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Abstract—Good prediction accuracy and adequate lead time
to failure are key to the success of failure-aware Check-
point/Restart (C/R) models on current and future large-scale
High-Performance Computing (HPC) systems.

This paper develops a novel checkpointing technique, called p-
ckpt, that aims to maintain the performance efficiency of failure-
aware C/R models even when failures are predicted with a small
lead time. The p-ckpt technique is developed for HPC systems
with multi-level memory systems to prioritize checkpoints from
vulnerable nodes (nodes with predicted failure) in the event of
failure prediction. It applies coordination among the nodes within
an application so that vulnerable nodes’ checkpoint data is stored
to the Parallel File System (PFS) first by assigning priorities
based on the lead time to failure. Vulnerable nodes thus have
low-latency access on the critical path to the PFS before any
failure happens. Further, we create the hybrid p-ckpt model by
integrating Live Migration (LM) because of its cost-effectiveness
and to reduce checkpoint frequency. Our hybrid p-ckpt C/R model
considers prediction lead time and checkpoint latency to the PFS
to decide on a feasible proactive action such as p-ckpt and
LM. Simulations of six real-world applications for the Summit
supercomputer show a ≈53-65% reduction in overhead due to
the hybrid p-ckpt model compared to a ≈31-61% reduction in
a state-of-the-art solution. We assess our C/R models against
multiple failure distributions and consider lead time variability
and failure prediction accuracy. Based on this evaluation and
assessment, we discuss the trade-offs of using these models and
their impact on application overhead.

Index Terms—Fault Tolerance, High-Performance Computing,
Failure Prediction, I/O subsystem, Checkpoint/Restart, Live Mi-
gration, Burst Buffers

I. INTRODUCTION

Failures and I/O contention add significant overhead to
application execution and become the key challenge for C/R
efficiency [1]–[6]. In past years, significant progress has been
made on failure prediction [7]–[10], live migration (LM) [11],
[12], and Burst Buffers (BBs) utilization [5], [13] to address
the challenges of fault tolerance and PFS I/O contention.
Based on these techniques, many hybrid solutions such as
failure-aware safeguard checkpointing [14], [15], and multi-
level C/R by orchestrating failure prediction, LM, BBs and
periodic checkpointing [16] have been proposed. Multi-level
Checkpoint models employ multiple storage layers with differ-
ent latency to minimize checkpoint latency while improving
system efficiency [17]–[19]. Safeguard Checkpoint [14] tries
to minimize computation loss by checkpointing just-in-time
before an anticipated failure. However, effectiveness of these
failure-aware C/R solutions depends on the accuracy of the
failure prediction model and the length of the lead times to
predicted failures. Proactive techniques, such as LM, require
high lead times for a larger memory footprint while safeguard

checkpoints require enough lead time to complete a proactive
checkpoint until the data is committed to the PFS amid I/O
congestion. Without adequate lead time, an effort to complete
the safeguard checkpoint is not guaranteed to succeed (i.e.,
complete before the failure) on vulnerable nodes given the
unpredictable nature of I/O completion on large HPC sys-
tems. Such challenges require solutions that can effectively
meet the deadline to commit checkpoint data to the PFS on
vulnerable nodes. Prioritizing checkpoint data bleed-off on
individual nodes is a promising direction. A filesystem-level
implementation of prioritizing checkpoint data on vulnerable
nodes to PFS requires complex changes in the filesystem,
I/O server layer, and interconnect network layer. Further, in
a system with a high failure rate, simple prioritization of an
unhealthy node would fail given the Weibull distribution of
failure arrival times on HPC systems [15].

To address these challenges, we propose a novel coordinated
prioritized checkpoint method, called p-ckpt, that coordinates
processes within an application in their effort to store check-
point data to the PFS in giving vulnerable nodes higher priority
for such actions. The core idea is as follows: In the event
of failure predictions, a p-ckpt request gets initiated by the
vulnerable node. It triggers the checkpointing process to, in
the first phase, checkpoint to the PFS on only the vulnerable
nodes. During this time, the healthy nodes await a checkpoint
completion notification from vulnerable nodes to move for-
ward to the next phase, and a new node predicted to fail
during this phase gets queued in the node-local priority queue
based on its lead time to failure. Once all the vulnerable nodes
commit their checkpoint data, the remaining nodes commit
their checkpoint data to the PFS in a second phase. Such
coordination is facilitated by prioritizing vulnerable nodes
based on the lead time to the predicted failure. A lower lead
time implies a higher priority. Further, we incorporate LM
into the C/R model, thereby creating a so-called hybrid p-
ckpt. LM is the preferred proactive choice over prioritized
checkpoints as it is cost-effective in terms of network traffic
and its ability to let the application continue execution while
LM is in progress [11].

Our multi-level hybrid p-ckpt C/R model for modern HPC
systems can benefit in performance from failure prediction
and an analysis model for effective use and coordination
of multiple resilience techniques such as p-ckpt, LM, and
periodic checkpoints. Our adaptive C/R model is driven by
failure lead time prediction to select an appropriate proactive
action with the smallest possible overhead in the presence of
failures. Desh’s [7] log-based failure chain characterization



technique is utilized to detect instances of likely failures in
real-world HPC system logs (three HPC systems) and their
lead time distribution, which provides the means for failure
prediction and system failure rate calculation. LM and p-
ckpt checkpoints are integrated into our C/R model to provide
just-in-time mitigation of a predicted failure. The approach is
unique in that it selects the best possible actions dynamically
based on the lead time to failure, either via p-ckpt, to
checkpoint to the PFS, or via LM with minimal interruption to
application execution. The impact of this trade-off is subject
to our evaluations.

In summary, we make the following contributions:
• We assess the impact of short lead times to predicted

failures comparing existing safeguard checkpoint and live
migration [14], [16] solutions.
• We propose a novel checkpoint technique, (p-ckpt), that

allows coordination at application-level to prioritize the saving
of state on nodes with imminent health problems to avoid
computational loss due to failures.
• We develop a hybrid p-ckpt C/R model that coordinates

fault tolerance techniques of LM and coordinated prioritized
checkpointing while considering the latency of multiple I/O
layers for storing checkpoints, driven by a log-based failure
analysis and prediction model to reduce failure overhead.
• We evaluate the p-ckpt and hybrid p-ckpt C/R models

against multiple failure distributions and measure their effec-
tiveness while assessing sensitivity to lead times to failures.
We test their robustness against failure prediction accuracy.
We discuss these evaluations and make suggestions on their
applicability. Further, we evaluate the impact of checkpoint
size and LM transfer size on the performance of LM and p-
ckpt models and provide an analytical model.

