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Abstract. A plethora of resilience techniques have been investigated
to protect application kernels. If, however, such techniques are com-
bined and they interact across kernels, new vulnerability windows are
created. This work contributes the idea of end-to-end resilience by pro-
tecting windows of vulnerability between kernels guarded by different
resilience techniques. It introduces the live vulnerability factor (LVF),
a new metric that quantifies any lack of end-to-end protection for a
given data structure. The work further promotes end-to-end application
protection across kernels via a pragma-based specification for diverse re-
silience schemes with minimal programming effort. This lifts the data
protection burden from application programmers allowing them to focus
solely on algorithms and performance while resilience is specified and
subsequently embedded into the code through the compiler/library and
supported by the runtime system. In experiments with case studies and
benchmarks, end-to-end resilience has an overhead over kernel-specific
resilience of less than 3% on average and increases protection against bit
flips by a factor of three to four.

Keywords: Resilience · Silent Data Corruption · Pragma Programming.

1 Introduction
In large-scale parallel systems, faults are not an exception but rather the
norm [29, 18]. Faults such as bit flips or hardware faults may result in applica-
tion or operating system failures. Hardware and software techniques have been
devised to make such systems more resilient to failures. But future exascale sys-
tems are projected to see an increase in the frequency of faults, which would
require 20% more circuitry and energy to counter them [33]. However, hardware
vendors tend to design and build general-purpose, and not exascale-specific hard-
ware due to manufacturing costs. As a result, the future systems will be likely
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built with off-the-shelf components while delegating a significant part of the
resilience responsibility to the software layer.

The significance of resilience in future HPC systems has been emphasized
in prior research, e.g., [33]. In particular, multiple challenges arise in HPC
systems from the size (millions of cores) and the programming model (tightly
coupled). Intuitively, larger numbers of components result in a higher probability
of failures. What’s more, a tightly coupled programming model may result in
fast fault propagation after just one node has been hit [17]. Hence, resilience is
considered a major roadblock on the path to next-generation HPC systems.

In practice, hardware protection is complemented by software resilience. A va-
riety of software techniques exist, such as checkpoint/restart (CR), redundancy,
and algorithm-based fault tolerance (ABFT), each with their own benefits and
limitations in terms of applicability and cost. CR has high storage overheads and
requires backward recovery via re-execution, which limits scalability [16]. Redun-
dancy requires either only extra memory or both extra memory and processing
resources, which is costly [17]. ABFT results in low overheads and supports for-
ward execution, but each numerical algorithm has to be customized [19, 12, 15].
A choice of a low-cost resilience scheme is best made per numerical kernel rather
than for an entire application. The composition of different resilience techniques,
however, results in a generally overlooked problem: It creates windows of vulner-
ability. Consider kernel K1 with redundant execution followed by kernel K2 with
ABFT protection. K1’s result is consumed by K2, yet the result’s integrity is
no longer checked after K1 has finished. This leaves variables storing K1’s result
vulnerable until K2 has consumed all of them. In contrast, by protecting both
K1 and K2 with redundancy, intermediate and final results can be compared
(dual redundancy) or even corrected (triple redundancy with voting).

We introduce end-to-end resilience to allow the selection of different low-cost
resilience techniques across different application phases. End-to-end resilience
composes protection spaces of kernels with disjoint resilience techniques such
that windows of vulnerability are avoided. Another problem is that programmers
are often forced to clutter numerical methods with tangential resilience concerns
making codes hard to maintain. Resilience APIs try to reduce this clutter but
cannot eliminate it, e.g., Containment Domains [9], GVR [39], Charm++ [21],
etc. Also, transparent resilience techniques, such as BLCR [13], tend to im-
pose much higher overhead than application-specific resilience via CR [26] or
ABFT [15]. But the interleaving of algorithmic and resilience concerns makes it
hard to maintain such programs. End-to-end resilience is realized elegantly via
pragmas at the program level, which provides the benefits of the aspect-oriented
programming (AOP) paradigm [22] as it increases modularity by allowing the
separation of algorithmic and resilience concerns at no extra cost while still
meshing with a variety of execution paradigms and resilience methods.

This work makes the following contributions:
• We identify the vulnerabilities between protected kernels and offer a system-
atic solution via end-to-end resilience.

• We propose a metric to quantify vulnerability across protected kernels.
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• We design and implement a resilience pragma to support separation of the
resilience aspects from the algorithms to increase portability and modularity
imposing minimal programming effort.

• We show that, in contrast to prior work, auto-generated protection provides
full end-to-end protection at less than 3% additional time overhead on average.

