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Abstract—The data explosion in scientific computing appli-
cations continues to fuel increasing demand for computational
power. Understanding application behavior in this context
becomes essential to determine shortcomings, e.g., by collecting
detailed information with tracing toolsets. This work considers
parallel applications using the SPMD (single program multiple
data) paradigm that relies on iterative kernels. This charac-
teristic provides an opportunity to empower tracing toolsets
with effective machine learning algorithms. One solution is to
cluster processes with the same behavior into a group. Instead
of collecting performance information from each individual
process, this information can be collected from just a set of
lead processes, i.e., one lead process per group. This work,
called Chameleon, contributes an online, fast, and scalable
signature-based clustering algorithm. Unlike related work,
namely ScalaTrace V2, that generates the compressed global
trace within MP I F inalize, Chameleon creates this trace
incrementally during the execution of applications and only
for lead processes. Chameleon also identifies different program
phases, clusters processes exhibiting different execution behav-
ior, and creates a compressed global trace file on-the-fly, all
incrementally at interim execution points of applications. The
resulting system combines low overhead at the clustering level
a lower time complexity of log(P ) than prior work.

Keywords-High-Performance Computing, Message Passing,
Tracing, Clustering Algorithms

I. INTRODUCTION

The data explosion in scientific computing applications
continues to fuel an ever increasing demand for compu-
tational power. Computer scientists have started working
to subjugate this power hungry dragon by understanding
the behavior of parallel applications. To better understand
the behavior of MPI applications, communication traces
often provide the insight to detect inefficiencies and help
in problem tuning [26], [6].

Today’s tracing tools either obtain lossless trace infor-
mation at the price of limited scalability (e.g., Vampir [7],
Tau [23], Intel’s toolsets [13], and Scalasca [10]) or preserve
only aggregated statistical trace information to conserve the
size of trace files (e.g., mpiP [25]). As a result, trace file
sizes can easily exceed multiple gigabytes, even for regular
single-program multiple-data (SPMD) codes, e.g., 5TB for
SMG2k for moderately small input sizes [34]. In response,
a number of communication compression techniques have
been designed, including run-length compression [35] and
structural compression [16], [22], [30].

At extreme scale, tracing tools, linked with applications,
could severely affect the efficiency and scalability of the
system. The tracing background workload may compete with

the application for resources, which can perturb the appli-
cation’s behavior. Moreover, due to the large I/O require-
ment of tracing data required for applications on top-end
HPC platforms, collecting detailed performance information
comprehensively may not be feasible from a scalability
perspective. Hence, tool designers need new strategies to
address these problems.

Bahmani and Mueller [1], [2], [3] showed that at scale,
large groups of processes even in task parallel applications
behave similarly. Moreover, the iterative nature of paral-
lel applications provides an opportunity to use clustering
algorithms to group processes with the same application
behavior. Hence, instead of collecting performance informa-
tion from all individual processes, such information can be
collected from just a single node (or a set of lead processes)
per cluster group.

This paper proposes an online, fast, and scalable
signature-based clustering framework called Chameleon.
Our Chameleon framework, similar to real-life Chameleons,
rapidly adapts to changing contexts (i.e., program phase
changes in our case). Chameleon clusters processes exhibit-
ing similar execution behavior on-the-fly. We apply our clus-
tering algorithm on trace files created by the public release of
ScalaTrace V2 [30], a state-of-the-art MPI message passing
tracing toolset that we enhanced based on the public release
to create Chameleon. ScalaTrace V2 provides orders of
magnitude smaller if not near-constant sized communication
traces regardless of the number of nodes while preserving
structural information. Henceforth, we refer to ScalaTrace
V2 simply as ScalaTrace.

ScalaTrace employs a two-stage trace compression tech-
nique, namely intra-node and inter-node compression [22],
[31]). It utilizes Regular Section Descriptors (RSDs) to
capture the loop structures of one or multiple communication
events. Power-RSDs (PRSDs) are utilized to recursively
specify RSDs in nested loops (see Section II). After each
node has created its own compressed trace file and the
program is completing, ScalaTrace performs an inter-node
compression over a radix tree rooted in rank 0. During
this reduction, internal nodes combine their traces with
other task-level traces that they receive from child nodes.
While intra-compression is fast and efficient, inter-node
compression is a costly operation with O(n2 log P ) time
complexity, where n is the number of MPI events in PRSD
compressed notation and P is the number of processes. Our
clustering addresses the high overhead when scaling out by



significantly reducing P to almost a constant value, which
effectively eliminates this bottleneck.

Chameleon considers special MPI collective calls as a
marker at interim execution points, e.g., at timestep bound-
aries of scientific codes. The marker helps to engage in
clustering during the execution of the program. The proposed
system has two main components. The first employs a
transition graph that keeps track of the status of the system,
and identifies when to call clustering. This component works
based on the Call − Path signature of MPI events. We
use the stack signature to distinguish events originating
from different call sequences with associated call paths. The
Call − Path signature is the aggregated composition of
stack signatures of different events. Chameleon calculates
Call−Path signatures of events added between two marker
calls. Then, the transition graph assists Chameleon to wisely
decide on re-clustering or skipping clustering based on the
changes of Call − Path.