II. SYSTEM MODEL

Our work is modeled on an HPC system that resembles
the Summit supercomputer architecture. Each compute node
has a BB serving as an intermediate storage device to absorb
I/O write bursts locally. Other HPC architectures historically
employed a cluster of dedicated BB nodes, e.g., NERSC’s
Cori [20]. On Summit, each BB device has 1.6 TB capacity,
compared to a 512 GB DRAM size, with up to 2.1 GB/sec
write and 5.5 GB/sec read I/O bandwidth [21]. BBs assist
in reducing PFS I/O contention in two situations in our C/R
model: First, periodic checkpoints are cached on the BBs and
later asynchronously bled off to the PFS. The asynchronous
bleed off is optimized by limiting the number of nodes that
transfer data to the PFS at any time. Second, during recovery
from unmitigated failures, only one node, the replacement
node, needs to recover checkpoint data from the PFS. The
rest of the nodes recover data from their local BB.

Further, each node has an instance of a fault predictor using
the Aarohi [22] model running on a separate core than the
application. Aarohi suggests placing predictors on Hardware
Supervisory System (HSS) that manages a chassis on Cray
systems. Their observations are based on the grounds of
application interference from the predictor. However, notifying

the prediction handler subsystem/thread on a compute node
from a chassis controller can be challenging in terms of
latency, particularly when prediction lead times are in the
range of a few seconds. Placing the predictor on the node
itself eliminates this problem, preferably on a spare core or
otherwise by core sharing with applications. Aarohi itself is
a lightweight monitor that predicts a failure by analyzing 18
different logs within 0.31 msecs on average. Checkpoint data is
transferred from BBs to the PFS asynchronously, e.g., via the
Spectral library on Summit [23]. We assume that the integrity
of the checkpoint data stored on local BBs is maintained, and
the checkpoint size per node never exceeds the DRAM or BB
size.

Checkpoint Model: Our proactive checkpoint technique
(applicable to both p-ckpt and safeguard checkpoint) mandates
that all the nodes commit their checkpoints to the PFS in the
event of failure prediction, thereby bypassing the BBs. In con-
trast, periodic checkpoints are staged on to the BBs first and
later drained to the PFS asynchronously. Other strategies have
been pursued in multi-level checkpointing models, such as
neighbor checkpointing and local disk/BB checkpointing [17],
[24]. Evaluating these methods are beyond the scope of this
paper, but as they are orthogonal, can themselves benefit
from prioritization. Further, we mandate all the nodes in an
application to save their state to avoid application restart and
synchronization issues. Thus, if recovery happens from a non-
handled failure, then all the healthy nodes recover checkpoint
data, which was stored in a periodic checkpoint on their local
BBs, while the replacement node recovers from the PFS. If a
failure is mitigated with proactive checkpointing, then all the
nodes recover from the PFS.

Failure Model: We make the following assumptions in our
failure model:
• Failures can happen at any point in time.
• The impact of failure is limited to a single node.
• Another failure, predicted or not, can occur on a node that

already had a previous failure predicted, but still with some
lead time left before the failure is predicted to occur.

The Optimal Checkpoint Interval (OCI) is the near-optimal
time gap between two consecutive checkpoints that aims to
lower the checkpoint frequency while minimizing the com-
putation loss due to failures. Young’s formula [25] for OCI
applies to single-level C/R models. Previous work by Di et
al. [18], [19] and Benoit et al. [26] focused on the optimal
checkpoint interval for multiple types of checkpoints, each
of them stored on a separate storage medium. However, our
HPC system model employs intermediate storage devices (BBs
in this case) that stage the checkpoints before being bled off
to the PFS asynchronously. Failures during the asynchronous
checkpointing can cause loss of computation performed during
the current and previous iterations as shown in Fig. 1(B).
However, during our evaluation, we found that this asyn-
chronous checkpoint window is negligible compared to the
OCI because of the high performance of the PFS on Summit
(see Section IV). So we use Young’s formula in (1) for OCI
calculation, where toptcmpt is the OCI, λ the failure rate, c the



number of compute nodes a job is running on, and tbbckpt the
time required to write one checkpoint to the BBs by a job.

toptcmpt =

√
2tbbckpt
λc

(1)

Fig. 1. Computation loss upon failure during (A) computation post check-
pointing to PFS, (B) asynchronous checkpointing to PFS, and (C) synchronous
checkpointing to BB

The OCI in our checkpoint model further includes a rigorous
analysis of failures logs. The study analyzes the system logs
collected from three real-world HPC systems from Desh [7]
over a period of six months. Using the Desh approach, the
most common sequences of phrases in logs that may lead to
failure are considered. Our assumption in this work is that
any sequence of phrases, so-called failure chains, results in
an actual failure. The time difference between the first phrase
and the last phrase in a chain is calculated as the lead time.
Fig. 2a shows the distribution of lead times as box plots
for different failure instances (sequence 1-10), each of which
occurs repeatedly in these logs. Failure sequence ID and the
number of occurrences in the logs are on the x-axis. The y-
axis represents the lead time in seconds. Mean lead time is on
the left side of each boxplot. We observe that most failures
are bounded by the whiskers, only a few outliers exist, with
an exception of failure sequences 3 and 4. In the following
experiments, we consider the actual lead time of any failure
during simulation.