2 Background
Hardware faults can be persistent or transient. Persistent faults are typically due
to aging or operation beyond temperature thresholds. If a persistent faults results
in a failure, re-execution will not help, i.e., an HPC job of thousands of processes
is rendered useless. Transient hardware errors, also called soft errors, are often
due to cosmic radiation. They allow the application to continue execution, albeit
with tainted data. Such faults manifest as bit flips in the data in memory or
anywhere in the data path (e.g., caches, data bus). Although CPU registers,
caches, and main memory are often equipped with ECC, only single bit flips
are correctable while double-flips generally are not (by SEC-DED ECC while
chipkill can correct some multi-bit errors depending on their device locality).3
Jaguar’s 360TB of DRAM experienced a double bit flip every 24 hours [18].
Some soft faults may remain undetectable and may result in so-called Silent Data
Corruption (SDC). SDCs may manifest at application completion by producing
wrong results or, prior to that, wrong interim results. It is known that SDC rates
are orders of magnitude larger than manufacture specifications [27, 30, 35].

Resilience methods usually compensate for the computation/state loss by
performing a backward or forward recovery. Backward recovery recreates an
older state of an application through classic rollback recovery methods, such as
system-level or application-level checkpoint/restart (CR) [26]. Forward recovery
typically handles errors by repairing the affected data structures. A correction
procedure is invoked that may recover the intended values from a peer replica
(redundant computing) [17], or via Algorithm-Based Fault Tolerance (ABFT)
from checksums or solver properties [19, 12, 8, 31, 15].

Many HPC applications are comprised of multiple kernels that form a multi-
phase pipeline. The above-mentioned methods are resilient to one or multiple
types of faults with different overhead. Intuitively, there is no single solution that
fits all scenarios while providing the best performance. Thus, a combination of
methods enables the selection of the best resilience mechanism per application
phase considering factors such as computation time and size of data that needs
protection. End-to-end data integrity is a goal explicitly cited in exascale re-
ports [33]. Our end-to-end resilience fills this very gap.

3 Assumptions
Our fault model considers soft errors / SDCs that materialize in memory in a
fault agnostic manner, i.e., SDCs may occur in unprotected DRAM (no ECC)
3 Bit flips in code (instruction bits) create unpredictable outcomes (most of the time
segmentation faults or crashes but sometimes also incorrect but legal jumps) and
are out of the scope of this work.
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due to cosmic rays or may result from bit flips in the processor core during calcu-
lations, unprotected register files, or caches. Hence, results of (faulty) calculation
are subsequently written to memory, which creates an SDC even if memory is
protected with ECC/chipkill. This is consistent with findings of past work [35,
30] indicating that undetected errors in SECDED ECC-protected DRAM present
a problem today, and that some SRAM structures remain unprotected.

On the software side, we assume that the correctness of a data structure
can be verified (through a Checker method) and the stored values can be re-
covered through a Recover method should an inconsistency be detected. Many
algorithms commonly used in HPC, such as numeric solvers, have approximation
methods based on convergence tests. These convergence tests could be used as
the Checker. If an algorithm lacks a simple checking method or invariant, the
Checker can be provided through comparison with a checksum over the data that
was computed beforehand and stored in a safe region.4 The Recover method is
given by the forward recovery phase in ABFT methods, or simply by restoring
a light-weight deduplicated [2] or compressed [20] checkpoint of the data.

We further assume that the computation is (or can be made) idem-potent
with respect to the encapsulated region, i.e., if globals are changed inside the
region, they have to be restored by the recovery method. In other words, if a
method/region is called twice in a row, the result would be the same as the inputs
(or global variables) remain unmodified by the computation (no side effects).5
CR and redundant computing already ensure idem-potency since identical state
is restored in the former while redundant state exists for the latter. ABFT meth-
ods have to be analyzed to ensure that dynamic live ranges are encapsulated by
end-to-end resilience, while any other global side effects need to capture/restore
globals at region boundaries. Existing solutions to I/O idem-potency are re-
quired as well [4]. We can then retry a computation if needed, i.e., when no
other recovery methods exist (or if the other recovery methods have failed).
Notice that we do allow the side effects of communication inside regions (see
Section 4).Application kernels, e.g., the ones studied, were found to be already
compliant with these constraints, and frameworks have similar constraints, e.g.,
DAG-based HPC tasks and map-reduce [7, 1].

4 End-to-End Resilience

Live Vulnerability Factor: We introduce a new metric, the term Live Vulner-
ability Factor (LVF): LV F = Lv × Sv,
where Lv is the length of the dynamic live range of an arbitrary (incl. non-scalar
4 Extra checks are added to guarantee the correctness of data stored in a safe region.
A safe region is assumed to neither be subject to bit flips nor data corruption from
the application viewpoint — yet, the the techniques to make the region safe remain
transparent to the programmer. In other words, a safe region is simply one subject
to data protection/verification via checking.

5 Inputs are read from disk and stored in globals or on the heap, but may be recovered
by re-reading from disk. Globals are calculated in the program and can only be
recovered by re-calculation or ABFT schemes.
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array) data structure/variable v (vulnerability window), and Sv is the space re-
quired to hold the related data in memory. Length is measured as wall-clock time
from first set to last use (dynamic live range) of a variable during execution.