The second component of Chameleon is merging and
creating the global trace on-the-fly. Unlike ScalaTrace,
which uses intra-compression during the execution of the
program and then inter-compression at MPI Finalize to
create the global trace, Chameleon runs both compression
techniques on-the-fly by calling inter-node compression at
interim execution points. In the inter-node compression in
ScalaTrace, all P processes participate over a radix tree to
create the global trace. On the other hand, Chameleon iden-
tifies program phase changes, clusters processes, and only
considers K lead traces in an online inter-node compression
step. These K traces are created on-the-fly by the intra-
compression step between two consecutive marker calls.

Chameleon merges the output of each online inter-
compression with a trace called online trace in the root
(node 0). The online trace incrementally expands to an
equivalent output of MPI Finalize in the original Sca-
laTrace. These algorithms are discussed in detail in the
following sections. The objective of clustering in Chameleon
is to drastically reduce the ScalaTrace overhead (both in
execution time and space), and to select representative pro-
cesses resembling the overall execution time of the original
application without clustering.
Contributions:
• We design Chameleon, a low-overhead clustering frame-
work that utilizes signature-based clustering algorithms to
cluster processes and creates a singular trace file by com-
bining intra-node and inter-node compression on-the-fly.
• We describe a transition graph that assists Chameleon
to identify phase changes to subsequently engage in re-
clustering.
• We evaluate Chameleon for a set of HPC benchmarks
showing its effectiveness at capturing representative appli-
cation behavior for communication events.
• We compare the accuracy of traces generated by
Chameleon with ScalaTrace.

• We explain how Chameleon opens a new horizon in terms
of space complexity with a potential for increased energy
efficiency for tracing MPI applications.

II. BACKGROUND

Our work builds on ScalaTrace as an MPI tracing toolset.
Here, we briefly introduce several of the key ideas and
techniques used in ScalaTrace.

ScalaTrace captures MPI events in the innermost loop as
Regular Section Descriptors (RSD), while power-RSDs cap-
ture RSDs (PRSDs) of higher-level loop nests represented
as a constant sized data structure [22]. Consider the example
in the following code snippet:

for i = 0→ 1000 do
for k = 0→ 100 do

MP I Send(...);
MP I Recv(...);

end for
MP I Barrier(...)

end for
Trace compression with PRSDs results in the following

tuples: RSD1:<100, MPI Send1, MPI Recv1> denotes a
loop with 100 iterations of alternating send/receive calls with
identical parameters (omitted here), and PRSD1:<1000,
RSD1, MPI Barrier1> denotes 1000 invocations of the
former loop (RSD1) followed by a barrier.

ScalaTrace has the following three main properties: (1)
It provides location-independent encodings: Communication
end-points (task IDs) in SPMD programs often differ from
one node to another. However, their position relative to the
MPI task ID often remains constant. Therefore, ScalaTrace
leverages relative encodings of communication end-points,
i.e., an end-point is denoted as ±c for a constant c relative
to the current MPI task ID [22].

(2) ScalaTrace features calling sequence identification:
MPI calls, such as a Send, may be scattered over various
locations in a program. To distinguish between events from
different locations, just recording the MPI event type itself
is insufficient. ScalaTrace captures the calling context by
recording the calling sequence that leads to the MPI event,
which is obtained from the stack backtrace of an MPI event.
Each location is represented as a unique signature of the
stack trace called the stack signature [22].

(3) ScalaTrace provides communication group encoding:
it leverages a special data structure called ranklist to repre-
sent a communication group. Using EBNF notation, a rank
list is represented as 〈dimension, start rank, iteration length,
stride, iteration length, stride〉, which denotes the dimension
of the group, the rank of the starting node, and the iteration
and stride of the corresponding dimension, respectively [28].

ScalaTrace employs a two-stage trace compression tech-
nique, namely intra-node (loop level) and inter-node com-
pression. The latter is consolidating traces in a reduction
step over a radix tree in the MPI Finalize PMPI wrap-
per. While intra-compression is fast and efficient, inter-



compression is costly as it depends on the number of tasks.
Bahmani and Mueller [1], [2], [3] developed signature-based
clustering algorithms, which lowered this overhead. Figure 1
depicts the main components of ScalaTrace with clustering.
The left two components are executed for each process, and
the right two components are executed over a radix tree
among a group of processes. Clustering components are the
top two (green) components. Clustering procedures are also
called in the MPI Finalize PMPI wrapper. After calling
clustering, the inter-node compression step only considers a
small group of lead traces.

Figure 1: A Schematic of Signature-based Clustering
III. THE PROPOSED CLUSTERING ALGORITHM

In the design of Chameleon, we considered two main
steps: (1) an online clustering algorithm helps to group
processes with the same execution behavior, and (2) partial
representative traces are merged to create the global trace
on the fly.

To implement the first step of Chameleon, we need to
identify the times and locations in the program where the
clustering algorithm is called. We refer to these specific calls
as Markers. We assume markers are special MPI collective
events, which trigger clustering during the execution of the
program at interim execution points under special conditions.
In Chameleon, we consider MPI Barrier as the marker.
To distinguish the marker with other MPI Barrier calls
in MPI programs, Chameleon assigns a unique value to the
communicator field.

