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Abstract—Large-scale production systems are well known to
encounter node failures, which affect compute capacity and
energy. Both in HPC systems and enterprise data centers, com-
bating failures is becoming challenging with increasing hardware
and software complexity. Several data mining solutions of logs
have been investigated in the context of anomaly detection in such
systems. However, with subsequent proactive failure mitigation,
the existing log mining solutions are not sufficiently fast for real-
time anomaly detection. Machine learning (ML)-based training
can produce high accuracy but the inference scheme needs to be
enhanced with rapid parsers to assess anomalies in real-time. This
work tackles online anomaly prediction in computing systems by
exploiting context free grammar-based rapid event analysis.

We present our framework Aarohi1, which describes an ef-
fective way to predict failures online. Aarohi is designed to be
generic and scalable making it suitable as a real-time predictor.
Aarohi obtains more than 3 minutes lead times to node failures
with an average of 0.31 msecs prediction time for a chain length
of 18. The overall improvement obtained w.r.t. the existing state-
of-the-art is over a factor of 27.4×. Our compiler-based approach
provides new research directions for lead time optimization with
a significant prediction speedup required for the deployment of
proactive fault tolerant solutions in practice.
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I. INTRODUCTION

The research community has solved pertinent problems
related to failure prediction for enhanced system reliability.
Even for the contemporary HPC clusters such as Cray systems
(e.g., Titan, Trinity) unstructured log mining-based failure
characterization [1], [2] has been investigated. Be it system
failures, such as memory or DRAM errors [3], [4], hardware
failures [5], software bugs [6], GPU errors [7] or application
failures [8], the past decade has contributed to automated
system resilience via ML and gaining a better understand-
ing of system logs. Such field data analysis has revealed
interesting statistical properties of log events including failure
distributions [9], their spatio-temporal correlations [6], the
effect of temperature and power consumption on reliability
and performance [10] to identify how faults manifest that lead
to failures, their repair times, and root causes. Consequently,
ML- and deep learning (DL)-based anomaly detection solu-
tions have been formulated [11]–[17] incorporating techniques
such as clustering, SVM (support vector machines), PCA/ICA
(principal/independent component analysis), Bayesian models,
decision trees, signature extraction, and neural networks.

1Aarohi means ascending in the Sanskrit language. It personifies the gradual
event-wise progression towards successful failure prediction.

Fig. 1. Two Phase Failure Prediction

However, the efforts invested in unveiling the wealth of
information from ML-based studies will pay off only when
we take steps to build realistic frameworks for online failure
prediction such that the overhead of costly checkpoint/restarts
and wastage of compute capacity due to recalculations and
waiting is reduced. In the upcoming exascale era with a quin-
tillion (1018) floating point operations per second2, scaling the
proposed solutions to work efficiently is critical. Vendors are
expected to handle higher failure rates with decreasing mean
time between failures (MTBF) in the order of minutes [18].
Moreover, higher component density (e.g., 105 nodes with
GPUs and 1 TB RAM each), which require a shorter optimal
checkpoint interval [19], and constantly evolving system archi-
tecture [1] impose challenges for timely resilience in practice.

To this end, we propose Aarohi, an efficient node fail-
ure predictor that prevents impeding failures of computing
systems online and in real-time. Aarohi predicts failures by
analyzing logs on average in 0.31 msecs for a phrase chain
of length 18, i.e., a speedup of over 27.4× w.r.t. the existing
state-of-the-art [16], [20]. Our solution is applicable to any
ML-based pre-trained chain of events leading to a node failure.
Chain construction with precursory events of propagating
anomalies for failure detection has been demonstrated for
HPC systems [21]. Even with an improved precision [14]–
[16] obtained by ML-based solutions, the inference time
(not mentioned in some works [14], [22]) may not be short
enough to enable real-time prediction. This paper focuses on
transitioning from an offline trainer irrespective of its algorith-
mic complexity to a scalable, adaptive online predictor. This
predictor is automatically generated from the specifications
obtained during training and, due to this automation, even
may be dynamically updated if new training data becomes
available. Figure 1 shows the two phases of failure prediction.
First, the offline training phase of logs achieves high recall of
failure chains. Second, the online prediction phase strives to

2ECP: https://www.exascaleproject.org/what-is-exascale/



enhance the inference speedup while achieving sufficient lead
times to failure. This paper is not about Phase 1, Aarohi’s
novelty is in automatically generating an inference tool for
Phase 2 based on failure patterns identified in Phase 1.

II. BACKGROUND

Once failure indicators have been trained, inferring im-
pending failures from the new test data is not fast enough
to aid real-time prediction. Even though improved learning-
based solutions exist, practical deployment of such schemes
for successful online prediction requires fast mechanisms to
reduce the failure inference time for proactive fault tolerance.
As an example, DeepLog [16] and Cloudseer [20] incur 1.06
and 2.36 msecs, respectively, to check a single log message for
online detection using techniques of LSTM and automatons.
For a failure chain of length 10, they might require as much as
≈10.6 and ≈23.6 msecs, respectively. Yet log messages can
be as low as µsecs apart in time. Can we predict anomalies
any faster? To what extent? We address this challenge by
automatically generating an online predictor from training-
derived event patterns in an adaptive, generic and fast manner.