Protection Across Scopes: Applications are typically composed of phases
during which different algorithmic computations are being performed. Interme-
diate results are created and passed from phase to phase before the final result
is generated. Our core idea is to exploit the dynamic live range of predominantly
non-scalar variables within and across phases, and to immediately perform a cor-
rectness check after the last use of any given variable. Scalar live range analysis is
a well-understood technique employed by compilers during code optimizations,
such as register allocation (among others), while dynamic live ranges are rarely
analyzed but can, in part, be inferred from escape analysis. Fig. 1 outlines the
idea for our running example, a sequence of two matrix multiplications, enhanced
by an extra checksum row and column per matrix for resilience (see Huang et
al. [19]). Huang’s method provides protection for result matrices C and E within
a single matmult kernel (arrows on left side) while end-to-end resilience protects
all matrices during their entire live time across kernels (arrows on right side).
If an error strikes during the lifetime of phase-dependent variables, single-kernel
protection methods cannot provide any assistance as they are locally constrained
to region boundaries. This is precisely where our end-to-end protection comes to
the rescue. In fact, Fig. 1 concisely illustrates that single-kernel protection
misses out on more than half of the lifetime of variables compared to
end-to-end protection even if 99% of execution time is spent inside the two
matmult kernels.

Load(A);

Load(B);         

mult(A,B,C);

Load(D);

mult(C,D,E);    

Store E;
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Fig. 1: Matrix multipli-
cation, range of live
variables

When a live range ends, data is checked for
correctness. If correct, no action is taken, other-
wise correct values are recovered (if detected as
erroneous), or re-computation is performed (if er-
roneous but direct recovery has failed). The intu-
ition here is to avoid the high overhead of frequent
checks (e.g., after every variable redefinition or use
inside the live range) while providing a guaranteed
end-to-end correctness of the computation.

The Protect Pragma: We propose a pragma-based resilience scheme and
show how the corresponding code is expanded to provide the extra end-to-end
protection. This allows us to cover the vulnerability window of different vari-
ables by automatically expanding codes through the compiler. The expanded
code performs check and recovery actions on the vulnerable data. We incorpo-
rate end-to-end resilience into OpenMP-like pragmas to facilitate adoption and
code maintenance with a potential of future synergy between thread parallelism
and resilience (beyond the scope of this paper). The pragma has a simple, yet
powerful and extendable interface with the following syntax:
#pragma protect [M ][Check(f1, .., fn)][Recover(g1, .., gm)][Comm][Continue]

The resilience method, M, which can be CR or Redundancy (2/3) (du-
al/triple), is an optional argument. The integration of both resilience approaches
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is discussed in a latter example. Check and Recover receive a list of functions
parameterized by each variable that needs protection. We use f to denote a
checker, and g for a recovery methods. By default, f and g are a checksum cal-
culation and checksum-based correction, respectively. A user may overwrite f/g
to supply more efficient checking/recovery. A region that contains MPI commu-
nication is annotated with the Comm keyword. The Continue keyword indicates
that data is live beyond the current region, i.e., crossing phases/kernels, and
requires end-to-end protection. Fig. 2 depicts the source code of our running
example with the protect pragmas with the “Continue” keyword to protect live
matrices across kernels.

1 Matrix A, B, C, D, E;
2 Load(A);
3 Load(B);
4 # pragma protect Check ( Checker (A), Checker (B)) \
5 Recover ( Correct (A),Load(A), \
6 Correct (B),Load(B)) \
7 Continue
8 mmult (A,B,C); // parallelized
9 Load(D);

10 # pragma protect Check ( Checker (C), Checker (D)) \
11 Recover ( Correct (C), Correct (D),Load(D)) \
12 Continue
13 mmult (C,D,E); // parallelized
14 # pragma protect Check ( Checker (E))
15 Recover ( Correct (E))
16 Store (E);

Fig. 2: Matrix multiplication with protect pragma

In the final code, every region is contained within a while loop (protec-
tion boundary) with checking and recovery code after the computation. After
mmult(A,B,D), a Check is invoked followed by Recover if the check fails inside
the loop. (Both are called via function pointers.)

Code resulting from chaining of regions with the Continue keyword are high-
lighted and described as follows. A boolean array of size 3 named completed and
a flag first are maintained for the 3 chained regions in this code, which indi-
cates the correct completion of regions 0, 1, and 2. At the end of region 0/1/2,
the corresponding flag is set. Matrix D is only loaded once due to the condi-
tional on the flag. Additional loads may be triggered inside the Recover() calls
for matrices A, B, and D if they cannot be repaired using checksums.

Recovery from regions that involve MPI communication with other processes
requires coordination among these processes. The Comm option of the pragma
indicates that such communication exists inside that pragma region. It results in
generating code for a global reduction of check() return codes indicating if any
checks have failed, in which case recovery with recomputation is required where
all peer MPI tasks participate in recomputation.

Notice that pragmas cannot easily be replaced by macros. First, variable
number of check and recover routines may be specified, one per data structure,
which cannot be expressed by a macro. Second, a begin and end macro would
be required per pragma, but all three begins would have to be placed on line
4 of Fig. 2 while the ends would follow after lines 8, 13, and 16, respectively.
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This would make the source code significantly less legible. The compiler also has
the ability to perform semantic checks to ensure that the live range of protected
variables under the Continue keyword extends to the end of the scope spanning
multiple pragmas and to capture/restore globals via live range analysis.

