
Systemic Assessment of Node Failures in HPC
Production Platforms

Anwesha Das1, Frank Mueller1, Barry Rountree2

1North Carolina State University, adas4@ncsu.edu, mueller@cs.ncsu.edu
2Lawrence Livermore National Laboratory, rountree4@llnl.gov

Abstract—Production HPC clusters endure failures reducing
computational capability and resource availability. Despite the
presence of various failure prediction schemes for large-scale
computing systems, a comprehensive understanding of how nodes
fail considering various components and layers of the system is
required for sustained resilience. This work performs a holistic
diagnosis of node failures using a measurement-driven approach
on contemporary system logs that can help vendors and system
administrators support exascale resilience.

Our work shows that external environmental influence is
not strongly correlated with node failures in terms of the root
cause. Though hardware and software faults trigger failures, the
underlying root cause often lies in the application malfunctioning
causing the system to fail. Furthermore, lead time enhancements
are feasible for nodes showing fail slow characteristics. This
study excavates such helpful empirical observations, which could
facilitate better failure handling in production systems.

Index Terms—Root Cause, Node Failures, Holistic Analysis

I. INTRODUCTION

Powerful supercomputers require high availability to run
scientific applications, enabling researchers from diverse tech-
nical domains to address grand challenges in computational
simulations. As engineers are designing efficient exascale
nodes, current computing platforms require robust failure
handlers to keep up with system scale, density, software
complexity and computational speed. This necessitates the
need for proactive solutions that can flag ahead of time
an impending component failure. Before failure mitigation,
having a better understanding of how failures materialize is
essential. Recent research on log mining-based failure charac-
terization [17], [34], prediction [9], [24] and recovery [6] have
revealed helpful insights to address failures in HPC. The time
elapsed between failure manifestation and the timestamp of the
precursor log message when an impending failure is flagged is
defined as the lead time. Proactive fault tolerant solutions [9],
[24] when supported by root cause diagnosis can improve lead
times and help in responding to both manifested or imminent
failures effectively. Prior studies on failure evaluation [11],
[28], [39] either provide a high-level categorization of faults
with limited systemic correlations or lack effective analysis for
proactive resilience [20] that can ameliorate the failure impact
with an effective fix. Root cause analysis of any complex
system requires awareness towards the events encountered by
its components. While researchers have focused their attention
on specific components [3], [25] and interfaces depending
on their target problem, answering how compute nodes fail

needs a more integrated approach towards correlation-based
log mining. Our methodology adopts a system-wide view to
track causes of node failures prevalent in computing systems.
Our work is novel in that it considers system environment con-
ditions along with inter-component dependencies to increase
lead times to failures boosting failure prediction schemes.

Background: The current state-of-the-art lacks in the fol-
lowing aspects for better fault tolerance in HPC:
1. While few studies consider the full software stack to
design resilient systems conforming to the vision of cross
layer resilience [7], various system layers (software [17], hard-
ware [41], application [29]) are often studied separately with-
out exploiting their correlations during causal analysis [13].
2. Diverse system components affect each other (e.g.,
GPU [31], SSD [3], DRAM [5]). Focusing on a specific
component in isolation provides a local view, yet lacks a
global perspective. As an example, analyzing SSD failures [3]
w.r.t. workloads separately may miss indicators in event logs
generated elsewhere. In the context of root cause, having
an understanding of how much these components correlate
in failure manifestation can prevent recurring faults and re-
investigations, thereby reducing unnecessary overhead.
3. Once a failure manifests, corrective actions need to be
enhanced (e.g., failed interconnect failovers [22] exacerbate
failure recovery). A deeper understanding of how failures hap-
pen (beyond spatio-temporal traits [11]) can aid in choosing
the appropriate curative action for long-term system health.

This work investigates causes of node failures considering
software, hardware, and application malfunctioning across di-
verse components, with recommendations for effective system
health checkers for applicability in practice.

Challenges: The following impediments make root cause
analysis challenging but important for computing systems:
1. Events occurring transiently may not get manifested as logs.
Moreover, production logs occasionally contain missing (spe-
cific time duration) or partial information (absence of certain
environmental logs) due to logging discrepancies. Deciphering
transient faults that lead to cascading failures is non-trivial.
2. Components can exhibit fail-slow characteristics, different
from fail-stop behavior [16]. The analysis of the former is
important to assess predictable lead times.
3. Additional inputs may be required from operators to un-
derstand the implications of low-level system logs in order to
analyze the root causes of failures accurately.

After the detailed failure analysis studies on Blue Wa-

TABLE I. HPC System Details
System Duration Log Size #Nodes Type Interconnect Job

Scheduler
FileSystem/OS Processors GPUs/

Burst Buffer
S1 10 mons 373GB 5600 Cray XC30 Aries Dragonfly Slurm Lustre/SuSE IvyBridge ×
S2 12 mons 150GB 6400 Cray XE6 Gemini Torus Torque Lustre Haswell ×
S3 8 mons 39GB 2100 Cray XC40 Aries Dragonfly Slurm Lustre/SuSE Haswell Burst Buffer
S4 10 mons 22GB 1872 Cray XC40/XC30 Aries Dragonfly Torque Lustre/CLE Haswell/IvyBridge Burst Buffer
S5 1 mon 3.1GB 520 Institutional Infiniband Slurm Lustre/RedHat Haswell GPUs

ters [28] and Titan [34] for contemporary HPC systems, this
paper investigates how node failures happen with beneficial
insights to their reasons. Unlike prior works [27], [34] on a
single Cray system considering manual failure reports [11],
[28], our diagnosis is purely log-based from five different
production sites with no human written reports. Similar to
several past statistical analyses [11], [20], our study did find
cases that cannot be analyzed further because of insufficient
data in logs to determine a root cause decisively.

Contributions: This paper answers the following questions
to enhance resilience in HPC systems:
1. Are there spatial or temporal correlations amongst failed
nodes w.r.t. similar root causes?
2. How much do the environmental factors (e.g., heartbeat
faults, temperature violations) directly influence node failures?
If there exist early external indicators, can the lead times be
enhanced considering the same?
3. What faults do not lead to failures? Under what conditions?
4. How do applications executing on nodes contribute to fail-
ures? While jobs fail because of node failures, jobs can trigger
nodes to fail as well. Is there any presence of temporal locality
for the failed nodes running the same specific application?

Past works [11], [28], [34] have performed high-level char-
acterization of potential root causes without analyzing the
external influence over correlated failures. These investigations
viewed failures in isolation with limited causal diagnosis. In
contrast, we adopt a global view. To summarize, our work
makes the following contributions:
•We diagnose compute node failures across five HPC systems,
four of which are well used production clusters, incorporating
environmental correlations. We provide estimates of com-
monly occurring faults not leading to anomalous shutdowns.
• We quantify lead time enhancements if feasible using the
external indicators for the failed nodes.
•We analyze job attributes on failed nodes to drill down to the
root cause, apart from spatio-temporal correlations. Based on
the insights we obtain from such system-wide measurements
we discuss their implications for enhanced system health.

II. PRELIMINARIES

Table I entails the characteristics of peta-scale HPC clusters
whose logs have been analyzed. As evident, four out of five are
Cray systems of substantial scale, all used heavily for various
scientific applications. We have briefly mentioned the system
configuration details to provide a clear description about the
log sources. The time line of the logs spanned across 3 years
(2014 to 2016). S5 is a small scale institutional cluster with
a local file system using an Infiniband interconnect, unlike

the rest. We did not have external environmental logs for S5,
we discuss our findings on 4 weeks data, only to quantify
application-based failures compared to the other machines.
Apart from S2, which has Gemini interconnect, all the Cray
systems use Aries, with a Lustre file system. While S1, S3
and S5 use Slurm as their job scheduler, the rest use Torque.