Many parallel codes report progress at the end of kernel
loops or timesteps (e.g., NAS parallel benchmarks, POP,
LULESH, Sweep3D). We insert our marker in this progress
reporting point. Since clustering can have significant exe-
cution cost, we need a mechanism to track phase changes
in execution behavior. To this end, Chameleon considers the
calling context using its Call−Path signature and identifies
new phases by previously unseen signatures.

To capture the calling context, ScalaTrace uses the stack
signature consisting of a number of backtrace addresses of
the program counter (return addresses), one for each stack
frame. After creating each frame’s stack signature, in order
to create the 64-bit Call−Path signature, Chameleon com-
putes the exclusive or (XOR) of all 64-bit stack signatures.
Moreover, to order events, it multiplies the modulo 10 plus
1 of the sequence number of each event by the 64-bit stack
signature and then uses this value in the Call − Path sig-
nature. This ensures that signatures cannot cancel out each
other due to permutations on call sequences and recursion.

Chameleon keeps track of MPI events between two con-
secutive calls of the marker. Every time the program calls
the marker, Chameleon creates the Call − Path signature
of added events between two calls.

Figure 2 depicts the transition graph in Chameleon. There
are two MPI calls to the clustering algorithm. One is
the marker and the other is MPI Finalize. The blue
ellipse in the transition graph shows the status of marker
calls. The marker could be in four different states, All
Tracing (AT ), Clustering (C), Lead (L) or Final (F ).
For every marker, each process independently creates its
Call − Path signature. Then, all processes participate in
a collective voting procedure. If all processes observed a
repetitive behavior (i.e., their current Call−Path matched
the last one), then they will enter the C state. Otherwise,
they will stay in AT . Clustering only happens in state
C, and for each cluster of processes, a single process is
declared as the “lead”. Once in C, a mismatch in the
next Call − Path changes the state back to AT , while a
second matching Call − Path transitions to state L. In L,
only lead processes continue to trace (“lead” flag is true)
while non-lead processes in L state set the “lead” flag to
false and discontinue tracing temporarily (but remain in L).
Should a lead process (with lead flag set) detect that its own
Call−Path has changed from the repetitive sequence, then
the traces of lead processes up to this point are merged and
all processes enter the AT state. Should the trace end at any
time (no more events), state F is entered.

Figure 2: Transition Graph

Figure 3 presents sample code (left side) and the cor-
responding state transitions (right side). Four nodes start
in the all tracing AT state, they then transition to the
clustering C state since they have the matching Call−Path
signatures (i.e., a repetitive sequence of events in the 1st
loop). They then enter the leader L state, node 1 keeps
tracing while the other non-representative processes turn off
tracing (depicted as hollow rectangles). Nodes remain in L
state until Call − Path signatures change (2nd loop), at
which time Chameleon flushes all partial traces, merges the
output with the global trace, and enters AT for all nodes.
After observing two distinct patterns, state C and then L are
entered, but now with two lead nodes, 1 and 3 (representing
if then and else branches). Upon calling MPI Finalize, the
final inter-compression step is run.

Algorithm 1 presents the pseudocode for the transitions of
the graph. Creating a signature has O(n) complexity, where



ALGORITHM 1: Phase Recognition of Online Clustering
Input : A Sequence of Compressed MPI Events (PRSDs)
Output: Clustering Status
Initialization: OldCallPath=0; Re-Clustering Flag = true; Lead

Flag = false;
1 CurrentCallPath = Create signatures of input sequence of MPI

events;
2 if OldCallPath == 0 then
3 //First time hitting the marker
4 Set OldCallPath = CurrentCallPath;
5 return AT ;
6 end
7 Set tempReduceVal = 0;
8 Set globReduceVal = 0;
9 if OldCallPath != CurrentCallPath then

10 tempReduceVal = 1;
11 end
12 globValReduce = Sum all tempReduceVals using MPI Reduce;
13 MPI Bcast globValReduce by rank root;
14 Set OldCallPath = CurrentCallPath;
15 if globValReduce == 0 then
16 if Re-Clustering Flag == true then
17 //Clustering Phase
18 Re-Clustering Flag = false;
19 return C;
20 end
21 else
22 //Lead Phase w/o inter-compression
23 Lead Flag = true;
24 return AT ;
25 end
26 end
27 if Lead Flag == true then
28 //Lead Phase w/ inter-compression
29 Lead Flag == false;
30 return L;
31 end
32 Re-Clustering Flag = true;
33 return AT ;

n is the number of MPI events in PRSD-compressed notation
generated by intra-node compression (loop-compression). n
is equal to the number of disjoint stack signatures over all
processes (e.g., 3 disjoint instructions in the sample example
from the background section create at most 3 disjoint events
over 1000 iterations). n is much smaller than the number of
processes at large scale (N << P ). MPI Reduce and
MPI Bcast are O(log(P )). Therefore, the complexity of
this operation is O(nlog(P )).

Bahmani and Mueller [1], [2], [3] used K-Farthest, K-
Medoid and multi-level hierarchical clustering algorithms.
As previously mentioned, clustering happens over signa-
tures, not traces. There are two phases. First, clustering using
signatures, and then lead traces are merged.