Challenges: While many failure prediction solutions have
been proposed, most of them cannot be used online [12] to
take timely proactive recovery actions (e.g., job migration [23],
process cloning [24]). Some of the hurdles for real-time failure
prediction in large-scale computing systems are:
1. ML-based schemes are effective offline trainers, but their
analysis speed is unsuitable for real-time failure mitigation.
Even with accurate learning and acceptable lead times to
failures, slow inference with insufficient speed may fail to
finish proactive actions before the fault freezes a component.
2. The pace of analyzing incoming event logs by the predictor
should be compatible to the inter-arrival times of the consec-
utive system logs (e.g., msecs or µsecs).
3. An online predictor should be reusable with evolving event
patterns and diverse system types. It should accommodate soft-
ware and logging paradigm variations with minimal overhead,
without receding efficacy over time. This is non trivial since
upgrades and new systems introduce new features [1] and
unseen log messages, thus new failure patterns emerge. Apart
from re-training, a robust predictor needs to be adaptive and
portable so that the core prediction scheme remains functional
and the approach becomes sustainable across systems.

Table I illustrates that there exist differences in logs obtained
from Cray XC versus XE systems. In fact, even within the
Cray XC series (XC40/XC30), different HPC sites can produce
different logs based on their specific hardware and software.
This elucidates that log upgrades are common, and even
similar systems belonging to the same family (IBM, Cray)
possess variations in their logs since they contain vendor-
specific templates [1] and feature diverse rates of logging.

Contributions: Aarohi automatically generates a fully un-
supervised parser from a DL-based training. It provides sig-
nificantly faster failure prediction via novel parsing of phrase
sequences. This paper makes the following contributions:
1. We propose an efficient predictor, which can proactively

TABLE I
LOG VARIATIONS

Features Cray XC40 Cray XE Cray XC30
Processor Haswell, KNL AMD Opteron Haswell,

IvyBridge
Burst Buffer, Yes, Slurm No, Torque No, Slurm
Job Scheduler
Interconnect Aries (DragonFly) Gemini (Torus) Aries (DragonFly)
System
Log Data

Controller (bcsysd),
Boot-logs, SEDC
differ from XE

Controller (syslog-
ng), Boot-logs, SEDC
differ from XC

Controller (bcsysd),
Boot-logs, SEDC
differ from XE

flag failures in online streamed test data using grammar-based
rules. The predictor works with trained failure chains, which
are confirmed patterns of node failures (derived in consultation
with experts and system administrators).
2. We describe the process for translating a set of failure chains
identified via ML for a system to a rule set. This is a generic
approach that can be adapted to any system (with specific
failure definitions) automating the process of rule generation.
3. We illustrate how our predictor adapts and incurs low
overhead for log variations across diverse system types demon-
strating robustness for cross-system portability.

TABLE II
SYSTEM LOGS

System Time Span Size Scale Type
HPC1 5 months 150GB 5576 nodes Cray XC30
HPC2 6 months 98GB 6400 nodes Cray XE6
HPC3 8 months 27GB 1630 nodes Cray XC40
HPC4 6 months 15GB 1872 nodes Cray XC40/30

Log Details: The system logs used for the study have been
obtained from 4 HPC systems. Table II enumerates the system
details including the duration of log collection, size and system
scale. These are production HPC clusters serving millions of
compute node hours. Offline training uses these logs to identify
node failure patterns for later online prediction. Once patterns
of failure chains are learned, we discuss how Aarohi infers
failures from the test data efficiently for proactive counter
measures to be completed before a node seizes to respond.

Node Failures: Aarohi predicts node failures. Node failures
are anomalous node outages caused by hardware, software
or application malfunctioning. We exclude intentional node
shutdowns that are maintenance related or periodic shutdowns
triggered by the operator. We further confirmed normal symp-
toms and abnormal ones, i.e., failed messages in the logs,
by consulting with the system administrators. Root cause
diagnosis and the intricacies of DL-based training are not the
main focus of this paper. We build on prior work that identifies
failure chains [20], [25]. The novelty lies in the second phase,
i.e., the automatic generation of the prediction engine.

III. ONLINE PREDICTION DESIGN

Figure 2 depicts the overall design of the failure prediction
scheme, Phase 1 for offline learning followed by Phase 2 for
online prediction. We briefly outline the offline training phase
(obtained from [25], see there for details) used before detailing
the online prediction scheme, which is our contribution.

DL-based Training (Phase 1): The following steps sum-
marize an LSTM-based approach to learn node failure chains:
1. The logs are trained using LSTM to learn the message



Fig. 2. Overall Design
Fig. 3. Aarohi Design

patterns based on the history of the training data.
2. The messages that are definitely not benign (e.g., er-
roneous or unknown) along with failed messages (e.g.,
cb node unavailable) corresponding to anomalous node shut-
downs are segregated a priori. Based on this phrase labeling,
sequences of events that lead to node failures are formed from
Step 1. The rest of the phrases are omitted from consideration
while forming the failure chains. Thus, we have node failure
chains (FCs) composed of anomaly relevant phrases.

Table III shows 6 phrases leading to a node failure (FC3 of
Fig. 3) of which P1, P5, and P6 are erroneous while the rest
are unknown. All messages are pertaining to a specific node
(e.g., c0-0c2s0n2), but the node identifiers are removed here
for brevity. For a specific node, Table III depicts the calculated
∆Ts in the 3rd column computed from the adjacent phrases.
We use the discussed LSTM-based training methodology [25]
for Phase 1. Notice that any learning technique will work as
long as the predictor can be fed with a sequence of coherent
phrases leading to failures, i.e., our approach is not dependent
on LSTM, rather it works generally for failure chains. For a
specific system, how a failure is defined, a chain is formed,
and what technique is used for deriving the chain may vary
and does not affect the predictor. Of course, higher accuracy
of the failure chains implies better prediction efficacy.