TABLE II. Log Data Details
Node Logs Content Description
Internal console/messages/consumer (p0-directories)
External controller/event (ERD)/SEDC/Slurm/Torque

Table II depicts the major portions of the logs consulted for
this study. The compute node internal logs (console, consumer,
and messages) in the p0-directories are used to obtain the
node-specific events on Cray systems. Log messages pertain-
ing to blade, cabinet, and environmental data are analyzed
using controller and event router daemon (ERD) logs. These
contain SEDC (System Environmental Data Collections) warn-
ings and additional hardware fault alerts to aid failure analysis.
The job scheduler logs from Torque or Slurm are analyzed to
investigate job-based failures. We have published sample logs
used in this study at https://doi.org/10.5281/zenodo.4114171
to facilitate further research by the community.

A. Methodology

Figure 1 highlights the integrated components of a Cray
machine from a finer to coarser granularity at a high-level. We
consider system-wide environmental logs and blade/cabinet
characteristics along with the node-specific internal events
during the unhealthy time frame. We move from node to blade
to cabinet to understand fault conditions and derive early indi-
cators of impending failures. The controller logs coupled with
event router messages provide deviations (higher/lower than
the normal range) in sensor measurements (e.g., fan speed,
temperature) to warn about health problems. Incorporating
such features with job-based events aid in failure diagnosis.

We have consulted the Cray documentation [1] and relevant
findings published in the CUG (Cray User Group) [2] for
our work. Figure 2 highlights our investigation procedure. We
perform failure analysis in the following manner:
1. We track confirmed failure indications in the node-specific
logs. These encompass the console, messages and consumer
logs of the compute node internals. This initial step involves
cluster administrator’s knowledge about anomalous failure
symptoms validating the ground truth.
2. Considering the time-frame of failed nodes derived in (1),
we investigate the nodes’ health residing in the same blade as
that of the failed nodes, mining the controller logs containing
blade- and cabinet-specific information. This helps us to

https://doi.org/10.5281/zenodo.4114171

understand the presence of spatial correlation. We correlate
the SEDC warnings of the event logs to elicit any external
influence evident over the blades with unhealthy nodes.
3. Additionally, we analyze the jobs allocated on the failed
nodes from the scheduler logs to understand their effect on the
compute nodes. This helps us to narrow down the root cause
in terms of deciphering whether application-triggered node
failures appear in conjunction with early external indicators
such as hardware errors and sensor reading variations or not.

Fig. 1: Cray System Source URL
Fig. 2: Methodology

Figure 2 shows the SMW (System Management Work-
station) with its HSS (Hardware Supervisory System) that
manages the states of blades and cabinets. The Slurm workload
manager, with ALPS (Application Level Placement Sched-
uler), coordinates resource allocation and job scheduling.

Additional consideration of user workload details [27],
performance logs (e.g., LDMS [19]), or resource usage based
diagnosis [8] is beyond the scope of this work. While some
production sites neither maintained manual reports nor col-
lected detailed system metrics [20], others may not release
them because of restricted distribution policies, making our
statistical inference difficult to confirm. However, with failure
reports [26] and performance monitoring tools [30] currently
being integrated into HPC systems, validating such analyses
has become practically attainable.

III. EVALUATION RESULTS

System-wide outages (SWOs) making the entire system
unavailable are present in our logs and tend to be mostly
either service related, intended node shutdowns, or file system
caused failures. They contribute to less than 3% of the over-
all anomalous failures. We recognize and exclude intended
shutdowns. Our study addresses single and multiple node
failures1, unlike SWOs, caused by any system malfunctioning.
We evaluated over 1200 node failures for our analysis. In
most Cray systems, 4 nodes reside in a single blade (slot).
We provide representative samples carefully chosen over time-
intervals to make observations, i.e., changing the duration of
time or time-frame does not alter the overall inference.

A. Inter-Node Failure Times

Before digging into the root cause, we checked how far
apart failures are per day and how many nodes share the
dominant failure reason. We consider failures over 7 weeks
and calculate the cumulative node failures over different inter-
node failure times. Figure 3 shows that 92.3% and 76.2% of
the node failures happen within 1 to 16 minutes of each other

1Here, failures typically refer to node failures, unless otherwise mentioned.

 0

 5

 10

 15

 20

W1 W2 W3 W4 W5 W6 W7

92.3 84.6 83.3 91.2 73.2 72.4 76.2

T
im

e
s
 B

e
tw

e
e

n
 F

a
ilu

re
s
 (

m
in

s
)

Representative Week IDs

% Failures Per Week

∆T (Cumulative)
Avg. ∆T

Std. Dev.(1 week)

Fig. 3: Time b/w Failures

 0

 20

 40

 60

 80

 100

S1 S2 S3 S4

%
 F

a
ilu

re
s
 (

s
a
m

e
 c

a
u

s
e

)

Systems

Std. Dev.(1 month)

Fig. 4: Same Failure Cause

in S1, over W1 and W7. The mean time between successive
failures (MTBF) for those weeks are 1.5 (±0.56), and 12.1
(±4.2) minutes, respectively. Similar observations on different
days on all systems indicate that time between adjacent node
failures ranges from a few seconds to more than 2 hours.
Though there are days without failures, on other days nodes
fail just minutes apart. Unlike SWOs appearing more than 6
hours apart in Blue Waters [28], and server failures between
12 to 13 hours in Google [15], we observe shorter MTBFs.

Next, we identify single or multiple dominant failure rea-
sons per day and compute the fraction of failed nodes on the
same day corresponding to the dominant failure reason (e.g.,
H/W MCEs, kernel oops, Lustre Bugs). Figure 4 indicates
that in 30 days, 65% to 82% of the nodes share the same
failure cause with variation between 12 and 21 across all four
systems. Certain days have high job-triggered failures when
most nodes run the same application. On other days, failures
relate to diverse causes over short temporal distances. It is
interesting to note that, if the dominant fault gets fixed, over
50% of the node failures can be recovered per day.
Observation 1: Time between failures has reduced (hours
to minutes) in recent years compared to prior work [15],
[28]. On average, more than 65% of the failures per day are
caused by the same malfunctioning, indicating the importance
of analyzing short lead times and root causes of node failures.

B. External Influence on Node Failures

In order to understand the environmental influence on nodes
we consider the blade and cabinet-specific health faults logged
during the unhealthy time frames of the corresponding node
failures. Blades encounter health faults and SEDC warnings
(e.g., Electronic Circuit Breaker (ECB) faults) triggered by the
blade controller (BC) software related to power monitoring.
The cabinet controller (CC) software logs similar cabinet
health status and sensor reading deviations such as tempera-
ture, voltage, and air velocity. A breakdown of some observed
controller faults and warnings is shown in columns 1 and 2
in Table III. We correlate the blade identifier (ID) and cabinet
ID of the corresponding failed node ID and inspect the logs
around the failure time for systems S1 to S4.