Algorithm 3 depicts the main body of Chameleon. Once
processes reach a marker, they invoke this algorithm. In the
Chameleon implementation, we only consider Call−Path,
SRC and DEST signatures. By analyzing related work [1],
[2], [3], we found that these three 64-bit signatures are
the most important ones, especially Call − Path. These
signatures often cover other parameters as well (e.g., count,
loop size, tag). To create SRC and DEST signatures,
Chameleon averages parameter signatures composing SRC

Figure 3: Sample Transitions

and DEST parameters of the MPI call events. Because
aggregating event values and then taking the average could
result in an overflow, we utilized an estimation function.

Chameleon ensures that after each process creates three
signatures in Algorithm 1, it participates in clustering
(“Clustering” state). If a process has any child, it receives
the signatures from left and right children, and merges them
with its own map of signatures (i.e., the data structure is
a hashmap of <signature, ranklist>). Then, to cover all
the events, it picks K

NumCall−P ath
lead processes from each

Call − Path cluster. Bahmani and Mueller [1], [2], [3]
showed that the number of Call − Path usually is below
9, which is sufficient to cover stencil codes. They studied
the impact of increasing the number of clusters on the
accuracy of traces. They observed that the key element
with respect to trace accuracy is the number of Call-Path
clusters. Covering all distinct events over all traces results
in acceptable accuracy. Chameleon does not miss any MPI
event by selecting at least one representative from each call-
path cluster. It dynamically increases the value of K should
the number of different Call − Path signatures exceed K.

Algorithm 2 helps to find the top K
NumCall−P ath

lead
processes based on SRC and DEST signatures for each
Call−Path signature. Users could select any clustering al-
gorithm (e.g., K-Medoid, K-Furthest, K-Random selection).
Bahmani and Mueller in [3] compared K-Medoid and K-
Furthest clustering and observed that the accuracy of traces
is very close for these clustering algorithms. After picking
lead processes, other non-selected clusters are merged with
the closest clusters. Finally, if the process has any parent, it
will send the information about clusters and lead processes
with their signatures to the parent (i.e., cluster hashmap is
a tuple <lead rank, ranklist>).

We highlighted multiple lines in Algorithm 3:
(1) The complexity of creating signatures is O(n). We



ALGORITHM 2: Find Top K
Input : K and SRC/DEST signatures
Output: T opK list

1 Calculate distance matrix for Top K list based on SRC and
DEST ;

2 T opK list = { } ;
3 while Size of T opK list < K do
4 Find farthest cluster to T opK list;
5 end
6 foreach cluster ∈ AllNode list - T opK list do
7 Find closest cluster;
8 Assign cluster to closest one;
9 end

introduced an input parameter called Call Frequency. This
parameter gives users the option to control the number of
times Chameleon creates signatures and calls the transition
graph. We discuss this in the experimental section.
(2) In AT state, only Algorithm 1 is executed at the marker.
(3) Only under “Clustering” state are lines 7-24 executed.
The root node then broadcasts the list of top K ranks.
(4) Under both “Clustering” and “Lead”, only lead processes
executes lines 25-35. Before merging starts, each lead pro-
cess replaces the ranklist of events with the ranklist of its
cluster (e.g., if a cluster contains ranks 0, 1, 2, 3, 4, and 5
with ranklist <1 1 0 5 1>, and the lead process is 5 with
ranklist <1 1 5 1 0>, then rank 5 must update its trace with
the cluster ranklist).
(5) After merging the top K lead traces, Chameleon needs
to merge the output of inter-node compression with the
online trace. As previously mentioned, the online trace is
the incremental global trace. Rank 0 is responsible to keep
the online trace. At this stage, it is possible that the root of
the radix tree differs from rank 0. If so, the root rank sends
the partial trace to rank 0, and rank 0 merges the partial
trace with the online trace.
(6) Under C and L, at the end of each marker, all pro-
cesses start over by removing their partial intra-node trace.
Processes only need to keep the stack signature of the last
event so that ScalaTrace considers the computation time
between the last event and the new event. (7) Because of
the synchronization (Broadcast+Reduction) in Algorithm 1,
all processes receive the same state value. They could
have different execution behavior between calls, but the
synchronization step guarantees they are in the same state
with respect to clustering.

At the end of the application, in MPI Finalize, Al-
gorithm 3 is called with a small modification to add the
last events to the online trace. The only difference is that
there is no need for Algorithm 1 because at least one new
event has been added (i.e., MPI Finalize). Therefore,
the Call − Path is definitely different from the previous
clustering, so re-clustering must be triggered but the inter-
compression part remains the same. Note that communi-
cation for clustering occurs within PMPI pre- and post-
wrappers of the maker.

As previously noted, ScalaTrace’s inter-compression is a

ALGORITHM 3: Online Inter-Compression using Clustering
Input : A Sequence of Compressed MPI Events (PRSDs),

Call Frequency
Output: Online Trace

1 Increment Marker Call Counter;
2 if Marker Call Counter % Call Frequency != 0 then
3 return;
4 end
5 ClusteringState = Call Algorithm 1;
6 if ClusteringState==C OR ClusteringState==L then
7 if ClusteringState==C then
8 if a left/right child exists then
9 Receive list of left K / right K clusters;