Source code changes in terms of added pragmas are only needed at the top
level of computations (e.g., timestep loop for most HPC codes), and most no-
tably not in libraries. Continue creates an orphaned semantics (in OpenMP
terminology) that continues the lexical extent from scope-to-scope (transitively)
in the current compilation unit, where each pragma in such a chain expands the
live range for the current set of protected variables. For the enclosing scope, the
resulting chain results in one checkpoint per pragma in the absence of faults.
In the presence of a fault, selective recovery from the last valid data is only
performed at the inner-most scope that stored this data.

Task-Based Resilience: An alternative to the pragma approach is to design
a task-based programming scheme that implicitly provides end-to-end resilience.
Tasking libraries are becoming more popular in the HPC community due to their
more graceful load balancing and potentially asynchronous execution models,
e.g., PaRSEC [5], OmpSs [14], the UPC Task library [25], and Cilk [3].

Resilience has been added to PaRSEC [6] and OmpSs [24]. Other work focuses
on soft faults [6], i.e., they take advantage of the algorithmic properties of ABFT
methods to detect and recover from failures at a fine grain (task level) and utilize
periodic checkpointing at a coarse grain (application). Yet others uses CR and
message logging at the task granularity to tolerate faults with re-execution [24].

Instead of focusing on a specific resilience approach, we target a more com-
plex problem. We propose a tasking system that allows for different resilience
methods to interact in an easily understandable and extendable manner. A re-
silient task class is provided with two methods that are called before and af-
ter the actual execution of a task, namely resilience_pre, resilience_post.
In resilience_pre, depending on the resilience type of the task, CR or Re-
dundancy, the checkpoint method or wakeup_shadow is called, respectively. In
resilience_post, first the shadow process is put to sleep under redundant ex-
ecution. Then data structures with their last use in the task are checked and
corrected if needed. If correction fails, a set of tasks is put into the scheduling
queue to recompute the tainted data structures.

5 Implementation Details

The resilience pragma API is implemented as a transform pass in the Cetus
compiler [10] via source-to-source transformation (i.e., no need for more complex
frameworks like LLVM as the IR is never used). Source-to-source compilation
using Cetus allows us to transform an input C program to a modified C program
as output. Cetus uses Antlr [28] in order to parse C programs into an Intermedi-
ate Representation (IR). The compiler passes are then run on the IR in order to
generate the output source code. Each pass iterates over the IR and is capable
of modifying it by adding, removing, or editing the input source. New code is
added as Cetus IR objects, equivalent to building an IR tree from its leaves.
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Similarly, a complex IR can be generated by extending these trees. Cetus allows
iterating over the IR in a depth-first manner, which is is utilized here.

ProtectPragmaParser Class: We added the ProtectPragmaParser class,
a transform pass that implements our pragma. Each pragma directive in the in-
put program is represented as an object of the ProtectPragmaParser class. The
ProtectPragmaParser class is run in order to transform the generated parse tree
to an equivalent parse tree structure, which contains our protection boundaries,
checker functionality, and recovery mechanisms. We traverse the input parse tree
in a depth-first manner looking for the protect pragma directives. On finding the
pragma, we parse the directive to populate the checker and recovery functions
associated with this particular pragma. We also generate the necessary protec-
tion boundary, checking, and recovery code required in the current context and
track the variables defined at these protection boundaries. As part of the Pro-
tectPragmaParser object creation, we check if the current directive is chained to
a previously encountered directive via the Continue keyword. If chained, we can
recompute these resilient variables in case their recovery methods fail, and the
ProtectPragmaParser object of the current context is added to the list of chained
pragmas of the directive it is chained to. Otherwise, it is added as an independent
(root) pragma. When chaining is found in the input IR, we extend the protection
boundaries of the current pragma around that of the following pragma. When
the input source code has been completely parsed, a logical structure of these
chained (or unchained) directives is created (see pragmas in Fig. 2).

Once the entire input source code has been traversed and the logical struc-
ture of pragmas is created, a recursive function that emits transformed code is
invoked on the root objects. This, in turn, invokes the function on each of its
chained pragmas. It is at this stage that checking and recovery code for non-last-
use variables is removed so as to reduce the checking overhead. This function
uses the chaining information to correctly emit the nested while loop structure
as part of the output source code. As part of the code emitting process, if a
particular directive had the CR or Redundancy clause, then the compiler emits
the appropriate function calls to wake_shadow and sleep_shadow in case of the
Redundancy clause, and create_ckpt in case of the CR clause.

The Cetus compiler infrastructure along with our ProtectPragmaParser func-
tionality allows us to transform our input source code in this manner to support
end-to-end resilience. While these transformations could be performed manu-
ally by the programmer for simple examples, it quickly becomes tedious and
error-prone for more complicated program structures or even chained regions.
Our Cetus implementation transforms the input source in a single pass through
the IR tree, emitting code recursively even for complicated, inter-leaving depen-
dencies between resilient variables. This allows for the development of powerful
software that has end-to-end resilience while off-loading the repetitive and some-
times non-trivial task of code expansion to the compiler.