Figure 5 highlights that 67% to 97% of the observed
node voltage faults (NVF) correspond to failed nodes over 5
different months. These occur rarely, but when they do, they
often relate to failures. On the contrary, 21% to 64% node
heartbeat faults (NHF) actually manifest as failed nodes. This
is because if a node fails a health test or skips a heartbeat,
it is suspected to be dead, but empirically we observe that

https://www.nersc.gov/assets/Uploads/XC30.overview.NERSC.Oct.2013.pdf

 0

 20

 40

 60

 80

 100

M1 M2 M3 M4 M5

%
 F

a
ilu

re
s

S1 NVF S1 NHF

 0

 20

 40

 60

 80

 100

M1 M2 M3 M4 M5

%
 F

a
ilu

re
s

S2 NVF S2 NHF

 0

 20

 40

 60

 80

 100

M1 M2 M3 M4 M5

%
 F

a
ilu

re
s

Month ID (1 month)

S3 NVF S3 NHF

 0

 20

 40

 60

 80

 100

M1 M2 M3 M4 M5

%
 F

a
ilu

re
s

Month ID (1 month)

S4 NVF S4 NHF

Fig. 5: Node Faults

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

W1 W2 W3 W4 W5 W6 W7

A
v
g

.
D

a
ily

 C
o

u
n

ts

Representative Week IDs

Avg. NHFs Avg. Failures

Fig. 6: Node Heartbeat Faults

 0

 20

 40

 60

 80

 100

M1 M2 M3 M4 M5

%
 F

a
ilu

re
s

S1 BC Faults
S1 CC Faults

 0

 20

 40

 60

 80

 100

M1 M2 M3 M4 M5

%
 F

a
ilu

re
s

S2 BC Faults
S2 CC Faults

 0

 20

 40

 60

 80

 100

M1 M2 M3 M4 M5

%
 F

a
ilu

re
s

Month ID (2 months)

S3 BC Faults
S3 CC Faults

 0

 20

 40

 60

 80

 100

M1 M2 M3 M4 M5

%
 F

a
ilu

re
s

Month ID (2 months)

S4 BC Faults
S4 CC Faults

Fig. 7: Blade and Cabinet Faults

only about ≈43% NHFs actually fail. Figure 6 shows a finer
breakdown of the NHFs, over 7 weeks. Most NHFs were
failures in W1 and W4, while in the others more than 50%
NHFs eventually caused a node to fail. Many NHFs turn out
to be failures caused by hardware machine check exceptions
(MCE), while NHFs that do not fail are nodes with their
power turned off or those with skipped heartbeats. Unlike
prior work [35] (2% of the NHFs fail), we observe higher
correspondence of NHFs with failures. For job-caused failures,
NHFs may not be present in the logs, because the node
passed the health checks at the communication level, but later
job-caused malfunctioning launches the node health checker
(NHC), which, when in suspect mode, may turn the node to
admindown [35] based on failed tests. Early NHF indicators
for blades can warn about likely defects affecting some nodes.

TABLE III. Fault Breakdown
Health Faults SEDC Warnings
NHF, NVF, BC Heartbeat (BCHF) Temperature, Voltage
ec heartbeat stop, ec l1/l0 failed ECB Faults
get sensor reading failed Air Velocity
Cabinet Power & Micro Controller
Communication Faults

ec environment (e.g.,
Fan Speed, Air Flow)

Module Health & RPM Faults Cabinet Sensor Check

Figure 7 indicates, over periods of 2 months, 23% to 59%
of the failures belong to faulty blades, and 19% to 58% to
cabinets that elicited some warnings or faults. While this alone
does not give any clear indication about correlations between
blade or cabinet health and specific failures, hardware bugs and
file system errors are observed in the node internal logs during
these times. For days with no failures, such health faults are
seldom found. For specific BC heartbeat faults, we observed
only a fraction of the nodes in that blade to fail, but not all.
Observation 2: A small fraction of failed nodes correspond to
blade-cabinet-related faults, implying weak correlation. NVFs
and NHFs can be utilized as early indicators of malfunctioning
in failure prediction schemes to improve lead times.

C. What faults do not cause failures?

We have identified that certain recurring environmental
warnings and errors do not cause failures and are mostly
benign. A small fraction of the blades and cabinets in the
event logs (ERD) encounter ec sedc warnings with BC and
CC sensor reading deviations. These predominantly contain
warnings for temperature, voltage or velocity falling below
the minimum allowed system threshold. Figure 8 shows that

the unique blade count with various SEDC warnings varies
between 5 and 226, while the cumulative count of blades
and cabinets experiencing faults ranges from 24 to 240 (±21)
over a week for S1. The blade count for encountered health
faults is mostly higher than the warnings. Figure 9 depicts
the frequency of multiple BC-CC warning types occurring
throughout the day for S2. While blades 1, 5 and 8 experienced
more than 1400 mean recurring warnings, 7 stopped seeing
them after a certain hour of the day. Over 3 weeks, 8 blades
underwent voltage and temperature violations, but the specific
failed nodes did not belong to any of these blades.

 0

 50

 100

 150

 200

 250

W1 W2 W3 W4 W5 W6 W7

A
v
g

.
D

a
ily

 C
o

u
n

ts

Representative Week IDs

Unique Blades
Std. Dev. Blades(1 week)
Unique Blades+Cabinets

Std. Dev. Both(1 week)

Fig. 8: Unique Blade Counts

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8

A
v
g
.
D

a
ily

 C
o
u
n
ts

3 Weeks/Blade-Cabinet IDs

BC Faults W1
BC Faults W2
BC Faults W3
CC Faults W1
CC Faults W2
CC Faults W3

Fig. 9: BC-CC Warnings

Cabinet-level faults are logged more frequently than those of
blades, with more than 1400 mean daily counts. Only 32.14%
(e.g., 9 out of 28) failures belonged to these faulty cabinets
over a week. Cabinet faults do not have correlations with a
certain failure type since the corresponding blade of the faulty
node on several occasions does not encounter such signals.
Furthermore, many healthy blades with no failures experience
similar temperature or voltage violations. Temperature varia-
tions can trigger hardware errors affecting sensor readings of
an entire blade causing the air velocity to be automatically
reduced by the firmware in the cabinet. However, presence of
similar incessant faults during healthy time frames as well do
not help in pinpointing the potential root cause. Hence, we
did not investigate further. Our observation conforms to prior
work on temperature variability [12], i.e., there is no clear
evidence that hotter nodes contribute to higher node outages
based on studies with LANL HPC clusters. This contradicts
the presumption [34] that hot air triggers failures for Titan
nodes. Titan nodes have GPUs known to be temperature
sensitive [31], unlike ours. Moreover, there is no diagnosis
made that heat is the root cause, apart from a high-level spatial
analysis. Our studies did not find notable features in threshold
violations to help quantify node reliability.
Observation 3: Blade and cabinet-level indications are not
primary causes of failures. Though health faults persist on

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12 14 16 18

U
n

iq
u

e
 #

N
o

d
e

 C
o

u
n

ts

Day Index

#Failed Nodes Count

Hardware Errors
MCELog Triggers

Page Fault Lock

0 2 0 0 0 0 3 4 3 1 5 2 0 4 0 3

Fig. 10: Node Errors in S3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11B12B13B14B15B16

M
e
a

n
 C

P
U

 T
e
m

p
 (

C
e
ls

iu
s
)

Blade ID

Node0 CPU Temp. Node1 CPU Temp.

Fig. 11: SEDC Analysis in S1

-1

 0

 1

 2

 3

 4

 5

 6

 7

1 -11 111 127 134 137 2 265 4

%
 J

o
b
s

Unique Exit Codes

Day 1 (22) Day 2 (8) Day 3 (5)

Fig. 12: Job Errors in S4

days with observed failures, there is no clear evidence of
sensor reading violations causing nodes to fail.