10 Receive signature of head of top left K / right K
clusters;

11 Merge left K / right K clusters + yourself into
AllNode list;

12 if left K + right K + 1 > K then
13 local K = K / Number of Call-Paths;
14 foreach Call-Path signature do
15 T opK = T opK + findTopK(local K, SRC

and DEST signatures);
16 end
17 end
18 end
19 if a parent exists then
20 Send current list of K clusters to parent;
21 Send signature of head of top K clusters to parent;
22 end
23 MPI Bcast (Top K) by root;
24 end
25 if my rank ∈ Top K list then
26 Replace ranklist of collected events with my cluster

ranklist;
27 tempRank = assign a temp rank from Top K;
28 if a left/right child exists then
29 Receive the left/right child traces;
30 Merge their trace with yours;
31 end
32 if a parent exists then
33 Send your trace to parent;
34 end
35 end
36 if my rank == root rank of Top K list OR rank == 0 then
37 if root of Top K list ! = 0 then
38 if rank == 0 then
39 Receive partial global trace from root of top K;
40 end
41 else
42 //root of Top K list
43 Send partial global trace to rank 0;
44 end
45 end
46 if my rank == 0 then
47 Merge partial trace with Online Global Trace;
48 end
49 end
50 //All nodes;
51 Delete your partial trace;
52 end

costly operation with O(n2 log P ) complexity, where n is
the size of the PRSD-compressed intra-node event trace and
P is the number of processes. Our logarithmic algorithms
find the top K traces and change cost to O(n2 log K). Recall
that K is usually a constant value (e.g., 9 for stencil code).

The complexity of the K-Medoids algorithm is K3. Each
process in Chameleon at most consider 2K + 1 items for a



constant K. Therefore, the clustering part of Algorithm 3 has
the time complexity of O(nlogP ), once added, the online
inter-compression complexity is O(r× n2 log K), where K
is the number of lead processes, and r is the number of re-
clustering. Experiments in the next section show that both r
and K are small numbers for real-world applications.

IV. EXPERIMENTAL SETUP

We utilized a 108 node cluster computer to conduct
experiments. All machines were 2-way SMPs with AMD
Opteron 6128 processors with 8 cores per socket. Nodes are
connected by QDR InfiniBand. This is the largest platform
we were able to obtain access to at this time. We tested
Chameleon and “without clustering”, which is the default
version of ScalaTrace, for the NAS Parallel Benchmarks
(NPB), Sweep3D and the Parallel Ocean Program (POP).
Each experiment was run five times, and the average value
and standard deviation are reported. The aggregated wall-
clock times across all nodes for the mentioned benchmarks
is calculated and reported.

We conducted experiments with the NPB suite (version
3.3 for MPI) with class D input size [5] and Sweep3D
[17]. Sweep3D is a solver for the 3-D, time-independent,
particle transport equation on an orthogonal mesh. It uses
a multidimensional wavefront algorithm for “discrete ordi-
nates” in a deterministic particle transport simulation. In
our experiments, the problem size is 100×100×1000. The
Parallel Ocean Program (POP) [14] is an ocean circulation
model developed at Los Alamos National Laboratory. Our
experiments exercise a one degree grid resolution in which
the problem size is 896×896 blocks and the individual block
size is 16×16. ElasticMedFlow (EMF) is a generic frame-
work for representing and executing medical application
pipelines in parallel [4] with a master-worker paradigm with
mpi4py [8] (MPI for python) atop MPI. We created a sample
DNA prepossessing pipeline of 9 stages with problem size of
1000 patient datasets. For each patient, four DNA sequences
are read, i.e., 1000×4×9 tasks are spawned. We modified
mpi4py to support ScalaTrace and Chameleon.

V. RESULTS AND ANALYSIS

Table I depicts the number of clusters considered for the
experiments (determined a priori [2]).

Table I: # of Clusters for the Tested Benchmarks
Pgm BT LU SP POP S3D LUW EMF
K 3 9 3 3 9 9 2

Table II indicates the number of executed marker calls
over the entire program run (with the number of processes
indicated as (P) in parentheses). Notice that the number of
required clusterings is only one for all the tested bench-
marks. The number of times being in “Lead” state accounts
for over 70% over the total number of marker calls. This
percentage increases by increasing the number of marker
calls. Note, LUW denotes LU under weak scaling. (Note

that P for EMF represents one master process and P − 1
worker processes.)
Table II: # of Marker Calls, and # of times being in states
Clustering(C), Lead(L) and All Tracing(AT)

Pgm (P) # Iters. #Freq. #Calls #C #L #AT
BT(1024) 250 25 10 1 8 1
LU(1024) 300 20 15 1 11 3
SP(1024) 500 20 25 1 21 3
POP(1024) 20 1 20 1 16 3
S3D(1024) 10 1 10 1 7 2
LUW(1024) 250 25 10 1 8 1
EMF(126) 288 32 9 1 6 2
EMF(251) 144 16 9 1 6 2
EMF(501) 72 8 9 1 6 2
EMF(1001) 36 4 9 1 6 2

The results in Tables I and II show that P −K processes
were idle for more than 70% of the execution of markers.
Moreover, Chameleon did not use any of these P−K traces
in creating the online trace. Overall, this may result in a
reduction of energy, but still requires the idle processors to
wait for those that obtain traces in their place. (The impact
of Chameleon on space complexity and energy efficiency is
described at the end of this section.)

Observation 1: By obtaining traces only from the lead
process of each cluster, nearly no tracing overhead is
induced for the majority of processors.