6 Experimental Results
All experiments were conducted on a cluster of 108 nodes, each with two AMD
Opteron 6128 processors (16 cores total) and 32GB RAM running CentOS 7.3
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and Linux 4.10 (except for TF-IDF, which uses CentOS 5.5, Linux kernel 2.6.32
and Open MPI 1.6.1 due to BLCR [13] and RedMPI [17] requirements). ABFT
resilience is realized via protecting critical data with checksums so that we can
attempt to recover (repair) results, or, if recovery fails, resort to CR and reload
data from disk. Redundancy is realized via Red-MPI of which we obtained a
copy [17]. These techniques, referred to as conventional resilience in the following,
are compared to their equivalent version with end-to-end resilience guarantees.

We present examples of pragma- and task-based end-to-end resilience for two
variants of matrix multiplication and a page ranking program, with experimental
results for these codes as well as the NAS Parallel benchmark codes. To this end,
we already discussed end-to-end resilience for two successive matmult kernels in
Figure 2. The same kernels can also be refactored using fine-grained tasking as
discussed next.

The task-based resilience class/capabilities (Section 4) plus a task-based run-
time system are utilized to implement a blocked matrix multiplication utilizing
POSIX threads. We add checksums per block of a matrix. The checksum ele-
ments are colored in the 2 examples of Fig. 3.

6x64x4

Fig. 3: Blocks
(white) with check-
sums (blue)

For a matrix of size 4×4, if the block size k is 2, then
20 extra elements are needed to hold the checksums. For
a 6×6 matrix, 45 extra elements are needed. In practice,
the size of a block (configured to fit into L1 cache with
other data) is much larger than the extra space overhead
for checksums.

6.1 Matrix Multiplication
We use 5 input sizes for square matrices from 512 × 512 to 2560 × 2560. The
size of last level cache (L3) is 12MB, and only the first experiment (N = 512)
completely fits in the L3 data cache. Thus, data is repeatedly loaded from main
memory (DRAM) in all other experiments. We use 16 OpenMP threads that
perform matrix multiplications in a blocked manner with a tile/block size of
32 × 32. Each thread needs 3 blocks to perform the multiplication. Thus, the
block size is selected as number of elements that can be accommodated in 1

4 th
of the L1 data cache size of 64KB.

Fig. 4 contrasts the performance evaluation of sequentially composed ma-
trix multiplication with conventional resilience (left bar) with our end-to-end
resilience (right bar). For the pragma-based solution (left half), fault-free execu-
tion ranges from 0.88 (n = 512) to 35 seconds (n = 2560) when no correction
needs to be triggered. In this case, end-to-end resilience has a 0.99% overhead at
n = 512; for larger matrix sizes, this overhead is also negligible (around 0.69%).
Task-based execution (right half) results in slightly higher execution times and
overheads that are between 1.4% (for large matrices) and −0.64% (for small
ones) and varies between 4.6% and −6.5% due cache artifacts with unaligned
(1536) and aligned (2048) cache lines resulting in more/fewer cache conflicts, re-
spectively. The alignment can be attributed to the implementation of per-block
checksums in task-based matrix multiplication. Overall, more computation is
performed during the multiplications and check operations.
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Observation 1: End-to-end resilience across kernels results in the same cost
as conventional resilience only protecting single kernels.
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Performance under Faults and Resulting Failures: We next investigate
the correlation between LVF and the likelihood of failures in matrices. The LVF
is computed from the vulnerability window of data structures (see Section 4).
Fig. 5 depicts the LVF as bars of each matrix under failure-free execution of
the application. The vulnerability size is 50.03MB and the vulnerability window
depends on the live range of each matrix. C has the highest LVF, next comes E
and then A. B and D have the same LVF, the smallest among the 5 matrices.
This reflects the live ranges of the respective (same size) data structures during
program execution (see Fig. 1). Notice that conventional resilience would only
protect matrices C and E within, but not across kernels, i.e., they would only
protect about 50% of our LVF for C/E and none for A/B/D (see Fig. 1). Fur-
thermore, end-to-end resilience adds overhead that increases the LVF by only
0-5%, as depicted by the labels above bars in Fig. 5, but, unlike previous work,
checks/corrects SDCs even across kernels that are otherwise only locally pro-
tected. Since these matrices comprise 99% of the program’s data, the LVF per
program is the average of weighted per-data LVFs, where weights are 1 (same
size and range), except for matrix C with weight 2 (same size, twice the range).

Observation 2: End-to-end resilience protects data over significantly larger
execution ranges at less than 1% increased LVF for pragma-based and 2.2% for
task-based execution.

