy. Quanti-

tatively, the mean percentage error obtained by the formula

100%× |(Tgen − Tapp)/Tapp|

across all the graphs is only 6.4%. Across all the bench-

marks, IS is the benchmark for which the generated code

has the lowest timing accuracy. The mean percentage error

over the six node sizes of IS is 15.3% with deviations

of 21.6% and 22.1% observed for 128 and 512 MPI

processes, respectively. IS performs a distributed bucket

sort algorithm on a set of randomly generated integers.

It utilizes MPI Alltoallv to exchange data across nodes.

Because the total number of integers exchanged is a constant

and the buckets are of similar sizes due to dynamical load

balancing, the code generator uses MPI Alltoall to simulate

the communication pattern of MPI Alltoallv so that the

generated code is concise and more readable. As a result

of this trade-off between trace compression and precision,

the slightly diverging timing behavior across the set of nodes

is missing in the generated code so that timing accuracy is

compromised. This effect is further amplified by the fact

that network contention increases with increasing numbers

of MPI tasks as the computational phases become shorter

due to strong scaling. As a result, we observe worse timing

accuracy at large node sizes.

C. Cross Platform Results

We obtained cross platform results by running the bench-

marks generated from IS and MG on ARC and Jaguar. The

results are depicted in Figures 9 and 10.

Figure 9 shows that, in case of the IS benchmark, the

difference between the execution times of benchmark from

ARC and the original application on Jaguar reduces as the

number of processors increases. This is because the compu-

tation is split across a larger number of processors reducing

the per-processor computation to communication ratio and

thus reducing the effect of higher processing capacity of

Jaguar. Also, for the IS benchmark, the lowest time in the

16-512 processor range is obtained for 64 processors on the
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Figure 8: Graphs for Timing Accuracy of NAS PB Codes for Input Class C/D and Sweep3D.

ARC cluster resembling the actual application behavior. The

same benchmark with delta times from ARC but executed on

Jaguar resulted in the lowest time for 256 processors on the

latter platform. This is also matching the lowest runtime (at

256 processors) of the original application on Jaguar (within

the 15-512 processor range).

Figure 10 shows that the execution time of the MG

benchmark obtained on ARC is close to that of the original

application on Jaguar, whereas the execution time for the

MG benchmark obtained on Jaguar itself very closely resem-

bles it. The difference is due to diverging CPU speeds be-

tween ARC and Jaguar. Since Jaguar has a higher processor

frequency than ARC, it finishes the computation earlier than

indicated by the delta time for sleeps obtained by tracing on

ARC.
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Figure 9: Cross-Platform Timing Results of IS
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Figure 10: Cross-Platform Timing Results of MG

To verify the speedup of Jaguar over ARC, we executed

a computational kernel that performs matrix multiplication

on a single processor for square matrices of size 100x100

with iterations ranging from 3000 to 9000. Execution times

are given in the Table II. The CPU speedup of Jaguar over

ARC is around 23%, which conforms our observations from

traces.

Table II: Execution Times [sec] for Matrix Multiplication on

ARC and Jaguar

# Iterations Time (ARC) Time (Jaguar) Speedup(%)

3000 44.168 34.259 22.43479442
6000 88.314 68.565 22.36225287
9000 132.443 102.614 22.5221416

We then reduced the sleeps in the MG benchmark ob-

tained on ARC by 23% by proportionally shortening the

delta times in the traces from ARC. The resulting MG run on

Jaguar (see Figure 10, 4th bar) shows that the execution time

then matches very closely to that the actual MG application

on Jaguar.

Such performance experiments performed with the bench-

marks generated by our tool could help in gauging different

performance aspects related to communication on HPC sys-

tems with increasing complexities without actually porting

the real applications to those platforms.

D. Lines of Code

We also measured the number of lines of code (LOC) in

the generated code to gauge the conciseness of the generated

code. The results are reported in Table III. In this table,

the App LOC column depicts the lines of code of the

native applications and the Benchmark LOC column reflects

the lines of code of the generated benchmarks. We report

the results for node sizes from 16 to 512 and the input

size of Class C for the NPB codes. For those benchmarks

whose code sizes become larger as the number of nodes is

increased, we report the lines of code as a range to show

their scalability. The Change column is calculated from the

data in the previous two columns. A negative percentage

number indicates that the generated code is shorter than the

original application source code.