Figure 10 indicates that over 16 consecutive days the total
nodes experiencing hardware errors (e.g., correctable/non-
correctable memory errors, buffer overflow), MCE log triggers
(page/cache/DIMM; caused when the error count exceeds
a predefined threshold), and Lustre I/O errors (caused by
deadlocks and page fault locks), are much higher than the
failed nodes (<6). While recent work [27] has similar findings
in terms of error concentration on a few nodes w.r.t. the system
scale, we further notice that most of these erroneous nodes do
not fail in the due course. More nodes experience page fault
locks signaling I/O problems (job-triggered) than hardware
errors. Figure 11 shows the mean CPU temperature of 2 nodes
per blade across 16 blades located in the same chassis and
cabinet for a specific day with 1 failure in B2. Except 1
node turned off in B2 (Node0 of B2 has 0◦C in Fig. 11),
the remaining blades exhibit a steady temperature (≈40◦C).
As hinted earlier, these temperature values do not aid in root
cause analysis. Figure 12 shows that over 3 specific days with
22, 8, and 5 failures, respectively, only 0.06% to 6.02% of the
jobs finish with non-zero exit codes, while 90.43% to 95.71%
of the jobs complete successfully. Of these erroneous jobs,
some are caused by configuration errors (e.g., exceeding wall
time/memory limit, user killed) leaving a few errors caused by
node problems or application bugs. ≈10% of the failed nodes
correlated with application malfunctioning, but not all.
Observation 4: Increase in error counts need not necessarily
degrade system reliability since only a small number of nodes
with errors eventually fail. However, more errors are tangi-
ble with application configuration problems, which indirectly
spawn filesystem and hardware errors. Such errors may relate
to unpredictable user behavior impacting the system.

D. Lead Time Enhancements

Most studies [24] have referred to lead time considering
internal console logs containing a sequence of fault indica-
tive messages (e.g., fatal) leading to failure. We inspect if
additional environmental messages appearing before or along
with the indicative internal logs aid in improving the lead
time. While many external faults and warnings are not the
primary root causes, certain failures possess early indicators,
e.g., ec hw errors in the event logs indicating hardware
malfunctioning. Typically, such errors appear in conjunction
with multiple indicative root causes such as processor cor-
ruptions, node heartbeat faults, firmware bugs, kernel panics

etc. in the internal logs. Hardware errors do appear during
healthy times as well. However, additional internal failure
patterns affirm their correlations with node failures. Such
cases of blade-level faults and SEDC warnings along with
the evidence of failed nodes with buggy console messages
enable lead time increments. These environmental alerts imply
fail-slow characteristics unlike fail-stop, similar to fail-slow
hardware evident in production data centers [16]. For certain
failures, hardware errors sustain for a long time while they
have very low frequencies during other times. Indicators in

 0

 20

 40

 60

 80

 100

S1 S2 S3 S4
 0

 5

 10

 15

 20

%
 F

a
ilu

re
s
 (

A
v
g
.)

A
v
g
.
L
e
a
d
 T

im
e
 (

m
in

s
)

Systems

Internal (LeadTime)
External (LeadTime)

Internal (%Failures)
External (%Failures)

Fig. 13: External Influence

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

7.406 8.761 10.367 14.617 16.822 19.561

F
P

 R
a

te
 (

%
)

Avg. Lead Times (mins)

w/o External Correlation
w External Correlation

Fig. 14: Lead Times with FP

the external logs timestamped earlier are correlated to node,
blade, and cabinet IDs over the failure times in the internal
logs. The time difference between the relevant external and
internal timestamps are computed to obtain viable lead time
increments. Figure 13 shows that considering the external
faults, the mean lead times can be increased by about 5 times,
compared to just the internal node logs by themselves, in
systems S1 to S4. For these failures, the early indicators were
absent during normal operation. To confirm that lead times
cannot be enhanced further if failure is solely caused by the
application, several external faults are analyzed. Figure 13
illustrates that for 10% to 28% of node failures lead times
could be enhanced considering early indicators over 4 different
weeks. For 72% to 90% of the failures, absence of external
warnings prevented lead time enhancements. This fraction
depends on the contribution of application-caused failures.

To assess the effect of additional external correlations on the
false positive rate, the existence of similar correlations in the
healthy node logs around similar failure times are analyzed.
Figure 14 highlights that the false positive rate is lower (e.g.,
30.77% down to 21.43%) with external correlations considered
than otherwise. This is because healthy node logs that appear
similar to multiple correlations (for an unhealthy node) occur
less frequently, reducing the number of false positives.
Observation 5: Certain failures caused by hardware errors or
file system bugs possess early indicators in the external logs.

 0

 2

 4

 6

 8

 10

 12

 14

oom-killer LustreError HWError PageAlloc HungTask
Reasons of Job Failures

 78
 82
 86
 90
 94

P
e

rc
e

n
ta

g
e

 (
%

)
o

f
N

o
d

e
s

S5 Task Failures

Fig. 15: Job Failures in S5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

App-Exit KBUG LBUG oom Others

%
 N

o
d

e
 F

a
ilu

re
s

Reasons of Kernel oops

S2 Node Failures

Fig. 16: Job Failures in S2

 0

 10

 20

 30

 40

 50

 60

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10J11J12J13J14J15J16

Job IDs

 580
 640
 700

N
o

d
e

 C
o

u
n

ts

Total Overallocation

Failed Nodes

Fig. 17: Resource Overallocation

Lead times can be enhanced by about a factor of 5 times in
such cases with a lower false positive rate w.r.t. the failures
without external correlations. However, such enhancements
are not possible for application-triggered node failures, since
early failure indicators are absent in this case.

E. Application Triggered Failures

The following patterns are observed primarily for failures
triggered (directly or indirectly) by applications:
• The internal node logs often contain major hardware or
software errors apart from file system or interconnect errors
and node shutdown messages. These occasionally appear in
conjunction with job-specific errors due to NHC tests.
• Typically external environmental indicators do not exist for
these failures, making lead time enhancements infeasible.
• Multiple nodes or blades failing at similar times of the day
often share the same job ID. For such cases, failed nodes need
not be quarantined as these nodes recover once new jobs run
on them since the problem is with the application.
• Once oom-killer (out of memory) is invoked and processes
are killed, associated modules in the stack traces (e.g., xpmem,
dvsipc, lustre) often indicate file system inconsistencies. Pro-
cesses also get killed by the epilogue of the job scheduler that
removes any user job from a node before it is reallocated.

The key root causes of kernel oops observed across the
studied systems are Lustre and kernel bugs, hung-task timeouts
and oom-killers. Hardware, software and application faults
tend to trigger callback traces. Across all 5 systems, out-of-
memory faults, job-triggered kernel bugs and Lustre bugs are
prevalent reasons for node failures. These events are often
accompanied by NHC test failures (e.g., abnormal application
exits) and stack traces. Even without application malfunction-
ing, MCEs, CPU corruptions and file system bugs result in
kernel panics. Jobs do get aborted because of failed nodes.
But nodes also fail because of the running application’s com-
putational requirements. Our measurements show that spatially
distant nodes have temporal locality of failures because of
the common jobs running on them. For example, in Figure 3
week W1 experienced 92.31% of the failures within 2 minutes.
More than 42% of those failures belonged to different blades
distant from each other on a specific day; however, all of them
executed under the same job ID during the time of failure.