We also developed a program variant that injects faults (single bit flips) in
uniformly randomized locations over the matrices (all 5 matrices, each sized at
2560×2560) and also at uniformly randomized times in a time window according
to a given rate (configurable). This allows us study the effect of fault injections
in real life and compare the results to the LVF metric. We randomly inject faults
during runtime with fault rates from 25 to 45 seconds for pragma-based execu-
tion. Such high fault rates may be unlikely, but the point is to assess overhead
and to illustrate the robustness of our technique: A second fault may be injected
before the first one has been mitigated, yet end-to-end resilience is capable of
making forward progress. (Solar flares are actually reported to result in multiple
SDCs in rapid succession.) The y axis of Fig. 6 shows the number of faults. Using
conventional resilience, only the faults in the lower-most shaded region of matri-
ces C and E can be corrected by conventional resilience methods that are limited
to a given scope/kernel, such as [11]. For end-to-end resilience, faults resulting
in detectable errors in the lower portion of all matrices (errors across and in
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kernels, i.e., including the shaded regions of C/E) are all subsequently corrected
by end-to-end resilience, even though they cross scope/kernel boundaries. This is
the most significant result of our work as it demonstrates how much more fault
coverage end-to-end resilience has compared to conventional resilience schemes.
This covers cases where injections hit data while it is live. In fact, it shows that
the majority of faults occurs outside of ABFT kernel protection, which is exactly
what end-to-end resilience protects.
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Other injections do not result in a failure as they hit stale data (upper-
most portion per bar). In other words, end-to-end resilience never resulted in
erroneous results while conventional ABFT misses errors across kernels, which
are dominant. Furthermore, the distribution of corrected injection counts over
matrices resembles the distribution of the LVF across matrices in Fig. 5. This is
significant as injection experiments and LVF analysis thus validate each other.
Slight differences can be attributed to the fact the LVF is based on failure-free
execution while Fig. 6 is based on repeated executions for some corrections for
certain detected errors (e.g., in the input matrices).

Observation 3: End-to-end resilience corrected all SDCs, i.e., 3 to 4 times as
many as single-kernel conventional techniques.

Fig. 7 depicts the corresponding results for task-based end-to-end resilience.
We observe a similar distribution across matrices to Fig. 6, yet the number of
faults lower since the task-based approach requires less time to execute. Conse-
quently, fewer faults are injected at the same MTTF rate. Task-based injection
counts that were corrected also loosely resemble the LVF in Fig. 5 for the same
reasons as before, only that E is now indicated to be more prone to faults than
C due to observed error corrections.

Observation 4: The LVF (without error injection) indicates the relative vul-
nerability of data structures.
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Fig. 8 depicts the average
completion times after fault
injection. All faults that re-
sulted in an error were de-
tected and corrected by end-
to-end resilience. The pragma-
based approach (left half) re-
sulted in 8%-15% overhead for
a fault rate from 45 to 25 sec-
onds. Notice that such a high fault rate results in one or more faults per execu-
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tion, some of which result in detectable errors that are subsequently corrected
at the expense of executing recovery code. Again, such high SDC rates are not
realistic, but they allow us to compare the relative overhead between pragma-
and task-based. For the task-based case, overhead ranged from 8%-14%, nearly
the same as pragma-based. The absolute time (y-axis) indicates that task-based
is more efficient since tiling results in higher data reuse in caches on one hand
and due to less overhead for corrections limited to a single tile on the other hand.

Observation 5: Overall, pragma- and task-based resilience result in compara-
ble overheads for matmult.

6.2 TF-IDF
We further assessed the resilience capabilities for an MPI-based benchmark.
We ported a term frequency/inverse document frequency (TF-IDF) benchmark
for document clustering based on prior work [38]. TF-IDF is a classification
technique designed to distinguish important terms in a large collection of text
documents, which is the basis for page ranking with applications in data mining
and search engines. The classification is broken into two steps. (1) TF calculates
the frequency of a term on a per document basis. (2) DF counts the number of
occurrences of a given term (document frequency). The final result is tfidf =
TF × log N

DF . Note that TF is a local computation while DF is global across all
documents. As a result, the DFs need to be aggregated.

Fig. 9 depicts the steps in the TF-IDF benchmark. At first, the names of files
are loaded. Then the term frequency (TF) method is called with filenames as
input and tfs as output. Next, the document frequency (DF) is called with tfs
as input and dfs as output. Finally, the tfidf value is computed for every term
with a TFIDF call with tfs and dfs as input parameters. Fig. 9 also depicts
single kernel protection areas (arrows on left) and the vulnerability windows
(live ranges) of variables protected by end-to-end resilience (arrows on right).
The DF method contains MPI communication for the aggregation of document
frequencies across all MPI ranks.
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Tab. 1: Compiler-derived
resilience info
Region Variable

Name
Check
method

Recover
method

0 fn Checker(fn) Load(fn)
1 tfs – –

2 tfs Checker(tfs) Recover(tfs),
Region(0)

dfs Checker(dfs) Region(1)
Check and Recover Methods: TF-IDF does not have any check provided

by the algorithm. Thus, we compute a checksum over the data. To demonstrate
the capabilities of end-to-end resilience, we use a combination of redundancy
and CR in this case study. CR provides a restore function, which we use as a
recovery method.

