
Workload Scheduling on Heterogeneous Devices
Harsh Khetawat∗, Frank Mueller∗

∗Department of Computer Science, North Carolina State University
Email: hkhetaw@ncsu.edu, fmuelle@ncsu.edu

Abstract—Hardware accelerators have become the backbone
of many cloud and HPC workloads, but workloads tend to
statically choose accelerators leaving devices unused while others
are oversubscribed. We propose a holistic framework that allows
a computational kernel to span across multiple devices on a node,
as well as multiple applications being scheduled on the same node.
Our work sharing and co-scheduling framework allows kernels
to be migrated between devices, expand to span more devices, or
contract to fewer devices. The scheduler can make these decisions
dynamically based on a pluggable scheduling algorithm in order
to optimize for different objectives, e.g., job throughput, job
priorities or some hybrid. Experiments on a CPU+GPU+FPGA
platform indicate speedups of 2.26X over different applications
and up to 1.25X for co-scheduled workloads over baselines.
Besides performance, a major contribution of our work lies in
ease of programmability with a single code base compiled and
runtime controlled across three vastly different execution devices.

Index Terms—Work sharing, co-scheduling, OpenCL, hetero-
geneous, FPGA, GPU

I. INTRODUCTION

Motivation: Over the last decade significant changes
have impacted HPC hardware. The introduction of acceler-
ators, such as GPUs, FPGAs and DSPs, have added con-
siderable computational capabilities to HPC systems, albeit
at the cost of programming complexity. Furthermore, recent
HPC systems such as Summit [1] and Sierra [2] (both IBM
Power9 + NVIDIA GV100) as well as Frontier [3] (AMD
X86 64 + AMD MI230X) and Perlmutter [4] (AMD X86 64
+ NVIDIA A100) are adopting fatter nodes with multiple
CPUs and GPUs in favor of many more thinner nodes to
achieve the desired peak performance. This trend is expected
to accelerate further [5] with more and diverse accelerators
becoming a mainstay not only in HPC systems (e.g., Sandia’s
NextSilicon FPGA cluster) but also in the cloud, where AWS
and Azure already feature FPGAs besides GPUs [6], [7].
While current applications need to be updated to leverage
diverse computational hardware, they could instead greatly
benefit from automatic resource management with a common
code base, as we show here.

Limitation of state-of-art approaches: Current produc-
tion applications are designed to target specific hardware.
Applications target GPUs using frameworks such as CUDA [8]
or ROCm, CPUs with OpenMP, and FPGAs with OpenCL
(HLS) or VHDL. OpenCL provides a common interface for
developing applications for a diverse set of computational
hardware but applications running on a specific device leave
other computational hardware on the node idle. While there

has been some prior work on sharing work amongst het-
erogeneous computing devices, such studies either require
significant changes to the application or do not support a wide
variety of devices.

Scheduling multiple applications on a single node has raised
much interest in HPC. Co-scheduling applications allows HPC
systems to use the available HPC resources more effectively.
Current approaches either target specific devices for co-
scheduling while reducing interference (e.g., by mitigating
shared resources when multiple applications use the same
CPU) or avoiding interference by having co-scheduled applica-
tions utilize disjoint accelerating devices (e.g., one using GPU
and another using FPGAs) on a heterogeneous HPC node.

Contributions: We aim to leverage both work sharing and
co-scheduling in a common framework to more holistically use
the heterogeneous nature of current and future HPC systems.
We split each OpenCL computational kernel into a “bag of
tasks” exploiting data parallelism, where each task (or slice)
is potentially scheduled on a different device. This enables
our work-sharing framework to achieve higher performance
than running on any single device. Furthermore, we use this
framework to seamlessly migrate, expand, or contract our
application between devices. This capability creates a co-
scheduling framework to enable multiple applications to run
on a single node.
• We create a work-sharing framework to schedule OpenCL
kernels on multiple devices without requiring the application
developer to make significant changes in the application.
• We provide the capability to seamlessly migrate kernels from
one accelerator to another, and to expand/contract kernels to
use more/fewer accelerators.
• We augment the work-sharing framework with co-scheduling
capabilities by providing a framework with pluggable schedul-
ing algorithms and the ability to optimize for job throughput,
job priority, or a hybrid of multiple objectives.
• We evaluate our work-sharing and co-scheduling framework
under different scheduling algorithms showing performance
benefit by combining accelerators for work sharing as opposed
to selecting a single device. Also, workload characteristics
such as inter-arrival times and the application mix are shown
to impact the suitability of different co-scheduling algorithms.
• We ease programmability across three heterogeneous plat-
forms beyond any prior capability we know of, where a kernel
is coded once, compiled automatically to multiple backends,
yet executes in a coordinated fashion under a common sched-
uler that supports migration as resource availability changes.