Predictor Design (Phase 2): The online prediction method,
Aarohi, consists of the following steps:
1. The incoming stream of log events with their timestamps
are scanned through regular expressions (RE) via the auto-
generated rules of the scanner. These phrases are tokenized
and the events that do not appear in any of the trained FCs
are skipped as those are of no interest to the predictor.
2. The parser consists of rules expressed in a context free
grammar (CFG), which are directly and automatically gen-
erated from the learned FCs (Phase 1). Incoming events are
checked against these rules to predict future failures. The rules
are formulated based on the message sequence and the time
difference between two adjacent events. The latter captures
the contextual relevance of events over time. This token-based
rule check is fast and is the source of our inference speedup.

For each node in the cluster, we dedicate a predictor
instance that processes messages of that node only (see Fig. 2).

The Token column in Table III illustrates the handling of
tokens corresponding to the timestamps and phrases. Figure 3
demonstrates how multiple rules of parsers are checked for
diverse FCs over a stream of log events. The CFG rules are
automatically derived from the learned FCs (e.g., FC1 - FC4).
The test data is tokenized, and phrases not appearing in the set
of learned FCs are removed (i.e., 142 & 146). Then, a specific
rule is selected based on the starting phrase (token match). The
sequence matches FC3 in Tab. III. This continues until one of
the two conditions are met: a) no more phrases are left in the
test data, or b) a match has been found. If a match is found
before the test data ends, the parser resets, beginning with the
first event phrase seen after the last phrase of the matched FC.

From Failure Chains to Rules: Table IV defines a CFG
G with a set of non-terminal symbols (N), terminal symbols
(T), start symbol (S), and production rules (P). The start
symbol is a non-terminal and leads to productions with leading
terminals of FCs. The context free productions (P) are a subset

TABLE IV
PARSER GRAMMAR

Notations Meanings
G = (N, T, P, S) LALR(1), 1 Lookahead, Start Symbol S
N Non-Terminal Symbols
T Terminal Symbols
P R=N∪T, P⊆R+ (Production Rules)
FC1 (176 177 178 179 180 137)
FC5 (172 177 178 193 137)
P FC S: (176 177 178 179 180 137)

| (172 177 178 193 137)
P LALR S→(176 C 137) | (172 C 137)

C→(B 179 180) | (B 193), B→(177 178)

of rules (R) that are formed as a union of non-terminal and
terminal symbols. We have 1 lookahead, i.e., every phrase in
the sequence is checked one at a time to decide on the parser
action and select a production. Figure 4 highlights certain
features of the observed sequence of phrases (FCs):
1. FCs usually have short subchain matches (e.g., 177 & 178
in FC1 and FC5), and they may end with a common failed
message (e.g., 7 in C and D).
2. The ∆Ts (time difference) between adjacent phrases are
usually < 2 mins. Figure 5 depicts the cumulative phrase
arrivals for nodes A and B on a log scale with inter-arrival
times in msecs. For A, 92.05% (278) phrase arrivals have ≤ 2



TABLE III
LOG MESSAGE PROCESSING

Timestamp Phrase ∆T (secs) Token
04:58:57.640 (T1) [Firmware Bug]: powernow k8: * (P1) E 0 <T1 174>
04:59:06.317 (T2) DVS: verify filesystem: * (P2) U 8.323 (T2-T1) <T2 140>
05:00:26.823 (T3) DVS: file node down: * (P3) U 16.506 (T3-T2) <T3 129>
05:00:51.669 (T4) Lustre: * cannot find peer * (P4) U 24.846 (T4-T3) <T4 175>
05:01:14.297 (T5) Lnet: critical hardware error: * (P5) E 36.372 (T5-T4) <T5 134>
05:03:24.403 (T6) cb node unavailable: (P6) E 130.106 (T6-T5) <T6 127>

Fig. 4. Chains
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mins ∆Ts (order of µ & msecs) in sample data of 302 phrases,
and ≈13 of them have ∆Ts ≥ 17 mins. For B, 98.6% arrivals
happen within ≤ 1.1 mins in sample data of 71 phrases. For
a single day, while B’s logs spanned across ≈3.5 hours, A’s
logs stretched ≈8.75 hours (hence, the higher count). Similar
trends are observed at other time frames for other nodes as
well. As seen, sometimes there exist steep rises in cumulative
arrivals for certain ∆Ts (e.g., A: 51 & 19, B: 9 & 11 arrivals
for ∆Ts of 25 & 26 msecs, respectively). The routing latency
from a remote service can cause intermittent delays in phrase
arrivals within a burst of messages from the same log source.
The filesystem or interconnect related delays can be caused
by various environmental factors. A defined timeout can help
identify unexpected delays during parsing (e.g., 4 mins when
93% of the phrase inter-arrival times are ≤ 4 mins) based on
such observed ∆Ts (checked by semantic actions).
3. Common subchains exist but the starting phrase is usually
different for FCs. Few common phrases or swaps (e.g., 2 & 4
in C and D) may occur in sequences of phrases over time.

The chain of terminal symbols leading to an accept state
is the distinguishing feature of any system-defined failures.
To clarify, we used failed message earlier to refer to typical
node shutdown messages (e.g., P6 in Table III). The chain of
terminal symbols of our grammar, G, refers to any relevant
message of an FC (e.g., 172, 177, . . . in FC5), not just the last
phrase of an FC (e.g. 177, 157, 127 of FC1 - FC4 in Fig. 3).
From these chains (e.g., FC1 and FC5 in Fig. 4), the non-
terminals are derived automatically by combining common
sequences of terminals (e.g., B→(177 178) of P LALR in
Table IV). Since prefixes and common phrases exist in failure
chains, we formalize our parser as an LALR(1) [26] grammar.
The derivation of grammar rules is shown in Table IV (P FC
and P LALR) for chains FC1 and FC5.