We analyzed the call traces of S5’s logs. Figure 15 shows
that 10.59% of the nodes were running low on memory, which
triggered the oom-killer that killed processes and added kernel
oops messages to the log. 5.04% of the nodes had Lustre errors

without any call trace causing jobs to fail. While 1.43% of
the nodes encounter hardware errors, such as GPU or disk
errors, 2.16% had software errors, such as page allocation
faults and segmentation faults. Several jobs got canceled in the
interactive session, around 11% of the jobs failed to complete
because they got affected by the state of the allocated nodes.
80.57% of the nodes encountered hung task timeout errors
followed by a call trace indicating slow system I/O, unable
to flush the data to free memory within the stipulated time
(2 mins). Hung task-based kernel oops are only seen in S5
(institutional cluster with a local file system), but they do not
cause nodes to fail and are not observed on the Cray systems.

For S2, Figure 16 shows that 37.5% of the failures occur
due to anomalous app-exits (application), failing NHC tests
turning the node down. 7.14% of the failures were caused
due to critical kernel bugs (e.g., invalid opcode) and 26.78%
because of file system bugs (e.g., race in threads spawned
in the code), all prompted by the compute jobs. 16.07% of
the failures happened due to memory resource exhaustion
without additional software bugs. The other 12.5% of kernel
oops were due to CPU stalls and other driver and firmware
bugs. On the surface, these bugs (KBUG and Others in
Fig. 16) seem to emanate from the OS, but careful analysis
reveals the potential of application-triggered file system bugs,
which indirectly propagate as kernel bugs or CPU stalls. Finer
inspection included examining the beginning of the stack
traces. E.g., presence of dvsipc related modules indicate an
affected file system triggered by the application when running
out of resources. Runtime errors triggering kernel oops cannot
be handled ahead of time since tangible software or hardware
errors appear only after the affected kernel module is invoked.
This indicates the need for fine-grained application perfor-
mance diagnosis studies [37], which consider such runtime
anomalies to reduce application-triggered errors.

Figure 17 illustrates how memory overallocation can cause
failures in production HPC systems. On a specific day, 53
failures occur over just 16 jobs. Of the allocated nodes,
a subset of them suffer resource overallocation errors. As
evident for jobs J5 and J8, all overallocated nodes fail, while
only a few of them fail for jobs J4 and J15. J1 and J16
had 1 and 6 failures for 600 and 683 overallocated nodes,
respectively. When a small fraction of the overallocated nodes
fail, the jobs fail to complete. Consequently, job re-allocations
are performed for recomputations. In this case, Slurm allocated
more memory than was available for the node. Such job

triggered node failures suggest the need for carefully choosing
the job submission parameters (e.g., number of cores, tasks per
core etc.) for a specific application (e.g., MPI, Matlab) that the
user intends to execute.
Observation 6: Unlike institutional clusters, file system bugs
are more frequent in Cray systems indicating the application’s
influence on Lustre contention and resiliency. ≈37% of the
app-exits occur because of incapable nodes implying the need
for better resource-aware scheduling. When job requirements
exceed a node’s resource capacity, quarantining [18] may not
be effective. Instead, those applications can be monitored and
their corresponding users can be informed.

F. Node Internal Failure Analysis

Failure causes evident from internal node logs have been
studied in the past [17], [28]. We observed similar failure
causes such as MCEs, processor corruptions, and file system
bugs. We performed additional correlations with external heath
faults and application impacts to scrutinize external influences.
We summarize our findings here:
1. Many driver or firmware bugs appear after application exit
messages from NHC and result in kernel oops. These may
or may not relate to hardware faults, (e.g., ec hw errors) that
are observed in the external logs. Such hardware bugs may get
incited only when specific modules of the code are executed
(e.g. row hammer [23] attacks on DRAM).
2. Many segmentation faults originate from applications. Pro-
grams invoking page allocation requests often cause nodes to
fail due to memory limits.
3. Software traps (e.g., invalid opcode) generally do not fail
nodes, unless exception handling disturbs the file system,
which may eventually fail the node.
4. Disk and job induced inode errors can render a file system
inaccessible, causing nodes to be slow or non-responsive. Finer
analysis of such bugs indicates the root cause to be at the
application, though the failures manifest inside the OS kernel.

Even though job-specific malfunctioning is not indicated
in the node failure logs upfront, the root cause often lies
in the application. For Lustre or kernel bugs, several kernel
oops, firmware bugs, and fork or memory allocation errors, the
original fault propagates from the job running on the compute
nodes. The high-level breakdown of the failure causes has
been discussed in the literature [17], [28] and is consistent
with Table IV column 1. Additionally, our work affirms most
of such root causes to be application-triggered by analyzing
the specific system modules present in the stack traces. While
some of the root causes can help create fault-aware solutions
(e.g., CPU corruptions, MCEs), several high impact tangible
indications happen only during application runtime (e.g., in-
valid opcode, segmentation fault, resource exhaustion). This
calls for better performance-aware scheduling in HPC systems.

Table IV indicates the failure causes w.r.t. the predominant
kernel modules reported by stack backtraces. Since kernel
oops are frequently observed, we examined the preliminary
calltraces indicating the modules linked to the trace such as
dvs ipc mesg, mce log etc. While few modules clearly refer

 0

 20

 40

 60

 80

 100

W1 W2 W3 W4 W5 W6 W7

D
a

ily
 B

la
d

e
 F

a
ilu

re
s
 (

%
)

Week Id

Same cause: S1 Same cause: S2

Fig. 18: Blade Failures

 0

 5

 10

 15

 20

 25

 30

 35

 40

W1 W2 W3 W4 W5 W6 W7

91.6 100 82 100 88.24 92.32 100

T
im

e
s
 B

e
tw

e
e

n
 F

a
ilu

re
s
 (

m
in

s
)

Representative Week IDs

% Failures Per Week

∆T (Cumulative)
Avg. ∆T

Std. Dev.(1 day)

Fig. 19: Temporal Locality

to file system problems, ldml bl and sleep on page are job-
triggered. Hang or concurrency bugs due to application code
cause kernel panics. We did not investigate the entire trace,
but there are indications of application-caused (which in turn
may affect the file system) versus file system-caused failures.

TABLE IV. Failure Causes and Stack Modules
Reasons Stack Trace Modules
SegFault, Page Fault, MCEs,
Application, Kernel, FileSys-
tem Bugs, Corrupt CPUs

sleep on page, ldml bl,
dvs ipc mesg/lnet mapuvm,
mce log, rwsem down failed

For S3 over 4 months, hardware faults (BIOS/disk errors,
MCEs) contribute to 37% of the failures, software faults
(Kernel/Lustre bugs) contribute to 32%, and applications ac-
count for 31%. 27% of the failures were caused by memory
exhaustion. In terms of failure locality, we observed two
primary trends in the context of root cause:
1. Days with multiple node failures, spatially diverse in
physical location, usually fail with different root cause, unless
they are correlated in terms of sharing the same job executable.
2. Multiple blade failures are often caused by the same
application executing on those nodes around the failure time.
Blade failures display temporal locality in systems with similar
failure reasons with short (≈5 mins) inter-node failure times.