Two experiments assess the accuracy and the overhead
of the proposed system. First, we contract the overhead
of “Chameleon” with “ScalaTrace”. Second, to verify the
accuracy of online traces by replaying Chameleon traces
and comparing its wall-clock time with that of ScalaTrace
and the application’s execution time (APP). All experiments
are run five times, and the average is reported in this section.
For these two experiments, the standard deviation is less
than 1% of the average values. The number of marker calls
is based on Table II.
A. Strong Scaling

Under strong scaling, the number of processes is in-
creased under the same program input. We assessed our
clustering algorithm on the NAS benchmarks and POP under
strong scaling. Figure 4 depicts three bars: (1) the non-
instrumented original application, (2) the execution over-
head of Chameleon and (3) the execution overhead of
ScalaTrace. The x/y-axes denote the number of processes
and execution overhead in seconds, respectively, the latter
shown on a logarithmic scale. The execution overhead
of ScalaTrace features just regular inter-node compression
performed in MPI Finalize. We observe that the overhead
of Chameleon is less than 50% of total program execution
time — in contrast to the original inter-node compression
of ScalaTrace, which sometimes exceeds the application
runtime for larger number of processes.

For EMF, intra-compression is extremely effective as it
reduces all MPI events to just 6 PRSD events. For such
small traces, ScalaTrace outperforms Chameleon for P <
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Figure 4: Execution Overhead for NAS benchmarks - Strong Scaling - Nodes/Tasks=1/16
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Figure 5: Replay Time of Traces - Strong Scaling - Nodes/Tasks=1/16

501 slightly, but for larger numbers of processes Chameleon
beats ScalaTrace (e.g., Chameleon takes half the time for
P=1000) due to higher communication cost at scale.

Observation 2: Chameleon has 2-3 orders of magnitude
lower overhead than ScalaTrace under strong scaling (ex-
cept for extremely small traces).

Irregular codes behave as follows: Irregular computations,
e.g., sparse matrix vector multiplies (SpMV), do not affect
communication and, hence, do not impact clustering (see
results for NAS CG, which uses SpMV in CSR format,
in [2]). POP experiences different data-dependent conver-
gence points in timestep computation, i.e., the number of
inner loop iterations varies across nodes. Hence, commu-
nication at this level occurs at irregular iteration points.
Chameleon can replay POP with only 3 clusters (i.e., the
number of Call-Paths). It utilizes the automatic filter from [2]
for call parameters so that the communication patter be-
comes regular and can be represented by 3 clusters.

To assess the accuracy of the trace files created by
the clustering algorithm, we utilized ScalaReplay, a replay
engine operating on the application traces generated by
ScalaTrace. It interprets the compressed application traces
on-the-fly, issues MPI communication calls accordingly,
and simulates computational overhead as sleeps [29]. We
enhanced this replay capability so that the trace of a single
node representing a cluster is also replayed by all other
nodes in the same cluster. These other nodes re-interpret
the single node trace and transpose any parameters relative
to their task ID automatically because ScalaTrace utilizes
relative encodings of end-points, while all other parameters
are taken verbatim from the lead process of the cluster.

The accuracy of the replay time for traces is defined as
ACC = 1− |t−t′|

t
where t is the replay time without clustering and t′ is the
replay time for clustered traces.



Figure 5 depicts the overall execution time, depicted in
seconds on a linear y-axis for (1) the non-instrumented
original application, (2) replay of a Chameleon trace and (3)
replay of a ScalaTrace trace for the same x/y axes as before,
but on a linear scale for the latter. Replay under Chameleon
for BT, SP, LU, POP and EMF is 97.75%, 95.5%, 91%,
89.75% and 87% accurate, respectively, relative to the
application runtime for all configurations, which also closely
resembles ScalaTrace’s behavior.

Observation 3: Chameleon’s clustered traces of lead
processes represent application execution time as accurately
as per-node traces with ScalaTrace under strong scaling.

B. Weak Scaling

Weak scaling typically involves scaling the problem size
and the number of processors at the same rate such that
the problem size per processor is fixed. (Weak scaling may
sometimes also refer to scaling the number of nodes at
the same rate as the memory footprint or computational
complexity of some algorithm, which we consider as well
in the following.). Figure 6 depicts execution overhead in
seconds on a logarithmic scale (y-axis) of LU and Sweep3D
for different numbers of processors (x-axis). Notice that
other benchmarks lack weak scaling inputs.

Observation 4: Chameleon’s clustering results in 1-3
orders of magnitude shorter execution time than ScalaTrace
under weak scaling.

Figure 7 depicts the overall trace-file replay time in
seconds on a linear scale (y-axis) for different numbers of
processors (x-axis). Similar to strong scaling, this shows that
the overall trace-file replay time under Chameleon for LU
and Sweep3D is 90.75% and 98.32%, respectively, relative
to application runtime over all configurations. Sweep3D
exhibits load imbalance, but this irregularity does not af-
fect clustering since delta times [27] are represented in
histograms for repetitive signatures.
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Figure 6: Execution Overhead - Weak Scaling Nodes/Tasks=1/16
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Observation 5: Chameleon’s clustered traces rep-
resent application execution time as accurately as
ScalaTrace under weak scaling.