As shown in Table III, the number of lines of the gener-

ated code are generally lower than that of the native appli-

cation. As indicated in the Scalability column, the generated

benchmarks can be divided into two categories: Constant and

Sub-linear. BT, EP, FT, IS, LU, SP, and Sweep3D belong

to the first category. For these applications, the lines of

the generated code does not increase with the node size,

which is non-trivial for any trace-based approaches. Among

these applications, only EP has a smaller code size than

its generated counterpart. But given that the communication

skeleton — the meaningful part of the generated code —

exists only in main.c, if we exclude the utility functions

implemented in util.c and util.h, the lines of the generated

EP code is only 71, which is much smaller than that of the

native application. CG and MG lead to increasing number

of lines of code for the generated benchmarks because

their complicated communication patterns cause imperfect

trace compression. In CG, each node communicates with an

increasing number of neighbors as the topology size grows

with the total number of MPI processes [13]. In MG, nodes

exhibit a doubly nested 7-point stencil communication pat-

tern and diverging per-node program behavior (non-SPMD)

[11]. Nonetheless, we still observe a sub-linear trend with

respect to the total number of nodes.

Overall, the generated benchmarks are concise and

manageable in size. Applications with more complicated

communication patterns and non-SPMD program behavior

should be handled with more aggressive compression tech-

niques in ScalaTrace.

VI. RELATED WORK

We utilize ScalaTrace to collect the communication trace

of parallel applications. With a set of sophisticated domain-

specific trace-compression techniques, ScalaTrace is able

to generate traces that preserve the original source-code

structure while ensuring scalability in trace size. Other tools

for acquiring communication traces, such as Vampir [14],

Extrae/Paraver [15] and tools based on the Open Trace

Format [16], do not have structure-aware compression. This

results in trace file sizes that grow at least linearly with the

number of MPI calls and the number of MPI processes. This

also increases the size of any benchmark generated from

such a trace, making it not only inconvenient for processing

long-running applications executing on large-scale machines

but also losing the ability to resemble the original loop struc-

ture of an application. This lack of scalability is addressed

in part by call-graph compression techniques [17] but still

falls short of the structural compression of ScalaTrace,

which extends to any event parameters. Casas et al. utilize



Table III: Comparison of Number Lines of Code

App LOC (A) Benchmark LOC (B) Change = (B −A)/A ∗ 100% Scalability

BT 9217 705 -92.4% Constant
CG 1796 1057 ∼ 2815 -41.1% ∼ 56.7% Sub-linear
EP 325 538 65.5% Constant
FT 2165 552 -74.5% Constant
IS 1141 571 -50.0% Constant
LU 5937 2504 -57.8% Constant
MG 2580 2603 ∼ 9507 0.9% ∼ 268.5% Sub-linear
SP 4922 689 -86.0% Constant

Sweep3D 2096 1110 -47.0% Constant
Average - - -42.5% ∼ -6.6% -

techniques of signal processing to detect internal structures

of Paraver traces and extract meaningful parts of the trace

files [18]. This facilitates trace analysis in a compressed

manner but does not allow one to capture full information

and becomes lossy and thus is not suitable for benchmark

generation.

Xu et al.’s work on constructing coordinated performance

skeletons to estimate application execution time in new hard-

ware environments [19], [20] exhibits some similarities with

our work. However, a key aspect of performance skeletons is

that they filter out “local” communication (communication

outside the dominant pattern). As a result, the generated code

does not fully reflect the original application, which may

cause subtle but important performance characteristics to be

overlooked. Because our benchmark generation framework

is based on lossless application traces, it is able to generate

benchmarks with identical communication behavior to the

original application.

Program slicing, statically reducing a program to a min-

imal form that preserves key properties of the original one,

offers an alternate approach to generating benchmarks from

application traces. Ertvelde et al. utilize program slicing to

generate benchmarks that preserve application performance

characteristics while hiding its functional semantics [21].

This work focuses on resembling the branch and mem-

ory access behavior for sequential applications and may

therefore complement our benchmark generator for parallel

applications. Shao et al. designed a compiler framework

to identify communication patterns for MPI-based parallel

applications through static analysis [22], and Zhai et al.

built program slices that contain only the variables and code

sections related to MPI events and subsequently executed

these program slices to acquire communication traces [23].