Figure 18 depicts the fraction of blade failures with the
same failure reasons for S1 and S2 over 7 different weeks.
Most days experience single or multiple node failures on
diverse blades. Considering blades with all failed nodes, the
manifested symptoms often appear to be similar. On certain
days, all blade failures were due to the same hardware faults
and application-triggered software faults. For both S1 and S2,
errors are less than ±7.2 hinting at the consistent temporal
locality of nodes in terms of the root cause. When blades
fail at the granularity of µsecs, they share the same system
malfunction as the root cause. Figure 19 indicates that the
MTBFs over 7 specific weeks in S3 for job-triggered failures
does not exceed 32 minutes. As evident, W1 encounters on
average 91.6% of the failures within 5 mins. W6 and W7
experienced more than 90% of the failures within 29 to 32
mins. Temporal locality (same job) caused failures are well
evident. These are much shorter than the MTBFs observed in
LANL systems in prior work [36] (> 5 hours).
Observation 7: Finer analysis implies that the origin of
many bugs lies in the application. Performance-aware job
scheduling, and stack trace analysis in conjunction with failure
prediction schemes has the potential to improve system health.
Observation 8: Nodes sharing an application often fail during
similar times. These nodes may belong to different blades

TABLE V. Sample Failure Cases
#Failures Internal Indicators External Indicators Root Cause Inference
1 1 failure L0 sysd MCE followed by NHC warnings, other

nodes of the same blade encountered correctable
H/W errors and SSID errors

No environmental indications or job malfunc-
tioning reported around the failure time

Potential root cause could not be deduced

2 3 failures Neither spatially nor temporally close (4 am,
12.38 pm and 3.21 pm), however, similar patterns
(H/W error → MCEs → kernel oops)

Aries link error and temperature threshold vi-
olations distant from the failure time, no job
malfunctioning indications

CPU corruptions and MCEs affecting the
file system causing failure

3 6 failures oom-killer invoked→ kernel oops (app-based call
trace) with similar times and patterns on all nodes

No external indications around the failure time,
same application running on all the nodes

Application-caused memory exhaustion,
nodes fail NHC tests leading to failure

4 1 failure LustreErrors → Unable to handle kernel paging
request, other nodes of the blade did not fail

Link errors, temp. threshold violations distant
from the failure time, scheduled job aborted

Application-triggered file system bug
causing failure

5 1 failure H/W MCEs → critical errors, other nodes of the
blade encountered benign events

Early indicators of ec hw errors & link errors
prior to the failure time, no job errors evident

Fail-slow symptoms of memory failing
the node (degraded h/w triggered by s/w)

(spatially distant), but exhibit temporal locality w.r.t. the
root cause. Tracking buggy application IDs (APIDs) and job
abortions can prevent multiple node failures in such cases.

Unknown Causes: During our analysis, we could not infer
potential root causes for three failure patterns. First,
Type:2; Severity:80; Class:3; Subclass:D; Operation: 2
may indicate BIOS problems. However, these are commonly
seen in the systems for benign healthy cases as well. Several
nodes encountered anomalous shutdowns with these errors
without any other helpful patterns. Application or hardware
do not show faults that influence these failures. It is not clear
what conditions could trigger failures with this error.

Second, L0 sysd mce related to memory errors appear
before nodes fail. However, insufficient information prohib-
ited us to understand what causes these to appear. During
failure times, no other nodes in the blade fail, and there is
no correlation over time. The event name implies hardware
problems related to the blade controller (L0→BC MCEs), but
the observed symptoms did not unveil anything helpful as we
aim at more decisive fine-grained causal inference.

Finally, there are failures with simply shutdown messages or
no prior anomaly symptoms. The affect of cosmic radiations
on hardware and silent data corruptions have been shown in the
research literature [5], [11], [16]. We suspect such solar flares
could cause nodes to fail, which are undetectable in the logs.
We could not examine the weather reports for such uncertain
failures, hence this remains speculative. What is more probable
is operator error, i.e., manual shutdowns of good nodes by
accident (e.g., wrong button, IPMI command).
Observation 9: Several failures have insufficient information,
where we cannot deduce any potential root cause. Such cases
may or may not relate to known operator errors or rare cosmic
radiations. These cases require more investigation for root
cause inference subject to operator-level or vendor support.

G. Case Studies

Let us briefly analyze 5 cases of root cause inference giving
inklings of problems arising in production HPC. The abridged
analysis of these failures is summarized in Table V.
Case 1: A single node failure occurs with L0 sysd mce errors
in the console logs without additional hardware, software, or
application problems. The other nodes in the same blade do
not fail and experience correctable hardware MCEs (which
are mostly benign) and hardware SSID errors. No additional

external influence or job errors are reported around the failure
time. These indications did not lead to potential root cause
and do not suffice to understand why the node was shutdown.
Case 2: 3 nodes from different blades fail hours apart with
similar internal failure patterns and no temporal correlations.
All 3 nodes encounter hardware errors followed by MCEs
and kernel oops. Interconnect errors and temperature threshold
violations are present in the SEDC logs, but not around the
failure time. No application problems are reported. Processor
corruptions and critical MCEs turn out to be the root cause.
Case 3: 6 nodes fail around similar times (seconds to minutes
apart) with similar node internal failure patterns. We confirmed
that the nodes were running the same job around the failure
time. No environmental faults were reported. oom-killer was
invoked because of memory exhaustion. Several processes
were killed followed by kernel oops. The modules linked to
the call trace were indicative of the running application and
NHC warnings were observed. This is a resource exhaustion
caused failure with no additional hardware problems.
Case 4: A failure occurs with a kernel bug unable to fulfill a
paging request preceded by Lustre errors. External indicators
include interconnect errors and temperature threshold viola-
tions, distant from the failure time. The job running on this
node did not terminate gracefully. In this case, the application
triggered a file system bug eventually failing the node.
Case 5: A node fails with critical MCEs with no kernel oops or
major software bugs. In the external logs, ec hw errors and
link errors were reported several minutes before the failure
time. For the other blades such sustained environmental errors
around that time were absent. No application misbehavior was
evident. This case is a hardware caused failure with fail-slow
symptoms and feasible lead time enhancements.

Discussion: From these results we infer that a generic
approach with a formal algorithm is unsuitable as a means
to identify failure causes. Our statistical inference over 4
production clusters helps to become cognizant of the extent to
which the external factors combined with node-specific logs
affect the systems. The fact that major external health faults
are not the primary culprits of failures is not obvious (e.g.,
temperature variability influence node reliability in the data
centers [12], [38]). Besides, the stack trace logs indicating
the associated modules (hints to root cause) and job-triggered
failures (that can be indirectly caused) imply the importance of
application diagnosis [40]. Further effective action items are

TABLE VI. Findings and Recommendations
Major Findings Suggested Recommendations
1 While higher error count need not always fail nodes, certain faults (e.g.,

NVF) and short-term multiple blade failures often indicate unhealthy
system state. Several daily failures relate to similar root causes

Non-critical health faults (e.g., NHF) and temporal locality of failures can be
considered before launching checkpoint/restarts making reactive approaches
more aware of the potential root cause

2 Major Blade and Cabinet level health indicators are not strongly
correlated with the primary root cause

Frequent appearance of SEDC warning and threshold violations can be
ignored unless major indicators are observed in the node internal logs

3 Fail-slow hardware symptoms exist for certain software triggered hard-
ware failures aiding in lead time improvements

Node failure prediction schemes can incorporate external correlations for
possible lead time enhancements for proactive fault tolerance

4 Node quarantining can be ineffective when the root cause is triggered
by application misbehavior

Instead of sequestering nodes, users can be intimated about their malfunc-
tioning job (by cluster operators) or buggy jobs can be blocked (by NHC)

5 Across all the systems, a considerable number of node failures involve
Kernel oops with long stack traces. These can be triggered by the
hardware, software, and application based on the fault propagation chain