Tokenization: During failure inference, logs are processed
a single line (event) at a time and parsed adhering to the FC
templates from Phase 1. As an example, consider the following
two phrases from the test logs:

P1: DVS: verify filesystem: file system magic value 0x6969
retrieved from server c4-2c0s0n2 for /global/scratch does not
match expected value 0x47504653: excluding server
P2: pcieport 0000:00:03.0: [12] Replay Timer Timeout

The first input phrase is parsed until it reaches DVS:
verify filesystem:, which matches a template of a phrase
pertaining to some FC (e.g., P2 in Table III). The remaining
content has variable components, such as 0x6969, node id
c4-2c0s0n2, or directory path /global/scratch, none
of which are further considered. Based on this template match,
the corresponding token (say 140) is used for matching parser
rules. For the second phrase, pcieport. . . Timeout, the parser
checks up to the end of lexical rules, finds no match with any
FC-related template, and discards it. Raw log tokenization and
rule check-based inference are closely integrated in Aarohi,
unlike prior online log parsers such as Spell or Drain [27].
Similarly, the remaining templates of the FCs are considered
by parsing the tokens emitted by the lexer when receiving log
input and then used to flag predicted node failures.

Consider Figure 4 for a test input 128, 134. . . 4,. . . , 176.
The scanner discards phrases 128, 134 and similar unrelated
messages during tokenization since they do not match any of
the FC-related phrase templates. Next, phrase 172 matches the
starting phrase of FC5. Hence, that rule, 172, 177, 178. . . , is
checked. The parser continues until a mismatch is encountered
when it finds 4, another event that is tokenized as it occurs
in chains C and D, yet it expected 177 as the next token
(phrase) as per FC5. The parser skips such mismatches and
continues parsing until a ∆T-based threshold violation occurs,
or it reaches the end of test log. This is important as the test
data can contain messages not part of any FC. We transform
prefixes into a singular non-terminal production rule up to
the end of the common substring. Based on left-to-right token
matches, a matching rule is parsed until a rule is fully matched,
i.e., at token 193 in the example. A regular parser would exit
after reaching this accept state. Our parsing harness, however,
proceeds with the next token, 176, and invokes another instant,
in this case to check if rule FC1 matches.

Interleaved Rule Matches: In theory, an incoming set of
phrases can match any of the failure patterns recognized in the
past. This necessitates the need to simultaneously check for
multiple FCs because log events of a single node can match
a rule partially when tokens pertaining to another rule may
be encountered. Aarohi’s set of rules each match a unique
FC with the ability to start/stop an FC based on which event
(token) is encountered next. While evaluating a specific rule,
say FC5, during testing, the following cases may occur:



1. The first phrase of another rule (say 1 of C) matches the
incoming phrase, but the parser continues to check FC5. If the
test data does not match FC5 fully (only partially) but could
have matched C, then Aarohi misses this C-match, which could
result in a false negative. This is the case for any partial rule
match token-wise interleaved with another full rule match.
2. Tokens may be intertwined across rules, say by alternating
tokens from FC5 and C, such that both rules could be matched.
Here, only the first rule with a token match results in an
accept while the other rule is never parsed, also resulting in
a false negative. However, the first match already indicates a
failure and thus subsumes a subsequent failure during the same
time frame, i.e., the false positive of C is irrelevant for our
application scenario for these latent node failures. Notice that
there are no cases where this method results in false positives.

TABLE V
MULTIPLE RULE MATCHES

System Duration Missed
Rules

Interleaved #Nodes

HPC1 4 mons No Yes 23
HPC2 3 mons No Yes 19
HPC3 3 mons No Yes 15
HPC4 4 mons No Yes 20

In practice, we found that case 1 does not occur in the
inspected test logs (see Table V) but case 2 is seen, e.g.,
interleaved tokens from FC5 & C are observed. Although,
case 1 is theoretically possible, it was not observed because:
1. Healthy node events tend to present a mismatch for FCs
pertaining to failures. Unhealthy nodes experience a complete
match with FCs with only rare cases of interleaving. The
earlier a rule matches, the larger will be the remaining time
for proactive measures irrespective of future rule matches.
2. Our inspection shows that the first rule tends to match
fully, and later phrases do not tend to lead to cases with true
positives (i.e., complete FC match). Occasional interleavings
exist (Table V), but once a specific rule has been partially
matched, it tends to be safe to skip subsequent rules.

Table V provides empirical evidence of the absence of cases
where multiple rules match completely in close temporal prox-
imity (with interleaving) in our data. In the systems studied,
either unhealthy node logs do match the FCs or, once an FC
match starts, other interleaved FCs do not result in a false
negative. However, inherent in any training-based scheme,
dynamic re-training and regeneration of FCs is necessary if
a new failure pattern evolves over time in the test data. More
commonly, different nodes may fail simultaneously in time
when matching the same FCs, or a node may fail successively
over different time frames. This substantiates that our scheme
suffices, and that we are not missing imminent failures. Since
partial matches do not enhance Aarohi’s resilience capability,
we chose a simple, yet effective inference model implemented
by this parsing methodology.