Pragma Expansion: End-to-end resilience for TF-IDF can be provided by
augmenting the code with three pragmas over as many regions (see Fig. 10). The
first region is executed under redundancy with the default of dual redundancy to
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check if the filename is correct and, as recovery, reload the filename if this check
fails. (Triple redundancy is optional and may allow the filename to be recovered,
but this overhead is not justified just for protecting a filename.) The second
region is protected with CR. The data of tfs is live across all three regions,
while dfs is live across the last two pragma regions (Continue keyword).
1 vector <string > filenames ;// input
2 vector < Dictionary > tfs;

// output of Region 1
3 map <string ,int > dfs;

// output of Region 2
4
5 Load( filenames );
6 # pragma protect Redundancy Check ( Checker ( filenames ))\
7 Recover (Load( filenames )) \
8 Continue
9 TF(filenames , tfs );

10 # pragma protect CR Check ( Checker (tfs )) Comm Continue
11 DF(tfs , dfs ); // contains MPI calls
12 # pragma protect Check ( Checker (tfs), Checker (dfs ))
13 TFIDF (tfs ,dfs );

Fig. 10: TF-IDF with protect pragma
Inside the DF method, MPI communication is used and, consequently, the

Comm keyword is added to the second pragma. Table 1 depicts the regions, the
input variable(s) to each region and the check and recover method per variable.
Note that tfs is still live in region 2. Thus, no check should be carried out
on tfs in region 1. Thus, region 1 does not have check/recover methods. The
chaining of regions is also shown in Table 1. In region 2, tfs can be recovered
by recomputing region 0. Similarly, dfs can be calculated from region 1.

We perform the code transformation in two steps. At first, the function calls
for the CR or Redundancy schemes are added to the source code, followed by
expansion of the pragma regions which provide end-to-end resilience. (final code
omitted due to space).

Experimental Results of TF-IDF: We used 750 text books with a total
size of 500MB for the TF-IDF benchmark with 4 MPI ranks. We performed the
evaluation with 4 input sizes: 125MB, 250MB, 375MB, and 500MB, which were
protected by checksums.

Fig. 11 depicts the time for conventional per-kernel resilience of TF-IDF and
compares that to our end-to-end resilience. Execution times are averaged over 30
runs with small standard deviations (0.01-0.22). The overheads are almost the
same, fluctuations of higher/lower execution by 0.25% or less are insignificant
for input sizes of 125MB to 16.2% for 500MB. This confirms observation 1.

Fig. 13 depicts the LVF metric on a logarithmic scale (y-axis) for the three
kernels filenames (filen), tfs, and dfs and an input of 500MB. The tfs data has
the highest vulnerability. This reflects a combination of data size (tfs is larger
than filenames/dfs) and live range of tfs during program execution (see Fig. 9).
The other two kernels operate on smaller data and live ranges, and while this
data still critical for resilience (e.g., names of files that will be opened), they add
little overhead and are less prone to corruption (lower LVF). We observe again
significantly increased protection ranges with end-to-end resilience at virtually
unchanged overheads (0.01% to 2.71%). This confirms observation 2.
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Similar to the fault injection code for matrix multiplication, we inject faults
uniformly across the 3 data structures with fault rates from 25 to 45 seconds
for TF-IDF. Fig. 14 depicts the faults normalized against the respective data
structure sizes. The filenames data structure is small compared to the tfs and
dfs structures, i.e., fewer faults are injected into filenames even though it has a
larger life range than dfs. Similarly, tfs has the most injections as it is the largest
data structure and is also live for the longest period of time. Finally, dfs is live
for the shortest period of time, but because of its larger data footprint we see
several injections into it. The shape of the fault distribution of Fig. 14 for actual
injections closely resembles that of the modeling via the LVF metric in Fig. 13.
This confirms observation 4.
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Results indicating different fault handling classes are presented in Fig. 12.
As with the matrix multiplication example, only the faults in the lower-most
shaded regions of the tfs and dfs data structures can be corrected by conventional
resilience methods while end-to-end resilience manages to detect and correct
all errors, even those crossing scope/kernel boundaries. Furthermore, tfs was
benefiting the most from end-to-end resilience while conventional resilience in a
single kernel left many SDCs in tfs and some in dfs undetected (reflecting the
vulnerability per data structure expressed by the LVF in Fig. 13). This confirms
observation 3.

Discussion: We also experimented with a XOR hash to protect the data
structures of TF-IDF. To produce a plain text as input for XOR, key/value
strings of the tfs data structure were concatenated per file before they could be
hashed. Due to string concatenation, this resulted in an additional 10% perfor-
mance overhead for a total increase in LVF by 13% compared to no protection.
This increase in LVF is clearly inferior to the simple checksums with 2.71%
LVF overhead (Fig. 13), which underlines the importance of designing resilience
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mechanisms that require small metadata and perform checks with little perfor-
mance overhead. Otherwise, resilience mechanisms might actually increase the
chance of SDCs (due to a larger data footprint vulnerable for a longer time), i.e.,
a 100% increase in LVF doubles the chance of SDCs (even though they might
be caught and fixed with end-to-end resilience).