Conducting a machine learning guided study of call traces from large-scale
systems to narrow down the buggy code or function emanating from the
application or file system can segregate job-triggered (which in turn affect
the file system or produce driver bugs) versus job-caused failures

6 Spatial-temporal correlations of node failures exist w.r.t. the application-
caused failures; Jobs can trigger filesystem/interconnect errors without
failing nodes

System administrators can incorporate additional health tests in NHCs to
account for the nodes failing incessantly due to abnormal application exit to
track the buggy APID besides rebooting or turning the node to admindown

7 A significant number of failures are primarily triggered by the applica-
tions, which in turn may affect the file system or hardware

Application resilience schemes (performance diagnosis) can be used in
conjunction with system failure prediction tools to infer future system health

TABLE VII. Large-scale System Evaluation
Studies Focus Some Findings
[6], [17], [21],

[34]
Overall System Regime detection, Wasted time analysis, Integrated monitoring infras-

tructure design, Reliability consistency over time, Failure categorization
[16], [38] Server Failures,

Hardware Faults
Spatio-Temporal distribution, Root causes: Hard disk, Raid controller
and Memory faults, Fail-slow symptoms, Environmental causes

[3], [5], [12] Disk, DRAM,
SSDs

Multi-bit error corruption, , Temp. and Energy influences, Volatility of
DRAM error rates, Infant drives with easier predictive features fail more

[14], [22],
[25], [31], [40]

Interconnect, Soft
Errors, GPUs

Load imbalance effect on lane degrades, SWOs, Failover, Lane recovery
impact, Radiation expts. and GPU temp. sensitivity, scheduling

[10], [26],
[27], [29], [32]

Application, Jobs Resource contention exists; Increase job wait times; Jobs with higher
CPU usage are more fallible; Time-out jobs with high run times consume
higher core-hours; H/W errors concentrated on few jobs/nodes/users

[11], [28] Node Failures Power, Temperature effects on LANL HPC Nodes, Root cause break-
down of SWOs and node failures for Blue Waters

Our work Node Failures Fine-grained external influence analysis, Faults not leading to failures,
Feasible lead time enhancements for 4 production systems

TABLE VIII. Comparison
Features Our

Work
[28] [16] [11]

1 Root Cause X X X X
2 Node

Failures
X X × X

3 Stack Trace X × × ×
4 External/Job

Correlations
X X × X

5 Fail-slow
Symptoms

X × X ×

6 Lead Time X × × ×
7 Cloud × × X ×
8 HPC X X X X

subject to developmental efforts with the production clusters.
Table VI summarizes our findings with recommendations.

We specifically observe that environmental indications are
weakly correlated to failures and the existence of fail-slow
symptoms. While operators can be less concerned about
external health warnings in the absence of internal faults,
it is better to equip the health checkers, failure prediction
and checkpoint/restart (C/R) schemes to be aware of early
indicators of health faults and malfunctioning jobs to reduce
recomputation cost. Instead of quarantining a node, buggy jobs
can be monitored with intimation to the user. A full stack trace
can provide finer details about the file system and application
errors. Automated diagnosis tools for anomaly inference from
call traces [4] can further help in pinpointing the root cause.
These recommendations are suitable for HPC systems with
extreme heterogeneity as well, since augmented hardware
(e.g., accelerators) or complex workload characteristics (e.g.,
deep learning on multi-core processors) can also benefit from
performance-aware scheduling or stack trace analysis.

Comparative Analysis: Table VII encapsulates major fail-
ure analysis studies performed for large-scale systems. Ta-
ble VIII compares our work with three related studies. [16]
studied detailed hardware faults for 12 production clusters
with anecdotal evidences without any empirical analysis. [28]
performed statistical analysis without external correlations on
the Blue Waters. [11] studied non-Cray systems focusing on

power and temperature unlike ours. None of these address
lead time enhancements. Our study is based on 5 contem-
porary systems providing lessons learned through assiduous
environmental correlations and stack trace diagnosis.

IV. RELATED WORK

[14], [22], [25], [31], [33], [40] efficiently schedule jobs
and characterize power consumption, soft errors, GPU, and
interconnect faults. [17], [27], [34] conduct general system
fault measurements and study the relationship between hard-
ware errors and job logs. [10], [26], [32] characterize job
failures on non-Cray systems, and [41] point to the limitations
of DRAM error characterization. These focus on specific
components or layers and affirm the need for a holistic study
to understand how node failures happen from a system-wide
perspective [20]. [20], [21], [30] perform holistic application
monitoring and survey of failure analysis in petascale sys-
tems identifying existing gaps. A number of diagnosis tech-
niques [13], [28], [39] either point out high-level failure layer
or perform causal analysis without holistic considerations or
are application-centric. In contrast, we include controller and
event logs to understand external influences and quantify lead
times increments. Recently, machine learning (ML)-guided
failure prediction schemes [9], [24] have been developed to
proactively respond to failures. Our work complements such
efforts in providing tenable resilience schemes.

V. CONCLUSION

We present node failure diagnosis observed in production
HPC systems based on correlations of internal and external
logs. We recognize job characteristics that cause nodes to fail
and provide an estimate of feasible lead time increments. Our
work identifies that environmental influences are not strongly
correlated to node failures. Choosing a mitigation action with
an understanding of the root cause when a failure is imminent
can have long-term benefits in progressive computation instead
of restarting from checkpoints, which requires recomputation.

ACKNOWLEDGMENT

The authors are grateful to the reviewers for their helpful
feedback. This work was performed in part under the auspices
of the U.S. DOE by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344, Lawrence Berkeley
National Lab, and NSF grants 1525609 and 0958311.

REFERENCES

[1] Cray Documentation. [Online]. Available: https://pubs.cray.com/
[2] Cray User Group. [Online]. Available: https://cug.org/
[3] J. Alter, J. Xue, A. Dimnaku, and E. Smirni, “SSD failures in the field:

symptoms, causes, and prediction models,” in SC, 2019, pp. 75:1–75:14.
[4] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. Miller,

and M. Schulz, “Stack trace analysis for large scale debugging,” in IEEE
IPDPS, 2007, pp. 1–10.

[5] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith,
“Unprotected computing: A large-scale study of dram raw error rate on
a supercomputer,” in SC. IEEE Press, 2016, p. 55.

[6] L. A. Bautista-Gomez, A. Gainaru, S. Perarnau, D. Tiwari, S. Gupta,
C. Engelmann, F. Cappello, and M. Snir, “Reducing waste in extreme
scale systems through introspective analysis,” in IEEE IPDPS, 2016.

[7] E. Cheng, J. Abraham, P. Bose, A. Buyuktosunoglu, D. Chen, H. Cho,
Y. Li, U. Sharif, K. Skadron, M. Stan et al., “Cross-layer resilience:
Challenges, insights, and the road ahead,” in IEEE/ACM DAC, 2019.

[8] E. Chuah, A. Jhumka, S. Alt, J. J. Villalobos, J. Fryman, W. Barth,
and M. Parashar, “Using resource use data and system logs for
HPC system error propagation and recovery diagnosis,” in IEEE
ISPA/BDCloud/SocialCom/SustainCom, 2019, pp. 458–467.

[9] A. Das, F. Mueller, P. Hargrove, E. Roman, and S. B. Baden, “Dooms-
day: predicting which node will fail when on supercomputers,” in SC,
2018, pp. 9:1–9:14.

[10] S. Di, H. Guo, E. Pershey, M. Snir, and F. Cappello, “Characterizing and
understanding HPC job failures over the 2k-day life of IBM bluegene/q
system,” in IEEE/IFIP DSN, 2019, pp. 473–484.