Algorithm 1 enumerates the steps in automatically translat-
ing a generic set of FCs to parser rules. This translation is
performed offline, i.e., its time complexity is not the critical
path. Assume we have a set of FCs from the output of Phase
1 training for an HPC cluster. The distinct phrase templates

(e.g., Phrase column in Tab. III) encompassing all the FCs
are enumerated uniquely. Each phrase ID is then tokenized by
assigning (#5) a global token (e.g., {101 102 . . .} → {P1 P2
. . .}) forming a token list. Unique rules are formed with the
corresponding tokens (#6) based on the sequence of phrases
in the FCs, such as:

FC1: {123 135 . . . } → R1: {P23 P35 . . . },
FC2: {141 152 . . . } → R1: {P41 P52 . . . } . . .
With a similar single chain rule set (#8), recursive rules

(#15, #16) can be derived by substituting subchains (#14), if
any, between multiple rules. These subchains form the non-
terminals of the LALR(1) grammar (see P LALR in Table IV).

Algorithm 1: From FCs To Parser Rules
input : FC List
output: Rule List

1 T ← ∅, S ← ∅ // T ← Token List, S ← Rule List
2 foreach (FC ∈ FC List) do // Failure Chain
3 R← ∅
4 foreach (Phrase ∈ FC) do // Form Token List
5 if (Phrase 6∈ T ) then T ← T ∪ Phrase
6 R← R ∪ Phrase // Unique Chain Rule
7 end
8 S ← S ∪R // Rule List from Unique Rules
9 end

10 // Derive LALR(1) Rules from Rule List S
11 foreach (V ∈ S) do
12 foreach (U ∈ S) do
13 if (V 6= U) then // Substitute Subchain
14 foreach (C = Subchain(U, V )) do
15 V ′ ← head(V ) ∪ C ∪ tail(V )
16 U ′ ← head(U) ∪ C ∪ tail(U)
17 S ← (S \ {U, V }∪{U ′, V ′}) // Update S
18 end
19 end
20 end
21 end

Algorithm 2: Aarohi Prediction
input : Test Data, Token List T & Rule List S from Algo. 1
output: Matched FC Rule

1 // Online Inference
2 while (Test Data6= NULL) do // Incoming Phrase
3 Parse(Test Data) // Call the parser
4 end
5 // Parser Rules
6 Token← Phrase // Tokenize
7 if (Token ∈ T) then return Token + Arrival Time

// Relevant Token
8 else Skip Token (not relevant)
9 R+ ← S // Rule List, e.g., R1

10 P1 error P2 error P3. . .← Sequence Matched Rule 9
11 if (∃ error) then // Mismatch while parsing
12 if (∆T≤Timeout) then Skip Token, Continue
13 else Reset after Current Token #P // Restart
14 end
15 if (Test Data6= NULL) then // On a Reset
16 Parse(Test Data) // Start after Token #P
17 end

Algorithm 2 encapsulates Aarohi’s operation during test
data inference. Once the parser is invoked, each phrase in the



Fig. 6. Offline Training to Online Testing

test input is tokenized (#6) to check if it matches any of the
tokens of the Token List generated from Algorithm 1. On a
match, the token with its arrival time is sent to the parser (#7),
else it is irrelevant and discarded (#8). For parsing, the Rule
List obtained from Algorithm 1 is used with suitable semantic
actions (R+, #9, #10) such as:

R1: {P23 P35 P45 . . . }, R2: {P41 P57 P62 . . .} . . .
For the first match, an incoming token matches with one

of the rule’s first token (say rule R1), and that (R1th) rule
is checked. On an error (i.e., incoming token differs from
expected token), if the difference between the current time
and the last matched token’s arrival time (∆T) exceeds a
predefined threshold, the parser aborts (#13), else it contin-
ues (#12), because, in practice, inordinate delays between
incoming phrases of known failure chains do not belong to
the same failure pattern. Similar semantic actions continue
until a reset is triggered or no more phrases are left in the
test log. Skipping tokens (#12) is essential for rule checking
to discard the non-relevant phrases in between FC-related
phrases. Multiple rule matches may occur back-to-back in
an input stream. For any remaining unprocessed phrases in
the test data, the online prediction continues from the phrase
appearing after the last phrase of rule R1 in the Test data (after
a match, #10) or the last processed token before reset (#13).
This heuristic’s complexity is linear in input size (i.e., log file)
and, together with grammar-based parsing, aids in Aarohi’s
inference speedup w.r.t. the existing detection schemes.

Figure 6 summarizes the workflow to facilitate transitioning
from offline training to online prediction for any system. Phase
1 produces FCs, which, when run with Algo. 1, produce parser
rules. Algo. 2 with equivalent grammar rules, appropriate
error handling, and semantic actions (R+) produces the binary.
Aarohi is then run with new test data for online prediction.

IV. EVALUATION

Aarohi is implemented using the flex/bison parser in C++.
Our FCs contain sparse subchain matches for which non-
recursive chain rules suffice. Aarohi’s token handling ensures
continuation of parsing by skipping unexpected phrases in the
test stream with appropriate semantics. Parsing performance
is reported for an Intel quad core processor running at 2.83
GHz. For all the systems, the test log data used for prediction
is different from the training data used for learning the FCs.

We report prediction times, i.e., the time taken to check if a
variable length sequence of phrases (not a single log message)
matches any of the FCs. The inference times are obtained
with compiler optimization level O3 enabled and trace output
for debugging disabled. From the timestamped node failed

TABLE VII
EFFICIENCY FORMULAE

Formula Implication
Recall(%)=TP/(TP+FN) Fraction of node failures

correctly identified
Precision(%)=TP/(TP+FP) Fraction of node failures predicted
Accuracy(%)=
(TP+TN)/(TP+FP+FN+TN)

Fraction of correct
predictions in the entire set

False Negative Rate
FNR(%)=FN/(TP+FN)

Rate of missed failures

True Positive (TP) Correctly predicted failures
True Negative (TN) Correctly rejected as not failures
False Positive (FP) Incorrectly predicted failures
False Negative (FN) Incorrectly rejected as not failures

message in the test data to the event phrase at which the
predictor flags match, we compute the expected lead times to
imminent node failures. Aarohi’s evaluation metric is speedup
over accuracy in the context of real-time failure prediction.