We introduce a parameter σ that represents the percentage of
failures that can be predicted with enough lead time in excess
of the time required to migrate a process from a faulty node to
a new and healthy node. By considering a σ percent decrease
in the rate of failures, we further improve the OCI. That means
σ percent of failures can be predicted with a lead time in
excess of θ seconds and thus can be avoided with proactive
live migration. We calculate the value θ by assuming that the
total amount of data transferred during live migration is equal
to three times the processes’ checkpoint data and is bounded
by RAM size (512 GB). We account for a 3x higher footprint
for LM as it migrates an entire process rather than just a
subset of application data. Consider a stencil with a temporal
domain of t-1, t, t+1, i.e., any particle point has 3 values in
time (needed by LM whereas p-ckpt only needs one as others
can be recalculated). This approximates the overhead assuming
that these data structures dominate the memory consumption
of an application. Note that (1) is used for the p-ckpt model
while (2) is applicable to the hybrid p-ckpt model. We do not
incorporate the percentage of failures handled by p-ckpt in
the OCI as they cause the application to recover after failure.
In contrast, with live migration, failures are avoided, i.e., no

recovery process is required.

toptcmpt =

√
2tbbckpt

λc (1− σ)
(2)

III. SIMULATION FRAMEWORK

For evaluating the C/R models developed in this paper, we
rely on simulation. SimPy [27], a process-based discrete-event
simulation framework in Python, is used for developing our
simulation framework. With SimPy, we simulate the time spent
during computation, checkpointing to BBs and PFS, proactive
operations, and inject failure events. Our simulation framework
comprises multiple components (see Fig. 3). Components
boxed with dotted lines run as a SimPy process during simu-
lation. The boxes with solid lines represent the input to these
components. Arrows of dotted edges indicate either actions
or input at runtime, arrows with solid lines are inputs during
initialization time. Each simulated application runs as a SimPy
process performing computation and periodic checkpointing
iteratively. The OCI of each application SimPy process is
updated periodically using (1) and (2) to better account for
a dynamically changing system failure rate. The checkpoint
period is constant as the applications store checkpoints to BBs
while asynchronously draining them to PFS.

The system and application configuration file contains input
describing application characteristics, PFS I/O performance
statistics, failure distribution parameters (Table III), and failure
analysis (lead times) in detail. These data are fed into the
simulation framework creating the static and dynamic compo-
nents required for the simulation. The failure generation and
prediction component uses the failure distribution parameters
to generate one of the failures along with its prediction lead
time using failure analysis described in Section II that is then
injected into an application. For each failure generation, a node
is randomly selected from a uniform probability distribution.
The application on that node gets a failure prediction notifi-
cation before the actual failure is triggered. Upon prediction,
the application selects one of two proactive actions; which one
depends on the C/R model algorithm being simulated.

When a failure is injected, the interrupted application uses
the SimPy framework’s time measurement APIs and the PFS
I/O performance model to determine its state at the time
of failure and calculates the amount of computation loss.
Hence, the I/O performance model is an integral part of our
simulation framework, which is described in the following
section. Further, we make the following assumptions in our
simulation:
• The rate of failures is lower than the rate of recovery for

failed nodes so that reserved nodes are always available to the
resource manager, such as Slurm [28] or Flux [29].
• No distinction is made between soft failures and hard/node

failures, i.e., both are handled uniformly, except during the
recovery process. A failed node is always replaced by a new
and healthy node.
• Checkpointing resembles application-level checkpointing.



(a) Failure prediction lead time distribution (b) I/O performance on single compute node (c) Impact of scaling on I/O bandwidth
Fig. 2. Model and validation

Fig. 3. Simulation framework

IV. I/O PERFORMANCE MODEL

I/O performance is known to be variable due to I/O con-
tention between different jobs. Even on modern HPC systems,
the I/O bandwidth of an application is severely impacted by
concurrent I/O operations performed by other applications.
This causes significant variability in I/O performance. On
Summit, IBM’s SpectrumScale GPFSTM PFS handles ap-
plication I/O using IBM’s GL4TM Elastic Storage Servers as
I/O nodes. The I/O subsystem evaluation in [21] shows an
aggregate bandwidth of 2.5 TB/sec can be realized. However,
the evaluation measures the performance of the I/O node
server. It does not measure the I/O performance realized within
an application. The objective here is to characterize the actual
I/O performance seen by an application.

To characterize the I/O performance of the GPFSTM , two
experiments are conducted. The first experiment determines
the optimal number of MPI processes that can achieve max-
imum aggregate I/O bandwidth on a single compute node. A
compute node on Summit has 42 physical cores, which are
evenly distributed over two sockets along with DRAM. This
experiment measures the average I/O bandwidth for different
aggregate data transfer sizes over multiple MPI tasks from 1 to
42 in 10 different runs. These MPI tasks are evenly distributed
over the two sockets on the compute node and use POSIX
write to transfer data. I/O buffers are flushed via the fsync()
call to ensure that the data is not cached but rather committed
to the devices. Fig. 2b depicts the aggregate I/O bandwidth
(y-axis) for different transfer sizes (x-axis) on curves ranging
from 1 to 42 processes. These results indicate that 8 MPI
tasks on a single compute node result in the maximum I/O

bandwidth. Hence, 8 MPI tasks are used to store checkpoints
in the C/R model.

The second experiment assesses the effect of weak scaling
on aggregate I/O bandwidth for different sizes of aggregate
data transfer per node. 8 MPI tasks are used to perform
I/O on a node and its aggregate bandwidth is averaged over
10 runs. Effectively, the I/O performance of the GPFSTM

parallel file system is modeled. Fig. 2c shows the effect of
scaling (nodes on the y-axis, transfer size on the x-axis) on
aggregate I/O bandwidth (indicated by the heat map). For
weak scaling, a fixed data size (each column) is exposed to
an increasing number of nodes. We increase the data size
along the x-axis and construct the I/O performance matrix.
In our simulation, this performance matrix is used to calculate
the time required to store checkpoint data in the PFS. Our
simulation is based on the assumption that the aggregate
bandwidth of a job is not affected by the I/O traffic generated
by other running applications for now. I/O congestion will
add more overhead for the non-frequent and failure prediction
driven proactive checkpoints (safeguard and p-ckpt) as they
checkpoint to the PFS directly, but not for the asynchronous
periodic checkpoints from BBs to PFS resulting in minimal
impact on performance overhead across all the C/R models.
Adding the effect of background traffic impacts the check-
point overhead across all models. For evaluation purposes,
we assume the same performance matrix for the I/O read
operations. PFS write achieves better throughput than read
because data is cached. But checkpoints must be committed
to the PFS before recovery. Hence, our I/O experiments use
fsync() to purge caches. Further, as stated in Section II, all
nodes recover checkpoint data from BBs, except for the new
replacement node in case of non-handled failures. This reduces
PFS reads to a single node and thus no longer results in PFS
contention, i.e., I/O performance is well below the thresholds
of the aggregate scenario as discussed before. So recovery
mainly depends on BBs speed, PFS is not the bottleneck.