C. The impact of Online Clustering

To better assess the behavior of online clustering,
we conducted four more experiments. First, we
assessed the fraction of execution time per cluster-
ing state relative to overall tracing cost (i.e., inter-
compression and marker calls). Figure 8 depicts
the amount of time Chameleon spent in each state
in seconds (linear y-axis) for different benchmarks
(x-axis) for both Chameleon (CH) and ScalaTrace
(ST). In this experiment, the number of marker calls
is equal to the number of timesteps (e.g., 300 for
LU, see Table II). The standard deviation over the
same number of experiments as before is less than
6% of the reported average execution time.

For EMF with P=1000, the tuple costs (clustering, inter-
compression) are (0.46%, 0.11%) for Chameleon and (0%,
0.53%) for ScalaTrace. We only report it in the text since it
would not be visible on the scale of the figure. We observe
that even for small compressed traces, inter-compression is
reduced significantly in Chameleon compared to ScalaTrace
under the maximum number of marker calls.

Observation 6: The overhead of Chameleon under the
maximum number of marker calls is an order of magnitude
smaller than that of ScalaTrace.
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Next, we assessed the impact of phase changes on the
overhead of Chameleon. The impact of marker calls on
the overhead of Chameleon is depicted in Figure 9 with
Chameleon’s overhead (linear y-axis) for different numbers
of marker calls (x-axis) for P=1024. The overhead maxes
out at 300, where Chameleon creates signatures at each
timestep. This overhead is still an order of magnitude less
than ScalaTrace’s.

According to the transition graph, if in every marker call,
there is a different Call − Path, then there would be no
clustering, and Chameleon stays in state “AT”. To maximize
the number of re-clusterings, the we can force state between
“AT” and “C”, i.e., such that at every other marker call a
phase change is simulated. To observe the overhead of re-
clustering, we modified LU such that for every 10 timesteps,
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Figure 9: Overhead vs. # Clustering Calls: LU Class D, P=1024
processes call a new MPI Barrier. This indicates a new
Call − Path and changes the program phase. Figure 10
depicts the overhead of re-clustering (linear y-axis) under
varying numbers of re-clusterings (x-axis) for P=1024. The
second solid bar represents ScalaTrace’s overhead. For LU
class D with 300 timesteps, the maximum number of re-
clusterings is 30 here (every tenth timestep). We increase the
number of re-clusterings gradually from 1 (i.e., the original
application) to 30. The standard deviation is less than 10% of
the average execution time. For the modified LU with 30 re-
clusterings and phase changes, the overhead of Chameleon
still is an order of magnitude less than ScalaTrace.
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Observation 7: In contrast to ScalaTrace, phase changes

are transparently captured by Chameleon while retaining an
order of magnitude lower overhead.

The slight increase in the inter-compression overhead for
Chameleon is due to the new MPI events added to the
original sequence. New events create a new Call − Path,
which prevent perfect matches and increase the size of the
trace, but only insignificantly in size.

We next assessed the impact of problem sizes on the
overhead of each state. Figure 11 depicts the overhead of
each state (linear (y-axis) for different problem size (input
classes A/B/C/D) and numbers of timesteps (x-axis) for both
Chameleon (CH) and ScalaTrace (ST) with P=256. We chose
P=256 because the problem size of class A is too small for
a larger P. The standard deviation is less than 8% of the
reported average time. the overhead of Chameleon increases
with the number of timesteps, where every timestep results
in a marker call. However, this overhead is still an order of
magnitude smaller than ScalaTrace’s across problem sizes.

Observation 8: Chameleon retains an order of magnitude
lower overheads irrespective of input problem sizes.

ACURDION clusters traces dynamically online. In con-
trast, Chameleon clusters traces only at MPI Finalize. Ta-
ble III shows the execution overhead under ACURDION
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Figure 11: Overhead per Method vs. Input Sizes, LU, P=256

vs. Chameleon. This experiment constrains the maximum
number of calls for Chameleon (to 250 calls for BT
Class=D). The results show that the execution overhead of
Chameleon is almost twice that of ACURDION even under
this maximum threshold for the number of calls.

Table III: Overhead[secs]: BT Class D
Pgm (P) 16 64 256 1024
ACURDION 0.08 0.14 0.32 0.74
Chameleon 0.13 0.33 0.57 1.76

D. Space Complexity

Our algorithm follows the same space complexity as the
Call− Path + Parameter clustering [1] at the inter-node
compression step. It reduces the space by 2-3 orders of
magnitudes on average compared to ScalaTrace. This is
because the number of processes involved in inter-node
compression is limited to a small (constant) number, K,
while without clustering imposes P participants.

Observation 9: Chameleon reduces intra-node compres-
sion space in contrast to related work, namely Call−Path+
Parameter clustering.

This benefit is due to the fact that non-lead processes do
not need to be traced in the “L” (Lead) state. Therefore, non-
lead processes do not need to generate traces in first place,
they simply rely on their cluster lead processes to do so.

Table IV indicates the allocated space of traces under
different states for BT Class D with P=256. Processes 0,
1, and 15 are lead processes. For the remaining 253 non-
lead processes, no extra space (0 bytes) is required for 197
calls as the follow the leader in their cluster. The average
space allocation for all processes under ACURDION as well
as non-clustering is 77, 687 bytes, i.e., in ACURDION, all
processes need to allocate memory for their traces because
clustering only occurs late at MPI Finalize. This shows that
only process 0 required more space (a 49% increase for the
global online trace), processes 1 and 15 required about half
the space (a decrease of over 54%), and all 253 non-leads
have significantly reduced space (%99 smaller than before).