[11] N. El-Sayed and B. Schroeder, “Reading between the lines of failure
logs: Understanding how HPC systems fail,” in IEEE DSN, 2013.

[12] N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang, and
B. Schroeder, “Temperature management in data centers: why some
(might) like it hot,” in ACM SIGMETRICS, 2012, pp. 163–174.

[13] X. Fu, R. Ren, S. A. McKee, J. Zhan, and N. Sun, “Digging deeper into
cluster system logs for failure prediction and root cause diagnosis,” in
IEEE CLUSTER, 2014, pp. 103–112.

[14] R. Garg, T. Patel, G. Cooperman, and D. Tiwari, “Shiraz: Exploiting
system reliability and application resilience characteristics to improve
large scale system throughput,” in IEEE/IFIP DSN, 2018, pp. 83–94.

[15] P. Garraghan, I. S. Moreno, P. Townend, and J. Xu, “An analysis of
failure-related energy waste in a large-scale cloud environment,” IEEE
Trans. Emerging Topics Comput., vol. 2, no. 2, pp. 166–180, 2014.

[16] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,
X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey, G. Grider, P. M.
Fields, K. Harms, R. B. Ross, A. Jacobson, R. Ricci, K. Webb, P. Alvaro,
H. B. Runesha, M. Hao, and H. Li, “Fail-slow at scale: Evidence of
hardware performance faults in large production systems,” in USENIX
FAST, 2018, pp. 1–14.

[17] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large
scale systems: long-term measurement, analysis, and implications,” in
SC, 2017, pp. 44:1–44:12.

[18] S. Gupta, D. Tiwari, C. Jantzi, J. H. Rogers, and D. Maxwell, “Under-
standing and exploiting spatial properties of system failures on extreme-
scale HPC systems,” in IEEE/IFIP DSN, 2015, pp. 37–44.

[19] R. Izadpanah, N. Naksinehaboon, J. M. Brandt, A. C. Gentile, and
D. Dechev, “Integrating low-latency analysis into HPC system moni-
toring,” in ICPP, 2018, pp. 5:1–5:10.

[20] D. Jauk, D. Yang, and M. Schulz, “Predicting faults in high performance
computing systems: an in-depth survey of the state-of-the-practice,” in
SC, 2019, pp. 30:1–30:13.

[21] S. Jha, J. M. Brandt, A. C. Gentile, Z. Kalbarczyk, G. H. Bauer,
J. Enos, M. T. Showerman, L. Kaplan, B. Bode, A. Greiner, A. Bonnie,
M. Mason, R. K. Iyer, and W. Kramer, “Holistic measurement-driven
system assessment,” in IEEE CLUSTER, 2017, pp. 797–800.

[22] S. Jha, V. Formicola, C. D. Martino, M. Dalton, W. T. Kramer,
Z. Kalbarczyk, and R. K. Iyer, “Resiliency of HPC interconnects: A
case study of interconnect failures and recovery in blue waters,” IEEE
Trans. Dependable Sec. Comput., vol. 15, no. 6, pp. 915–930, 2018.

[23] Y. Kim, R. Daly, J. Kim, C. Fallin, J. Lee, D. Lee, C. Wilkerson, K. Lai,
and O. Mutlu, “Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors,” in ACM/IEEE ISCA,
2014, pp. 361–372.

[24] J. Klinkenberg, C. Terboven, S. Lankes, and M. S. Müller, “Data mining-
based analysis of HPC center operations,” in IEEE CLUSTER, 2017.

[25] M. Kumar, S. Gupta, T. Patel, M. Wilder, W. Shi, S. Fu, C. Engelmann,
and D. Tiwari, “Understanding and analyzing interconnect errors and
network congestion on a large scale HPC system,” in IEEE/IFIP DSN,
2018, pp. 107–114.

[26] R. Kumar, S. Jha, A. Mahgoub, R. Kalyanam, S. L. Harrell, and
X. Carol, “The mystery of the failing jobs: Insights from operational
data from two university-wide computing systems,” in IEEE DSN, 2020.

[27] S.-H. Lim, R. G. Miller, and S. S. Vazhkudai, “Understanding the
interplay between hardware errors and user job characteristics on the
Titan supercomputer,” in IEEE IPDPS, 2020, pp. 180–190.

[28] C. D. Martino, Z. T. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop,
and W. Kramer, “Lessons learned from the analysis of system failures
at petascale: The case of blue waters,” in IEEE/IFIP DSN, 2014.

[29] C. D. Martino, W. Kramer, Z. Kalbarczyk, and R. K. Iyer, “Measuring
and understanding extreme-scale application resilience: A field study of
5, 000, 000 HPC application runs,” in IEEE/IFIP DSN, 2015, pp. 25–36.

[30] A. Netti, M. Mueller, C. Guillen, M. Ott, D. Tafani, G. Ozer, and
M. Schulz, “DCDB wintermute: Enabling online and holistic operational
data analytics on HPC systems,” in ACM HPDC, 2020.

[31] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A large-scale
study of soft-errors on GPUs in the field,” in IEEE HPCA, 2016.

[32] T. Patel, Z. Liu, R. Kettimuthu, P. Rich, W. Allcock, and D. Tiwari, “Job
characteristics on large-scale systems: long-term analysis, quantification,
and implications,” in ACM/IEEE SC, 2020, pp. 1–17.

[33] T. Patel, A. Wagenhäuser, C. Eibel, T. Hönig, T. Zeiser, and D. Tiwari,
“What does power consumption behavior of HPC jobs reveal?: Demys-
tifying, quantifying, and predicting power consumption characteristics,”
in IEEE IPDPS, 2020, pp. 799–809.

[34] E. Rojas, E. Meneses, T. Jones, and D. Maxwell, “Analyzing a five-
year failure record of a leadership-class supercomputer,” in SBAC-PAD.
IEEE, 2019, pp. 196–203.

[35] J. Stearley, R. Ballance, and L. Bauman, “A state-machine approach to
disambiguating supercomputer event logs,” in Workshop on Managing
Systems Automatically and Dynamically, MAD, 2012.

[36] D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy checkpointing: Exploit-
ing temporal locality in failures to mitigate checkpointing overheads on
extreme-scale systems,” in IEEE/IFIP DSN, 2014, pp. 25–36.

[37] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. M. Brandt, V. J. Leung,
M. Egele, and A. K. Coskun, “Online diagnosis of performance variation
in HPC systems using machine learning,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 4, pp. 883–896, 2019.

[38] G. Wang, L. Zhang, and W. Xu, “What can we learn from four years
of data center hardware failures?” in IEEE/IFIP DSN, 2017, pp. 25–36.

[39] Z. Zheng, L. Yu, Z. Lan, and T. Jones, “3-dimensional root cause
diagnosis via co-analysis,” in ICAC, 2012, pp. 181–190.

[40] C. Zimmer, D. Maxwell, S. McNally, S. Atchley, and S. S. Vazhkudai,
“GPU age-aware scheduling to improve the reliability of leadership jobs
on Titan,” in SC, 2018, pp. 7:1–7:11.

[41] D. Zivanovic, P. E. Dokht, S. Moré, J. Bartolome, P. M. Carpenter,
P. Radojković, and E. Ayguadé, “DRAM errors in the field: a statistical
approach,” in MEMSYS. ACM, 2019, pp. 69–84.

https://pubs.cray.com/
https://cug.org/