V. IMPACT OF LEAD TIME VARIABILITY

We simulated the execution of six real-world scientific
applications listed in Table I to assess the impact of prediction
lead time variability. Previous works [15], [30] use these
application characteristics with the OLCF’s Titan supercom-
puter as their platform. Since our experiments are based on



(a) CHIMERA (b) XGC (c) POP
Fig. 4. Impact of lead time variability on safeguard checkpointing and LM for applications (a) CHIMERA (b) XGC (c) POP

Summit, we scale up the checkpoint size for each application
proportionately to the change in DRAM size using (3).

Sizenew =
Sizeold ∗#Nodesnew ∗DRAMSIZEnew

#Nodesold ∗DRAMSIZEold
(3)

To generate failures, we use the Weibull distribution pa-
rameters of Table III for OLCF’s Titan in place of Summit’s
because of unavailability of the latter. A total of 1000 simu-
lation runs were performed and then averaged.

TABLE I
HPC WORKLOAD CHARACTERISTICS

Application
Number of

Nodes

Checkpoint
Size (GB)

on Summit
Computation
Time (hour)

CHIMERA 2,272 646,382 360
XGC 1,515 149,625 240
S3D 505 20,199 240

GYRO 126 197.2 120
POP 126 102.5 480

VULCAN 64 3.27 720

We performed our analysis using three existing C/R models:
• Model B: Periodic checkpointing + No prediction (base

model);
• Model M1: Periodic checkpointing + Failure prediction

& analysis model + Safeguard checkpointing; and
• Model M2: Periodic checkpointing + Failure prediction

& analysis model + Live migration.
Both models M1 and M2 are driven by failure predictions

to perform proactive actions to avoid losses due to failures.
Model M2 represents the LM-C/R model [16] and starts the
LM process with adequate time before failure. Model M1 [14]
performs just-in-time checkpoints or safeguard checkpoints
before a failure.

Fig. 4 illustrates the impact of prediction lead time variabil-
ity on the applications (results for S3D, VULCAN, and GYRO
omitted as they behave similarly to POP). The curves represent
the percent change of overhead for each phase of M1 (red) and
M2 (blue) relative to the base model B (y-axis) over percent
lead time variation (x-axis). When lead times are varied,
failure prediction timing is impacted. For example, with a 50%
increase in lead time, failures are predicted 1.5x earlier than
the original lead times. At 0% (y-axis), the overhead remains
unchanged, at 100% the overhead is completely removed, i.e.,
higher is better. The phase of each model is indicated by the
legend and defined as follows:
•Checkpoint Overhead: Duration for which application ex-

ecution is blocked for checkpointing.

•Recomputation Overhead: Duration to recompute the por-
tion of execution that was lost due to a failure.
•Recovery Overhead: Duration to recover from all failures.
Observation 1: Model M2 shows moderate improvement

in reducing resilience overhead when lead times increase for
large applications, but its performance diminishes once lead
times are shorter than their reference values. In contrast, M1
reduces recomputation overhead by a larger amount than M2,
but only for the smallest of applications; other overheads, and
recomputation for larger applications remain unchanged.

For the large applications, CHIMERA and XGC, safeguard
checkpoints (M1) do not add any benefit while they eliminate
85% of recomputation cost for smaller applications (even for a
50% decrease in lead time) and tolerate the impact of lead time
variability. For S3D, in particular, M1’s recomputation cost re-
ductions gradually decrease from 77% (for 50% increased lead
time) to 50% reductions (for 40% decreased lead times) and
evaporates with further decrements in lead times. Safeguard
checkpoints (M1) have no impact on checkpoint and recovery
overhead regardless of application size.

We observe a more differentiated pattern under model M2.
The support of LM in M2 reduces all types of overheads and
changes with lead time variability at different rates depending
on application size. For the largest application, CHIMERA,
M2 sees all types of reductions rise by 8-10% (for a 10%
increase in lead times relative to the reference) resulting in
35-60% savings over the base model, and then remaining
stagnant for longer leads. However, a mere 10% decrease in
lead times diminishes all types of benefits provided by LM
in M2. Similarly, for XGC, the second largest application,
benefits for all types of reductions gradually increase with
longer lead times, and these benefits rise at a faster rate than
for CHIMERA. With a decrease in lead time, these benefits
diminish only after lead times decrease by 50% or more. For
smaller applications, M2 provides consistent reductions in all
types of overheads that are not affected by lead time variability.

To understand the impact of lead time variability on M1
and M2, we define two terms: FT latency and FT ratio. FT
latency is the time required by M1 or M2 to complete its
proactive action to mitigate failures. FT ratio is the ratio of
successfully mitigated failures to the total number of failures
for an application. Application size and FT latency are two
key factors that impact the performance benefits in M1 and
M2 when lead time is varied. Table II represents the FT ratio



in M1 and M2 for CHIMERA, XGC, and POP under varied
lead times. As application size increases, both M1 and M2
require larger lead times to mitigate failures. So there is a drop
in FT ratio for a lead time reference resulting in decreasing
overhead reductions. This drop is also seen with increased
reference lead times. This suggests that both M1 and M2’s FT
latencies are too high for large applications. Also, a decrease
in lead time brings the FT ratio for M2 to near zero for
large applications (CHIMERA and XGC) resulting in near-
zero overhead reductions. However, since M2’s FT latency is
lower than M1’s, it results in a higher FT ratio in M2 for large
applications. In contrast, for smaller applications, the FT ratios
remain similar and unchanged for both M1 and M2.