VI. RELATED WORK

Bahmani and Mueller [1], [3], [2] proposed signature-
based clustering algorithms for ScalaTraceV2. Chameleon
significantly improves over this prior work by developing
a context-aware clustering framework that supports online
inter-node compression.



Table IV: Memory Allocation for Traces in Bytes for BT Class D
with P=256 - Three Lead and 253 Non-Lead Processes
BT(Class D) # Calls 0∗ 1 15 Non-Lead
All Tracing (AT) 2 96,140 96,140 96,140 96,140
Clustering(C) 1 144,244 43,336 43,336 43,336
Lead (L) 247 144,364 43,456 43,456 0
Finalize (F) 1 204,572 103,664 103,664 0
Avg. Per Call 251 115,461 35,459 35,459 939
∗ Node 0 allocates space for own trace + global online trace.

CYPRESS [34] is a communication trace compression
framework that combines static program analysis with dy-
namic runtime trace compression. It extracts the program
structure at compile time to identify critical loop/branch
control structures. They compared their result with Scala-
TraceV2. One of the main problems of CYPRESS is the
overhead of static and dynamic analysis while the combi-
nation of Chameleon does not have any overhead during
application compile time.

A density-based clustering analysis, proposed by Gon-
zalez et al. [20], [12], [11], can use an arbitrary number
of performance metrics to characterize the application (e.g.,
“instructions” combined with “cache misses” to reflect the
impact of memory access patterns on performance). Using
K-means clustering to select representative data for migra-
tion of objects in CHARM + + is an approach utilized by
Lee et al. [18] and [19]. Their clustering algorithms are
expensive in terms of time complexity, especially for large-
scale sizes. On the other hand, our work contributes a low
overhead clustering algorithm with O(logP ) complexity.

Phantom [33], a performance prediction framework, uses
deterministic replay techniques to execute any process of a
parallel application on a single node of the target system. To
reduce the measurement time, Phantom leverages a hierar-
chical clustering algorithm to cluster processes based on the
degree of computational similarity. First, the computational
complexity for most hierarchical clustering algorithms is
at least quadratic in time, and this high cost limits their
application in large-scale data sets [32]. Second, because
the paper focuses on performance prediction, it emphasizes
computational similarity and does not sufficiently cover
communication behavior.

HPCTOOLKIT [24] utilized statistical sampling to mea-
sure performance. HPCTOOLKIT provides and visualizes
per process traces of sampled call paths. A parallel clus-
tering algorithm based on CLARA [15] was proposed in
CAPEK [9] that enables in-situ analysis of performance
data at runtime. Even though the algorithm is logarithmic,
the process of clustering and creating the global trace
file is based on trace sampling. Sampling cannot produce
accurate data but rather represents a statistical and lossy
method. For instance, if the sampling frequency is too low,
results may not be representative. Conversely, if it is too
high, measurement overhead can significantly perturb the
application. In HPCTOOLKIT and CAPEK, the process of
finding an appropriate rate of sampling is also complicated.

In contrast to the above existing frameworks, including its
predecessors, Chameleon provides a full trace file without
resorting to sampling, and it does so at very low cost by
leveraging 64-bit stack signatures. Chameleon reduces space
allocation drastically for all P − 9 non-lead processes by
creating an online trace using only 9 lead processes and via
turning off tracing for non-lead processes.

VII. DISCUSSION

The proposed system has the following weaknesses that
we will consider in our future work, but are mostly engi-
neering:

(1) Marker insertion requires source code a modification.
For applications where the source code is not available,
one could insert the marker into binary files using binary
instrumentation, e.g., via Pin [21].

(2) Finding of a good location for inserting marker and
choosing an appropriate frequency call are open problems.
Even though the execution overhead under the maximum
number of marker calls is at least an order of magnitude
smaller compared to ScalaTrace, Chameleon puts the burden
of adding the marker and choosing the number of marker
calls on programmer. This could be automated in some
cases.

For iterative scientific applications (most scientific codes),
the main loop gets executed by all processes (and marker
insertion can be automated), i.e., processes might diverge
but only at finer granularity. For execution via asynchronous
tasks, a task-based method would be required and could
also be automated at that scope. Of course, today, few
applications exist that use asynchronous tasks in HPC.

VIII. CONCLUSION AND FUTURE WORK

Scalability is one of the main challenges of scientific ap-
plications in HPC. This paper contributes an online cluster-
ing algorithm with logP time complexity and low overhead.
The approach relies on grouping together processes with the
same execution behavior at interim execution points, e.g.,
at timestep boundaries of scientific codes. ScalaTraceV2’s
inter-node compression is performed online. The results
of our experiments indicate that our clustering algorithm
provides significant reductions in performance over Scala-
TraceV2 making it suitable for extreme-scale computing.
Our clustering algorithm is applicable to both strong and
weak scaling applications. We currently plan to leverage
the idle time for non representative processes at interim
execution points by utilizing dynamic voltage frequency
scaling (DVFS). This would reduce energy consumption and
make clustered tracing energy efficient as well.
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