Table VII lists the standard efficiency metrics with their
formulas. The terms are defined in the context of node
failures. Figure 7 shows recall, precision and accuracy
obtained in Phase 1. For the considered node failures in each
of the 4 systems, the false negative rate ranges from 5 to
17.6%. This does not affect the prediction times in Phase 2,
but it is indicative of the efficacy of FC-based rules used for
inference. The precision exceeds 86% in all cases.

Observation 1: Recall, precision, and accuracy exceed 86%,
88%, and 80%, respectively, across all 4 systems with a
moderate false negative rate below 18%.

Prediction Time: Figure 8 shows the prediction times of
9 phrase chains. The test data contains phrases that exist in
some FC. In this case, the parser skips a token on a mismatch
unless any of the termination conditions are met. Aarohi takes
0.18 msecs to 0.6 msecs for chain lengths ranging from 5 to
50 with a std. deviation ≤ ±0.068 msecs. Figure 9 depicts the
prediction times with log messages that include benign phrases
that are not part of any FCs (as they appear in the test logs).
These get discarded by the scanner without tokenization. In
such a case, Aarohi obtains inference times ranging from 0.17
to 0.56 msecs with a std. deviation ≤ ±0.065 msecs. This is a
realistic case containing many benign phrases and some FC-
related phrases. These times are comparatively lower than the
former because, in the previous case, all phrases are tokenized
but later skipped by the parser during rule checking.

To understand the variation of inference times over
different CPU architectures, for increasing chain lengths, we
ran experiments on Intel Quad Core, Xeon, Xeon Silver and
AMD Opteron platforms. Figure 10 shows that Opteron takes
more time than the Intel platforms, however, with increased
number of phrases the difference in prediction times between
Xeon, Xeon Silver and Opteron is less than 2 msecs. Overall
the std. deviation do not exceed ±0.67 msecs. Please note
that an increase in chain length or number of log messages
in a sequence do not necessarily indicate higher prediction
times. The individual phrase size varies (e.g., P1 & P2 under
Tokenization) along with the proportion of FC-related phrases.
This is why Aarohi checks a 302-length chain in less time
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TABLE VI
SPEEDUP

Approach Prediction Times (msecs)
Chain Lengths

1 10 50 128 302
Aarohi 0.05 0.205 0.556 1.427 1.1904
Desh 0.12 1.856 8.761 19.356 32.681
DeepLog 1.06 10.6 53 135.68 320.12
CloudSeer 1.81 18.1 90.5 231.68 546.62

than one of 128-length (see Tab. VI). The former contained
long phrases in most lines unlike the latter, which had short
phrases including call traces. Figure 11 shows the difference
in prediction times with & without O3 optimization. For
a 302-length chain, 58.96% improvement is observed (2.9
msecs to 1.19 msecs). For a stream of 7443 messages, with
& without O3 flag takes 45 msecs and 77 msecs, respectively.
Their corresponding message sizes vary between 4K & 712K.

Observation 2: Aarohi obtains less than 11 msecs inference
times across diverse CPU platforms. Such a compiler
optimized approach enables rapid inference for diverse chain
lengths with varying message sizes. Speedup is not linear
w.r.t. the chain length or message size, hence, per log entry
times are not appropriate indicators of time complexity.

Recent anomaly detection solutions [16], [20], [25] report
the testing times of a single log entry. Cloudseer [20],
Desh [25] and DeepLog [16] are suitable candidates for
comparison since they employ contemporary techniques,
such as automatons and LSTMs for log sequence analysis.
Other ML-techniques are expected to consume more time.
Aarohi’s metric is a chain of messages, as opposed to a
single anomalous message. Table VI highlights that Aarohi
is considerably faster than Desh, DeepLog and Cloudseer for
increasing chain lengths. Lack of similar system logs and
source code make an exact comparison difficult. However,
by actually implementing Desh (as in the paper), we
obtained 2×-27.4× improvements. Also, the reported times
in DeepLog and CloudSeer are for single log entry checks
pertaining to anomalous messages. Moreover, it is not clear
if raw log tokenization time has been accounted in prior
work. Differences in speedup become higher and discernible
with increasing chain lengths. For a 302-length chain Aarohi
is 27.4× faster than Desh (32.68 msecs to 1.19 msecs).

Python-based frameworks with ML-libraries are slow runtime
interpreters compared to C++, facilitating Aarohi’s speedup.

Observation 3: For chain lengths 1 to 302, Aarohi is over
27.4× faster than the current state-of-the-art approaches
underlining Aarohi’s potential for real-time failure prediction.
The speedups increase with increasing chain lengths.

Figure 12 shows the fraction of phrases in the test data that
correspond to some FC across all the systems. As seen, most
phrases are dissimilar to FC-related phrase templates. As
healthy node logs dominate, their phrases are not part of any
FCs. The percentages of phrases pertaining to any FC-related
token range from 29.81% to 46.72%. This determines the
portion of messages discarded during lexical scanning.

Observation 4: The fraction of FC-related phrases eventually
tokenized are below 47% in the test data indicating that only
a minor fraction of log events need to be tokenized and then
parsed during online log analysis.