TABLE II
FT RATIO FOR APPLICATIONS UNDER M1 AND M2

Lead
Time

Change FT Ratio
CHIMERA XGC POP
M1 M2 M1 M2 M1 M2

+50% 0.007 0.57 0.04 0.83 0.84 0.85
+10% 0.006 0.57 0.04 0.69 0.82 0.85

0% 0.006 0.47 0.04 0.66 0.84 0.85
-10% 0.004 0.04 0.04 0.58 0.83 0.86
-50% 0 0.04 0.009 0.04 0.83 0.85

This experiment illustrates that lead time variability can
have a severe impact on failure prediction-assisted fault tol-
erance solutions. First, Safeguard Checkpointing (M1) fails at
providing any benefits for large applications and only provides
reductions in recomputation overhead for smaller applications.
Second, a small decrease in lead time can reduce the perfor-
mance benefits of LM (under M2) for large applications. Given
these results, our proposed p-ckpt solution aims to tackle these
challenges of short lead times as described in the following
section, followed by an evaluation with the same experimental
methodology as discussed so far.

VI. PRIORITY-BASED COORDINATED CHECKPOINTING

In this section, we describe the overall design of our
priority-based coordinated checkpointing method, p-ckpt, and
the hybrid p-ckpt model. The core idea behind p-ckpt is that
it applies coordination among the nodes within an application
before checkpointing to the PFS. It supports the prioritization
of vulnerable nodes during the checkpointing to guarantee
them contention-free access to the PFS. The hybrid p-ckpt
model orchestrates p-ckpt with another proactive choice LM.
However, LM is the preferred choice in our C/R model over
p-ckpt as it allows the application with a vulnerable node
to continue its execution while its pages are being copied
to a replacement node [11]. Further, checkpointing/restarting
(to/from PFS) is more costly than LM in terms of network
traffic for medium to large applications.

Fig. 5 depicts the state transitions of a node in the hybrid
p-ckpt model. The square boxes with solid lines represent
different states of a node. The ellipses with dotted transitions
represent notifications as required. The solid arrows represent
state transitions. When a failure is predicted, a node transitions
from the normal state of periodic computation and checkpoint-

ing to the vulnerable state. In this state, based on the predicted
lead time, a decision is made on the proactive action. If there is
enough time to migrate the process from the vulnerable node to
a new and healthy node, then the live migration process starts.
Otherwise, the vulnerable node sends a p-ckpt notification to
all other nodes and the p-ckpt process begins. When a p-ckpt
notification is received, healthy nodes transition to the waiting
state and wait for the vulnerable nodes to finish checkpointing
to the PFS. Once the vulnerable nodes finish storing their
state to the PFS, they broadcast the pfs-commit message to all
other nodes within the application. When the healthy nodes
receive this notification, they proceed with checkpointing to
the PFS. The p-ckpt process is implemented with node-local
priority queues, where vulnerable nodes with lower lead time
to failures have higher priority while all healthy nodes have
equal lower priorities. When live migration is in progress and
another failure prediction occurs with lower lead time, live
migration is aborted and the p-ckpt process begins (see state
diagram).

Fig. 5. State diagram of a node in hybrid C/R model

P-ckpt performs a few global synchronizations and broad-
cast operations, which adds performance overhead. How-
ever, these operations are in the order of microseconds on
Summit [21]. A global barrier with 2048 nodes takes only
≈8µsecs. We do not account for these small overheads during
simulation. Further, the p-ckpt threads run only when a p-ckpt
is taken but otherwise do not impact applications during exe-
cution. LM’s execution interleaves with application execution.
However, the overhead is quite low adding just 0.08-2.98% in
runtime during live migration [11].

VII. EVALUATION

The simulator used in Section V is also used for the
evaluation of two new models as below relative to the same
base model B as before:

• Model P1: Periodic checkpointing + Failure prediction &
analysis model + p-ckpt.

• Model P2: Hybrid of periodic checkpointing + Failure
prediction & analysis model + p-ckpt + LM.

Model P2 combines two different proactive fault tolerance
techniques, LM and p-ckpt. The objective is to showcase our
contributed models’ benefits over fault tolerance models in
prior work. No prior work combined M1+M2, and benefits
may be limited for large applications (CHIMERA and XGC)
as M1 is ineffective for large applications (see Section V).

Fig. 6 depicts for each application (x-axis) the overhead
of fault tolerance in percent (y-axis) normalized to the base
model (B) with periodic checkpoints (first bar) compared to



(a) Summit under Titan’s Failure Distribution (b) System 18 (c) LM vs p-ckpt
Fig. 6. Reduction in overhead for Summit, LANL System 18, and LM vs p-ckpt

failure prediction models M1, M2, P1 (p-ckpt) and P2 (hybrid
p-ckpt). All models are annotated with rounded total overhead
(in hours) on top of each bar. To test the robustness of our C/R
model, we applied three different failure distributions from
systems referenced in Table III [15], [30]. Here, we make
the assumption that OLCF’s Titan’s failure distribution applies
to Summit, i.e., Fig. 6a depicts the overhead distribution for
Summit under Titan’s failure distribution.

Observation 2: p-ckpt (P1) and hybrid p-ckpt (P2) help
reduce application overhead over the base model by ≈42-55%
and ≈53-65% on Summit, respectively.

TABLE III
WEIBULL DISTRIBUTIONS FOR FAILURE GENERATION

HPC System Shape Scale
LANL System 8 (164 nodes) 0.7111 67.375

LANL System 18 (1024 nodes) 0.8170 6.6293
OLCF Titan (18868 nodes) 0.6885 5.4527

In related work [16], the LM-C/R model (M2) was guided
by failure prediction and reduced the application overhead by
≈31-61%. This reduction was due to the assistance of LM.
The safeguard checkpoint model (M1) by Bouguerra et al. [14]
when driven by lead time-based failure prediction, reduced
overall application overhead by ≈0-52% without providing
any benefits for large applications. With hybrid p-ckpt, we
observe a significantly higher reduction in cost, by ≈53-65%
(see Fig. 6a), than in [14], [16]. The savings can be attributed
to a combination of prioritized coordinated checkpointing (p-
ckpt) against failures with short lead times (model P1) and
lower failure rates due to prediction and successful mitigation
via LM (model P2). The assistance of p-ckpt alone brings
a ≈42-55% reduction in application overhead (see Fig. 6a),
which is higher than model M2 for large applications. Table IV
represents the FT ratio in P1 and P2 for CHIMERA, XGC, and
POP under varied lead times. As can be seen, the lower FT
latency of p-ckpt allows both P1 and P2 to obtain a higher
FT ratio compared to models M1 and M2 (see Table II).
Model M1 cannot handle failures with short lead times for
large applications with safeguard checkpoints, and its FT ratio
remains near zero. However, p-ckpt successfully handles such
failures as it commits the checkpoint on the vulnerable nodes
without any congestion in a prioritized manner. While M2’s
LM yielded an FT ratio of 0.5 and above for the base lead
times and above for large applications, p-ckpt pushed the FT

ratio in P1 and P2 even higher, resulting in better overhead
reductions. Notice that the FT ratios for P1 and P2 are almost
equal for all the applications. That means both P1 and P2 can
handle an equal amount of faults, but the overhead reduction
difference between them is significant, as discussed later.