Observation 6: The LVF indicates (without error injection) that The change
in LVF (in %) reveals if protection was effective or counter-productive.
6.3 NAS Parallel Benchmarks
We apply our resilience pragma to the NAS parallel benchmark (NPB) suite
to calculate the overhead of our scheme. We use the C port of the OpenMP
version of the NPB suite. We annotate each iteration of the benchmarks with a
pragma that protects the input data structures. Notice that only four of the NPB
benchmarks of this C-based OpenMP version compile correctly for input class
C, i.e., we cannot report results for the remaining ones, because data structures
that remain unmodified between iteration boundaries are too small for end-to-
end resilience to be effective. The input data structures are verified with a simple
scheme that calculates a checksum over the entire data structure.

The data structure is checked for correctness inside the resilience region spec-
ified by the pragma and control is allowed to move to the next iteration only
when the input data structures are verified to be correct. Via checkpointing, one
can revert the data structures to a previously saved state in case a soft error is
detected in the input data structures.
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Fig. 15: Time of NPB codes (input
class C) with/without pragma

Fig. 15 shows the execution time
(in seconds) of the different bench-
marks with and without the re-
silience pragma. The results are av-
eraged over 10 runs of the bench-
mark and run for up to 30 minutes.
We observe that the incurred over-
head in case of a fault-free execu-
tion is between 0.63%-2.61%. The
standard deviation for the execu-
tions ranges from 0.983 for FT to
9.957 for SP (too small to show in the plots).
Observation 7: Correctness of program-protected data structures can be guaran-
teed with a small penalty on performance of less than 3%.

7 Related Work

LVF differs from other metrics that assess resilience. The Failures in Time (FIT)
rate is defined as a failure rate of 1 per billion hours. FIT is inverse proportional
to MTBF (Mean Time Between Failures). The Architectural Vulnerability Fac-
tor (AVF) [35] is the probability that a fault (in microprocessor architecture)
leads to a failure (in the program), defined over the fraction of time that data is
vulnerable. The Program Vulnerability Factor (PVF) [34] allows insight into the
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vulnerability of a software resource with respect to hardware faults in a micro-
architecture independent way by providing a comparison among programs with
relative reliability. The Data Vulnerability Factor (DVF) [37] considers data
spaces and the fraction of time that a fault in data will result in a failure.
DVF takes into account the number of accesses as a contributor to fault occur-
rence. Past work has taken value live ranges into account to design a fault injec-
tion framework and measure CPU vs. GPU vulnerabilities in terms of PVF in
Hauberk [36] and to protect critical data for GPU kernels [23]. Value live ranges
encapsulate the live time of variables promoted to registers for short program
segments while our variable live range captures the live time of compound struc-
tures/arrays over the entire program (from first define to last use) irrespective of
register promotion. This is necessary as a singular structure/array element can-
not be checked in isolation as required by end-to-end resilience (see next section),
it can only be checked in conjunction with a subset of structure/arrays elements.
Our LVF metric captures this difference and is thus different from AVF, PVF,
and DVF. Furthermore, LVF takes into account time × space, which covers the
effect of soft errors. Our metric is agnostic to architectural aspects of a processor
(covered by AVF) and their impacts on programs (see PVF). It is also agnostic of
the number of references (unlike DVF) as it considers both (a) written, incorrect
results and (b) SDCs that may occur, even in the absence of write instructions
(which other work does not). Simon et al.[32] use a Poisson distribution over a
task’s lifetime to determine the probability of task failures and derive from it the
need for task-based replication. Unlike our work, they do not address the issue
of data vulnerability when applications mix multiple resilience techniques. Diniz
et al. [11] propose a resilience pragma to protect a single kernel. In contrast, our
work contributes protection for end-to-end resilience across kernels.

8 Conclusion
We proposed an annotation-based approach for building highly modular and re-
silient applications such that resilience concerns are separated from algorithms.
Our approach requires a minimal effort by application programmers and is highly
portable. We introduced and investigated the significance of the live vulnerabil-
ity factor, which takes into account the live range of a data structure and its
storage space to provide insight into the likelihood of failures. We introduced
an effective set of building blocks for detection and correction of soft faults
through Check and Recover methods for arbitrary data structures. We provided
two approaches, pragma- and task-based, to implement end-to-end resilience.
We showed the effectiveness of end-to-end resilience for two variants of sequen-
tially composed matrix multiplications and TF-IDF under failure-free execution
and fault scenarios in detail. We further assessed the overhead of our method
for NPB codes operating at input size C. End-to-end resilience incurred less
than 3% overhead on average compared to conventional single-kernel resilience
and increased protection against bit flips by a factor of three to four. The LVF
metric helped in guiding which data structures to protect and assessing if protec-
tion meta-data and checking algorithms were effective (or counter-productive)
in providing resilience.
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