Lead Time Sensitivity: Figure 13 depicts the lead times
obtained for 10 FCs before the terminal message appeared in
the test data. The last phrase matched in the FC corresponds
to a timestamp, which is subtracted from that of the eventual
node failure message to compute the lead times. Similar lead
times are obtained for other node failures. These node failures
correspond to chains of length 5 to 50. With prediction times
below 0.65 msecs, we can obtain effective lead times (with
prediction times deducted) higher than 3 minutes. This means
that for failure F5 in Fig. 13, suitable mitigation action can be
taken in 3.24 mins (3.245-0.00001). The average lead time is
more than 2 mins for node failures across all the 4 systems.
The chain lengths do not affect the lead time. However, the
∆Ts between the log messages affect the lead time. Shorter
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∆Ts in the sequence matched in a FC lead to shorter lead
time since the upcoming terminal message is immanent.
That does not imply that longer ∆Ts indicate higher lead
times. ∆Ts are a refinement to prevent false positives during
inference rather than to increase the lead times to failures.

Observation 5: With Aarohi, effective lead times to failures
are >3 mins with an average of 2 mins. Prediction times are
<11 msecs for 3820-length. Early prediction is required to
leave sufficient time for failure mitigation approaches (e.g.,
process migration) before a node stops responding.

Cross-System Comparison: Figures 14 and 15 depict the
avg. lead times and prediction times of node failures across
all the systems. While the lead times exceed 2 mins, the avg.
prediction times are less than 16 msecs for over 100-length
chains. The std. deviation of prediction times is ≤ ±2.3
msecs, which is higher than in Fig. 9. This variation is caused
by the diversity of node-specific test sequences on different
systems w.r.t. their corresponding FCs. The avg. lead time
is ≈2.74 mins with a moderate std. deviation of ≤ ±1.16 mins.

Observation 6: Aarohi obtains > 2.3 mins avg. lead times to
node failures with an avg. prediction time of no more than 16
msecs across systems. The std. deviation of prediction times
are higher across systems than over different failure patterns
of similar chain lengths. This is due to significant variations
in the test sequences w.r.t. the FCs across systems.

Comparative Analysis: Apart from DeepLog [16], Desh
and Cloudseer [20], whose testing times are compared with
Aarohi, several other researchers have studied failure pre-
diction. Table VIII illustrates that most solutions do not
perform lead time analysis [13], [14] w.r.t. the prediction
time. Approaches such as GA [28], SVM, clustering etc. are
not effective for online prediction in contemporary systems
since they are intractable with scale. Klinkenberg et al. [22]
obtain higher lead times for known node soft lockups through
supervised classification, unlike generic inference of Aarohi.
Although past work stresses on building online solutions [15],
[28], lack of expeditious prediction mechanism pose deficien-
cies in practice. Aarohi’s contribution can be effective for both
cloud and HPC systems for proactive fault management.

Adaptability: In the production HPC clusters, the following
cases are prevalent (see Table I discussion):
1. Systems of different generations have syntactically different
but semantically equivalent logs (e.g., Cray XE vs. XC40).
2. Systems of the same generation with dissimilar h/w or s/w
have syntactic log variations (e.g., Cray XC30 vs. XC40).

3. Software is updated on a given system after a period of time,
which changes the log’s syntax (e.g., several Cray systems
upgraded to Slurm from Torque as their job scheduler or
incorporated burst buffers, an intermediate storage layer).

In face of such software upgrades or log variations, phrase
re-mappings and rule updates can suffice, without changing
the overall workflow of Aarohi. Tab. IX lists 6 phrases from
4 diverse clusters of which 2 are HPC, namely a Cray XK*
and a BlueGene/P, and 2 are distributed (DS) systems, namely
Cassandra and Hadoop. The DS logs correspond to 2 applica-
tion bugs3. In practice, DS logs do not have node identifiers
in every log message as the logs are application-centric. Upon
prior preprocessing and correlation specific to any system with
its failures, we discuss Aarohi’s generic adaptability.

Phase 1 training is necessary for every system. This step is a
prerequisite before our predictor adapts to new FCs. As seen,
certain BG/P phrases have similar meanings as Cray logs (e.g.,
P6 in BG/P). In such cases, phrase mappings can be updated
in the scanner (e.g., XC: 7→cb node unavailable, changes to
BG/P: 7→node system halted) without any change in grammar
rules. While some phrases remain the same (e.g., P4 & P5
in XK & XC), few undergo minor changes (e.g., heartbeat
failures for Cray XK & XC). The scanner thus requires
minor updates. However, for Cassandra4 and Hadoop5, the FCs
change due to major log variations. Since it is not enough
to update the mappings as the context differs, the scanner
produces new tokens and the rules have to be reformulated
with the new phrase identifiers (e.g., P1 to P6 in Tab. IX).

Discussion: Let us discuss a number of important consid-
erations for real-time failure prediction.

(1) Predictor Placement: One pertinent question arising
in a large-scale cluster is: Where can an online predictor be
located for efficient failure handling? Figure 16 depicts the
high-level overview of HPC vs. data center facilities. Cray
systems utilize an HSS manager (hardware supervisory sys-
tem) to administer the chassis/blade controller that manage the
compute/service nodes. Nodes link to the System Management
Workstation (SMW) via managers to collect system logs from
the cabinets. Aarohi can be placed on the HSS network, an
aggregate workspace over the entire interconnect where logs
are accessible. This helps in two ways. First, daemons running
on compute nodes can affect the jobs running on the cluster.

3Cassandra & Hadoop logs were generated in the lab after bug reproduction,
HPC 5 & 6 logs were obtained from researchers who used them in the past.