TABLE IV
FT RATIO FOR APPLICATIONS UNDER P1 AND P2

Lead
Time

Change FT Ratio
CHIMERA XGC POP
P1 P2 P1 P2 P1 P2

+50% 0.84 0.83 0.85 0.84 0.88 0.86
+10% 0.76 0.76 0.84 0.84 0.87 0.85

0% 0.70 0.69 0.84 0.83 0.86 0.85
-10% 0.67 0.67 0.84 0.84 0.84 0.87
-50% 0.36 0.37 0.84 0.84 0.86 0.86

The stacked bars break down overhead that can be attributed
to checkpointing and, after a failure, recovery to reload a
checkpoint plus recomputation time to catch up with the
execution to the point of failure. Notice that recovery overhead
is negligible for all the models except for P1. This is due to our
proactive checkpointing model, where all nodes commit their
checkpoint to the PFS bypassing the BBs unlike regular check-
pointing. A mitigated failure by a proactive checkpoint takes
longer to recover, whereas failures unhandled are recovered
faster with the assistance of BBs. We observe that recovery
contributes ≈2.5-6% of total overhead for P1 compared to less
than 1% for other models.

Observation 3: Both p-ckpt and hybrid p-ckpt can tolerate
the impact of prediction lead time variability better than prior
models for large applications.

Fig. 7 assesses the impact of varied prediction lead time on
models P1 and P2 for all the applications (results for S3D,
VULCAN, and GYRO omitted as they behave similarly to
POP) with the same x- and y-axes as in Fig. 4 before. p-
ckpt (P1) does not provide any additional benefits for recovery
and checkpoint overheads like the M1 model (Section V).
However, for the largest application CHIMERA, it produces
more recomputation overhead reductions than M2 and P2 and
can tolerate up to a negative 50% change (i.e., reduction) in
lead times while still providing some savings in recomputation
relative to the base model due to the prioritization of vulnera-
ble nodes. In contrast, Model M1 (safeguard checkpoints) does
not provide performance benefits for CHIMERA, and M2’s
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Fig. 7. Impact of lead time variability on p-ckpt and hybrid p-ckpt for applications (a) CHIMERA (b) XGC (c) POP

benefits diminish when lead time decreases by 10% relative
to the reference. For XGC, P1 nearly eliminates the entire
recomputation overhead regardless of lead time variations.
In contrast, M2’s performance benefits diminish with a 50%
reduction in lead time while M1 is not effective at all.

The overhead reduction pattern for checkpointing in model
P2 (hybrid p-ckpt) with respect to lead time changes follows
model M2 for both CHIMERA and XGC. The pattern for
recomputation overhead follows M2 largely when lead time
increases, but follows P1 when the lead time shrinks. With the
support of coordinated prioritized checkpointing (p-ckpt), P2
achieves a similar recomputation overhead reduction pattern
as model P1 gaining a significant advantage over model
M2. For large applications, both models, P1 & P2, not only
achieve better recomputation overhead reductions, but increase
their tolerance against prediction lead time variability. Further,
because of our checkpointing model (see Sec. II) in p-ckpt and
the recovery process after proactive checkpoints, reductions in
recovery overhead for P2 are not seen for XGC when lead time
is less or equal to the reference. These reductions completely
diminish for CHIMERA. Patterns for P1 and P2 for smaller
applications follow M1 and M2, respectively.

Finding: Variability in prediction lead time has a significant
impact on the performance benefit of prediction-based C/R
models, and our hybrid p-ckpt model outperforms prior related
models under such circumstances.

Observation 4: p-ckpt is more effective for large ap-
plications compared to LM. Higher lead times favor LM;
conversely, when lead times are low, p-ckpt takes over.

Fig. 8 demonstrates the difference in FT ratio by LM and
p-ckpt in percent (y-axis) in model P2 over lead time variation
(x-axis) for all the applications. In this experiment, the lead
time variation range was within (-90%, +90%) expanding
the earlier range (-50%, +50%). If the percent difference is
positive, then LM is the dominant proactive choice; other-
wise, p-ckpt is more dominant. As can be seen, for smaller
applications, the FT ratio difference between LM and p-ckpt
remains consistently high (above 75%) across the lead time
variation range. Since LM is the preferred choice ahead of
p-ckpt and its FT latency is small enough, it can tolerate the
lead time changes for smaller applications. When application
size increases, the FT ratio difference between p-ckpt and LM
decreases for the base lead time (0% change in lead time).
That means p-ckpt is more effective for large applications

compared to LM because of its lower FT latency. For larger
applications, as lead times decrease, the dominance of p-ckpt
as the proactive choice increases. p-ckpt’s dominance over
LM is seen earlier for the largest application like CHIMERA
followed by XGC and S3D. As lead time changes become
negative, p-ckpt completely takes over LM before the FT ratio
difference reaches zero as lead times completely diminish.

Fig. 8. Difference in LM and p-ckpt FT ratio in P2 model

Observation 5: Under hybrid p-ckpt (P2), checkpoint over-
head is reduced by ≈42-70% across applications. In contrast,
LM (M2) results in reductions of 34% compared to P2’s 42%
for the largest application.

Even though both P1 and P2 yield equal FT ratios (Ta-
ble IV), P2 performs better than P1 in reducing overhead as
LM helps model P2 to reduce checkpoint overhead. There is
a negligible change in time spent in storing checkpoints under
model P1 because of the adaptive nature of our checkpoint
model. That means the schedule of checkpoints is variable
in our model depending on the factors such as the time and
location of failure prediction, and the proactive action chosen.
For example, the scheduled checkpoint changes due to a p-
ckpt triggered by and completed before a predicted failure.
What is more significant is the reduced failure rate resulting
from the failure analysis model, which yields a ≈42-70%
decrease in checkpoint overhead in the hybrid p-ckpt (P2)
model. Further, for the largest application, CHIMERA, P2
reduces checkpoint overhead by 42% compared to just a 34%
reduction by M2. Even though LM in both M2 and P2 have
the same configuration, the assistance of p-ckpt helps P2 in
completing the execution earlier (2% faster than M2) and thus
reducing checkpoint overhead.