Program slicing and static benchmark generation in general

have a number of shortcomings relative to our run-time,

trace-based approach: (a) Their reliance on inter-procedural

analysis requires that all source code be available. This

includes complete source code of an application along with

the source codes of all its dependencies, such as libraries,

which is often unrealistic. (b) They lack execution time

information. (c) They cannot accurately handle loops with

data-dependent trip counts (“while not converged do. . . ”).

(d) They produce benchmarks that are neither human-

readable nor editable.

Wu et al.’s work of generating the Conceptual bench-

mark [24] is related to our work. ScalaTrace is used to

collect the traces from application in their work. A trace

traversal framework, which is similar to our traversal frame-

work, is used to generate the source code in Conceptual,

a domain specific language [25]. This language focuses

on generating networking/communication benchmarks. This

work does not generate all MPI calls but maps the MPI

events from the trace to the corresponding combination of

communication routines. The Conceptual language does not

have the concept of “communicators” as in MPI. Thus, it

cannot form the subsets of ranks based on a communicator.

Since our work generates C code with MPI calls, it can

translate all MPI events captured in the trace accurately. The

Conceptual language does not have provisions like wildcard

receives, thus generated code needs to be resolved for the

source in the send and receive communication calls. This

eliminates the non-determinism present in the source code

but changes runtime behavior (and semantics) relative to in-

ternal MPI queues, which are used to buffer the receives until

matching sends are encountered. In our work, we reproduce

the non-determinism present in the original application, thus

accurately preserving the behavior of the application. Our

work generates lossless, accurate and human readable MPI

communication calls in C source code from a single trace

file obtained from ScalaTrace, which is easily portable to

any platform, as opposed to Conceptual with the need to

interpret Conceptual code, which more closely resembles

trace replay.

Benchmaker [26] is a framework for synthetic benchmark

generation combining microkernels based on performance

metrics where weights can be used to control the “mix” of

program characteristics during benchmark synthesis. Bench-

Maker1/2 [27] is a tool to synthetically generate bench-



marks that comes in two different versions. One version

recursively expands the control-flow templates for loops and

conditional execution and fills in their blocks with selected

statements. Another version synthesizes existing microker-

nels in a weighted, compositional manner to create a larger

benchmark. HBench [28], [29] is a synthetic benchmark

generator for Java applications that combines microkernels

based on observed application-side runtime metrics. Many

other approaches to benchmark synthesis exist, ranging from

generic models [30], [31] to numerous memory models

(stack, reference, temporal/spatial density, memory reuse

distance, locality space) [32], [33]. In contrast, our work

focuses on auto-generation of benchmarks from real appli-

cation instead of generating synthetic benchmarks.

VII. CONCLUSION

We have designed and implemented a novel communi-

cation benchmark code generator that generates benchmark

code in C with MPI calls from communication traces. These

traces are generated by ScalaTrace, a lossless and scalable

framework to extract communication, I/O operations and ex-

ecution time while abstracting away the computations. These

benchmarks are human readable, compact, easy to generate

and port. They also preserve the behavior of the original

application in terms of execution time, communication vol-

ume and ordering of events. Furthermore, application code

is obfuscated by our benchmark generation process, which

allows auto-generated benchmarks of otherwise restricted

/ distribution-controlled applications to be released to the

public. And such benchmarks can be generated and released

more frequently due to the automated generation process so

that benchmark releases can keep up more closely with rapid

development cycles of full-scale applications.

Experimental results demonstrate the ability of our code

generator to generate the communication benchmarks from

codes of the NAS Parallel Benchmark Suite and Sweep3D.

The obtained results show that the benchmarks accurately

preserve not only application semantics but also overall

execution time. We demonstrated cross-platform validation

of our generated benchmarks by adjusting for different CPU

speeds. We also showed that the lines of code were, on

average, reduced within auto-generated benchmarks relative

to the corresponding NAS codes and Sweep3D. We expect

that for full-scale benchmarks, this reduction in lines of code

is even more significant as our test codes were benchmarks

themselves.

Overall, our benchmark generator can benefit application

developers, communication researchers and HPC system

designers. It may assist in performance analysis of software

and hardware and can also ease migration of applications

across different platforms.
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