4Cassandra: https://issues.apache.org/jira/browse/CASSANDRA-
11050?attachmentSortBy=fileName

5Hadoop: https://issues.apache.org/jira/browse/HADOOP-1911



TABLE VIII
COMPARATIVE ANALYSIS OF AAROHI

Research Approach Unsuper- Lead Time Test Time Online Target Objective
Solutions vised (mins)
Zheng et al. [28] Genetic Algorithm (GA) No 2 to 10 N/A X BG/P Failure Prediction
Hora [15] ARIMA (Autoregression) No 10 98 predictions/2 mins X Netflix, non-HPC Mem Leak/Node Crash
Fu et al. [14] Episode Mining No N/A N/A × Hadoop/LANL/BG/LRoot Cause Diagnosis
Berrocal et al. [13] Void Search, PCA No N/A 4 secs/node × BG/Q Fault Prediction
DeepLog [16] LSTM No N/A 1.06 msecs/log entry X OpenStack, BG/L Anomaly Detection
CloudSeer [20] Automatons, FSMs N/A N/A 2.36 msecs/log entry X OpenStack Anomaly Detection
Klinkenberg et al. [22] Supervised Classifiers No 17 & 22 N/A × HPC Cluster Node Failures
Aarohi Compiler-based Yes 3 0.31 msecs/(length-18) X Cray-HPC Node Failures

TABLE IX
AAROHI ADAPTABILITY

# HPC Systems Distributed Systems (DS)
HPC5 (Cray-XK*) HPC6 (IBM-BG/P) Cassandra Hadoop

P1GPU* PMU com-
munication error

MMCS detected er-
ror: power module

Unable to lock
JVM memory

No node avail-
able for block

P2L0 heartbeat fault Network link errors
detected

Server running in
degraded mode

Could not obtain
block*

P3Voltage Fault Node DDR correctable
single symbol
error(s)

Not starting
RPC server as
requested

DFS Read: java
IOException*

P4Machine Check Ex-
ception (MCE)

Kernel panic: soft-
lockup: hung tasks

No host ID found No live nodes
contain current
block

P5Kernel Panic, Call
Trace

Kill job * timed out Exception in
thread Thread*

DFSClient:
Failed to connect

P6GPU* memory
page fault

Node System has
halted

Exiting: error
while processing
commit log

NameNode: shut-
down msg:

Moving away from the compute nodes can eliminate any
possible impact on the job resource consumption. Second, if
resources are scarce or load imbalance arises due to heavy
workloads, the overall cluster computation has less impact.

Fig. 16. Predictor Placement

In data centers, the aggregation layer is a centralized moni-
toring and processing layer, which performs batch or real-time
streaming of data (e.g., Google Cloud Platform [29]). The data
centers commonly assume a multi-tier model unlike the server-
cluster model of HPC systems, making the design of a global
predictor non-trivial. For a data center with 1000s of compute
nodes, aggregating logs from all the hosts to a centralized
location could throttle the network bandwidth, depending on
the switch capacity and the network topology. Every physical
host running diverse virtual machines and monitoring its own
health can facilitate application-centric anomaly detection, but

remains less effective for node failure prediction. Further
deployment experiences, subject to future work, can unveil
insights about addressing such practical concerns.

(2) Proactive Recovery Actions: We mentioned that en-
hancing inference speedup can aid proactive recovery actions
such as quarantining unhealthy nodes [6] and cloning [24].
While Wang et al. [23] show live migration times <24 secs,
Ouyang et al. [30] demonstrate that process migrations can
be completed in 3.1 secs (10× speedup over conventional
approaches). Adaptive lazy checkpointing [19] can also aid
mitigation. Shutting down or preventing future job assignments
onto flagged unhealthy nodes can prevent future failures. In
<16 msecs prediction time, and >2 mins effective lead time,
such proactive solutions become feasible in most cases.

V. RELATED WORK

Scientists have investigated anomalies in large-scale com-
puting infrastructures across diverse research directions.
HTM [31], Drain [32], [27], [33] and Spell [34] are parsers
developed for online streaming logs. Recent DL model com-
pression or parallel ML [35], [36] techniques are aimed at
performance optimized training with large datasets as op-
posed to real-time testing of an incoming phrase. Besides,
they may require specialized hardware or software support
to reap parallelization benefits, incurring high computational
costs. It is worthwhile to develop a simpler, more flexible
scheme for clusters such as Aarohi. While [11]–[15], [17],
[21], [22] have concerted efforts in predicting HPC failures,
LogLens [16], [37], [38] have similar objectives in distributed
systems. Whether offline or online, they either use ML-
techniques [39] that are not scalable with a simpler failure
model [40] or do not perform inference time analysis. REs,
FSMs and CFGs have been used in the past [20], [41]–[43]
for different contexts. However, prior work have not addressed
generic machine translation of FCs. Moreover, their premise
(application profiling, fault injection, source code reference) is
considerably different from our chain-based failure prediction.
Aarohi goes beyond these works by closing the manual trans-
lation gap between FC identification by ML and fast parser-
based inferencing. Aarohi automatically generates lexing and
parsing specifications for a language of FCs suitable for online
prediction, which would also allow itself to be deployed
in unsupervised dynamic re-training and re-generation of a
new parser for enhanced FCs as they are being observed.
Overall, Aarohi obtains prediction times low enough to provide
effective lead times to failures, which is of primary concern.



VI. CONCLUSIONS

This paper proposes an online node failure predictor called
Aarohi for HPC systems. The observed inference speedup is
over 27.4× w.r.t. some known state-of-the-art approaches. This
expeditious predictor provides runtime support for ML and
obtains as high as 3 mins effective lead times considering
prediction time. Aarohi demonstrates the feasibility of an auto-
generated inference scheme based on parsing logs resulting in
a speedup over prior methods. Additionally, it gives insights to
log variations across systems and highlights the requirement
of adaptability for sustainable prediction schemes.
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