Observation 6: In the presence of frequent faults, appli-
cations can suffer higher recomputation overhead with hybrid
p-ckpt compared to p-ckpt.



For all the applications, the recomputation overhead in-
creases under (compare blue bars between P1 and P2 in
Fig. 6a and Fig. 6b) due to the inclusion of LM and elongated
checkpoint intervals derived from our extended failure analysis
model as per (2). The reduced failure rate increases the optimal
checkpoint interval by ≈54-340%, which indirectly impacts
the computation losses due to failures that could not be pre-
dicted or avoided even if predicted in advance. The elongated
checkpoint interval increases the hours of computation loss
when failures are not proactively avoided. P2 experiences a
≈11-27% increase in recomputation overhead relative to the
base model when compared to P1. However, P2’s loss in
performance benefits is compensated by the reduced check-
point overhead. This gives rise to the requirement of a careful
selection of the C/R model for fault tolerance.

Recommendation: Based on the analysis in observations
4 and 6, we suggest that HPC systems with a high fault
rate and low lead times should utilize p-ckpt (P1) for large
applications with short runtimes because of its ability to
handle failures with short lead times and reduced computation
loss derived from more frequent checkpointing. In contrast,
applications with long runtimes should use the hybrid p-
ckpt (P2), irrespective of size and failure rate, as checkpoint
overhead can eclipse the recomputation overhead.

Observation 7: Reductions in overheads for model P2 are
robust across different Weibull failure distributions.

Fig. 6b depicts the reduction in overhead on the same
x- and y-axes as before (Fig. 6a), yet for Systems 18 with
its failure distribution. The reduction in overhead follows a
similar pattern for all three failure distributions. For LANL
System 8 (figure not presented due to lack of space), the
decrease in overhead is ≈44-73% while System 18 results in
≈52-69% reduced overhead. Furthermore, the same pattern of
increasing gains with decreasing checkpoint sizes is observed.
This result is significant as it demonstrates that our model
is robust and generalizes to other failure distributions. In
principle, our C/R model can be deployed on any HPC system
that supports BBs, LM, and failure analysis plus prediction. It
also shows that orchestrating failure prediction within a C/R
model to drive decisions about when and how to checkpoint
and when to live migrate reduces the impact of failures and
shortens application execution over simpler failure models.

Observation 8: The larger an application’s checkpoint size
is, the larger the advantage of p-ckpt over LM will be.

As mentioned in Sec. II, we assume that the amount of
data transferred for successful LM is three times that of the
checkpoint data size per process. To understand how this factor
impacts the performance comparison of LM (M2) and p-ckpt,
we varied the amount of data transfer for LM and created
multiple models designated with M2-*, where * indicates the
factor of checkpoint data for transfer. Fig. 6c shows the impact
of varying transfer size for LM. The horizontal bars represent
overhead reductions (similar to Fig. 6a) for all the models
(B, P1, and M2-*) along the x-axis for three applications on
the y-axis. We observe that for large applications (CHIMERA
and XGC), p-ckpt (P1) performs better than LM (M2) overall

until the LM transfer size becomes 1x and 2.5x times the
checkpoint size, respectively. For smaller applications, LM
always performs better than p-ckpt. Furthermore, reductions
in recomputation overhead for p-ckpt (P1) are significantly
larger than for LM (M2).

Based on this analysis, we provide an analytical model to
compare LM and p-ckpt. We observe that LM (M2) reduces
checkpoint overhead significantly (Observation 5), whereas
p-ckpt (P1) yields better recomputation reductions than LM
(Observation 4). For p-ckpt to perform better than LM, the
difference in recomputation overhead reductions between p-
ckpt and LM must be greater than the checkpoint overhead
reduction by LM. This is captured by (4). Notice that we
consider the recovery overhead in model P1 as negligible.
ckptLMreduction <

(
recompP−CKPT

reduction − recomp
LM
reduction

)
(4)

The first term can be expressed as (5), where the first term
represents the total checkpoint overhead in the base model
(B) and the third term represents a fractional reduction in
checkpoint frequency due to LM (see (2)).

ckptLMreduction =ckptBoverhead ∗
(
1−

√
(1− σ)

)
(5)

Similarly, recompP−CKPT
reduction and recompLMreduction

can be represented as
(
recompBoverhead ∗ β

)
and(

recompBoverhead ∗ σ
)
, respectively. σ and β represent

the fraction of failures that can be handled by LM and
p-ckpt, respectively, and recompBoverhead represents the total
recomputation overhead of model B.

The right side of (4) can be simplified as recompBoverhead ∗
(β − σ). If we consider a uniform distribution of lead times
of failures, an equal inter-node network bandwidth and single
node PFS write bandwidth (which is the case for Summit with
12.5 GB/sec and 13-13.5 GB/sec, respectively), then β can be
expressed using (6). α is the ratio of LM’s transfer size to
checkpoint data size.

β =
α− 1 + σ

α
(6)

Equation (4) can be re-written as(
1−

√
(1− σ)

)
α−1+σ

α − σ
<
recompBoverhead
ckptBoverhead

(7)

Assuming application overhead is split in half between
recomputation and checkpointing, (7) is further simplified to

σ + 1

σ +
√
(1− σ)

<α (8)

Based on the constraint that the sum of recompLMreduction and
ckptLMreduction must be less than recompBoverhead, σ < 0.61.
Equation (8) suggests that α must increase non-linearly as σ
grows. Under the constraints of 0 <= σ < 0.61, the LM
transfer size to checkpoint size ratio implies 1.04 <= α <
1.30 for p-ckpt to perform better than LM.

Observation 9: All models (M1/M2/P1/P2) experience a
steady decline in total overhead reduction as the false negative
rate increases. However, LM-supported models (M2/P2) ex-
perience larger declines in recomputation overhead reductions
than the safeguard checkpoint and p-ckpt models (M1/P1).

To observe the impact of false negatives, we kept the false
positive rate constant at 18% (see [31]) and varied the false
negative rate (figures omitted due to space) up to 40%. Models



TABLE V
C/R MODEL COMPARISON

C/R
Model

Failure
Awareness

Coordinated
prioritized
checkpoint

Safeguard
Checkpoint

Periodic
Checkpoint

Live
Migration

PFS I/O
Model

Failure
Prediction

Async Ckpt.
Interval

Hybrid p-ckpt Failure Lead Time Prediction 3 7 3 3 3 3 3
Wang et al. Health Monitoring 7 7 7 3 7 7 7

Bouguerra et al. Failure Lead Time Prediction 7 3 3 7 7 3 7
Tiwari et al. Failure Locality 7 7 3 7 7 7 7
Behera et al. Failure Lead Time Prediction 7 7 3 3 3 3 7

M2 and P2 observe a ≈91-180% and ≈71-174% decline in
recomputation overhead reduction, respectively, when the false
negative rate reaches up to 40%. However, M1 and P1 observe
smaller reductions of ≈48-54% and ≈35-40%, respectively.
This means they actually can handle a fewer number of failures
with an increasing false negative rate. LM-assisted models, M2
and P2, overestimate the number of failures they can handle
and keep the checkpoint interval larger than models M1 and
P1 (see (2)). It confirms our recommendation in Observation 6
that on failure-prone systems, P1 holds an advantage over P2.
To improve P2, the failure prediction accuracy factor needs to
be included in (2), which is part of our future work.

Drawbacks: We rely on simulation for evaluating the
models as special privileges are required to reserve nodes on
Petascale systems (e.g., Summit) for large-scale experiments.
To mitigate this, our evaluated applications are compute-
intensive and use I/O during checkpointing based on the
real machine data from Summit with a validated I/O write
performance model [16]. Simulated failures are based on real-
world HPC failure logs [7], [8]. Some operations such as
synchronization and broadcast introduce overhead, but these
are negligible. A p-ckpt barrier with 2048 Summit nodes
take 8 microseconds. We also ignore the overhead of failure
prediction as Aarohi [32] predicts failures within 0.31 msec.

Feasibility: Utilization of two different proactive options
under a single FT model (P2) requires coordination among
multiple software systems like LM, p-ckpt, and periodic
checkpointing. Further, to use a different proactive choice for
individual applications, LM requires a global system view to
avoid migrations that can create conflicts. p-ckpt applies to
individual applications only by coordinating its processes. p-
ckpt with a global system view is beyond the scope of this
paper, as is a complete implementation of the whole system.

VIII. RELATED WORK

Several C/R solutions leverage failure awareness [11], [14],
[15], [33]–[35]. Wang et al. [11] monitor healthy nodes and
migrate processes if the node’s health deteriorates. However,
the evaluation of their model excludes failures and only evalu-
ates the efficiency of the live migration technique. Bouguerra
et al. [14] use proactive checkpoints upon failure prediction
along with preventive checkpoints to reduce computation
waste. They use FTI’s [24] level 0 checkpointing strategy for
proactive checkpoints and regular periodic checkpointing to
PFS for periodic/preventive checkpoints. At level 0, check-
point data of the failing node is stored on a neighbor node. Our

model, for both p-ckpt and safeguard checkpoint, mandates
the checkpoint data of all the nodes to be committed to PFS.
Bouguerra et al. [14]’s proactive checkpointing adds 2-6%
overhead to checkpoint time, whereas the adaptive nature of
our model limits p-ckpt’s overhead to less than 1%. Further,
hybrid p-ckpt reduces the checkpointing overhead by ≈42-
70% due to reduced failure rate and faster execution comple-
tion. Bouguerra et al. [14]’s model relies on the failed node
to restart for recovery purposes, whereas our model utilizes
reserved nodes. Bouguerra et al. [14]’s model achieves a 22%
reduction in total overhead due to proactive checkpointing
compared to a ≈53-65% reduction with our hybrid p-ckpt
model. Recomputation overhead reduction in Bouguerra et
al. [14]’s model is 17%, whereas our model’s impact on
recomputation overhead is a ≈56-73% reduction. Tiwari et
al. [15] increase the checkpoint interval until failure and skip
selected checkpoints post-failure using a temporal distribution
of failures. Our C/R model’s uniqueness comes from the use of
failure prediction that selects the best mitigation action based
on lead time. Further, we developed p-ckpt that replaces proac-
tive checkpoints and improves fault tolerance for predictions
with short lead time, even for large applications. Tiwari et
al. [15]’s evaluation platform is based on OLCF’s Titan while
ours is on Summit. Their scheme reduces checkpoint time up
to 70%, ours by ≈42-70%. However, our checkpoint overhead
accounts for the commits to the BBs while theirs commits to
the PFS. Further, their recomputation overhead offsets most
of the gains made with checkpoint overhead reductions. In
contrast, our model provides more overhead reductions with
less recomputation. George et al. [33] deploy partial replication
of process sets and predict failures to change the replicated
process group. Garg et al. [34] exploit failure locality to
schedule applications with higher checkpoint overhead during
lower failure rates and applications with lower checkpoint
overhead during higher failure rates. In contrast, our model
relies on dynamically predicted failures. Behera et al. [16]
developed a C/R model with live migration and assessed its
benefit under failure prediction. However, their work could
not handle faults with low prediction time. Tab. V compares
our C/R model with other C/R models and illustrates the
uniqueness and comprehensiveness of our approach in contrast
to prior work.

IX. CONCLUSION

We developed a multi-level C/R model that provides fault
tolerance by orchestrating failure prediction with proactive



actions of coordinated prioritized checkpoints (p-ckpt) and live
migration via prioritization along critical failure paths, which
results in reduced application overhead by ≈53-65% compared
to a ≈31-61% reduction by conventional LM-C/R.

Overall, proactive actions should resort to p-ckpt in an
HPC system with short lead times and high failure rates for
short-running, large applications. In contrast, hybrid p-ckpt
should be used for long-running applications, irrespective of
application size and system failure rate. Our hybrid p-ckpt’s
coordination of multiple fault tolerance techniques through
failure prediction is unprecedented while providing better
tolerance against failures with short lead times.
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