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

Block
RAM

Block
RAM

DSP

DSP

DCM

CLB CLB

CLBCLB

CLB CLB

CLBCLB

IOBIOB

IOBIOB

IOB

IOB

Configurable
Interconnect

Fig. 1. Block diagram of an FPGA with its components

Acclerator

CPU

OpenCL
Library

host_binary
C/C++

Compiler

device.clhost.c

Host

Kernel

Fig. 2. OpenCL app flow

OpenCL
Code

Functional
Verification
(Emulation)

Performance
& Energy
Profiling

Full
Compilation

Seconds

Minutes

Hours

Fig. 3. HLS dev. workflow

Experimental methodology and artifact availability: We
evaluate our work sharing and co-scheduling framework using
a single node on a mid-sized HPC cluster comprising of one
CPU, one GPU and one FPGA. We use four applications to
evaluate our work-sharing framework with different combina-
tions of devices. We also create four workloads comprised
of different sizes of the applications and evaluate our co-
scheduling approach under different scheduling algorithms.
We will make our framework and its code base available as
open source to the community opening up novel research and
community contributions based on our work.

II. BACKGROUND

This section provides a brief overview of accelerators used
in modern HPC systems — GPUs and FPGAs. It also pro-
vides a fundamental background on OpenCL and High Level
Synthesis (HLS).

GPUs in HPC: General Purpose Graphics Processing
Units (GPGPUs) have become increasingly popular and have
been driving scientific computation with significant improve-
ments in performance and power efficiency [9], [10]. The
development of frameworks and languages such as NVIDIA’s
Compute Unified Device Architecture (CUDA [8]), the Open
Compute Language (OpenCL) [11] and, more recently, Intel’s
OneAPI [12] have contributed toward making GPUs first class
computation devices in modern HPC systems with recently
commissioned systems such as Summit [1] and Sierra [2] rely-
ing primarily on GPUs for their peak floating point operations
per second (Flop/s).

FPGAs in HPC: Field Programmable Gate Array
(FPGA) devices as HPC accelerators have gained traction
in recent times [13], [14]. FPGAs consist of configurable
logic blocks (CLBs), digital signal processing (DSP) blocks,
I/O blocks, a block RAM, a digital clock manager (DCM)
module and a programmable interconnect to connect these
blocks. Figure 1 shows the block diagram of an FPGA and
its components. The CLBs consist of look up tables (LUTs),
which are used to program the application logic into the FPGA
hardware. FPGAs are often connected to the system as PCIe
devices and while current generation FPGAs might lag behind
other accelerators, they have been shown to be more energy
efficient for certain applications [15], [16]. Furthermore, high
level synthesis (HLS) has made the process of programming

for FPGAs much more accessible leading to an increase in
popularity.

OpenCL: Unlike CUDA, a proprietary framework for
NVIDIA’s GPUs, OpenCL provides an open standard for
programming parallel applications for a wide range of ac-
celerators, such as multi-core CPUs, GPUs, FPGAs, DSPs,
Tensor cores, etc. It provides a standard interface for task-
based and single instruction multiple data (SIMD) parallelism
that the application developer can leverage based on the target
architecture and application. Like CUDA, the application is
divided into the host code and the device (or kernel) code. The
host code is responsible for initializing the target device(s),
allocating memory on the device, coordinating the movement
of data between the host DRAM and the device memory, and
enqueuing the kernel on the device. The kernel code describes
the computation that is to take place on the accelerator. Fig-
ure 2 shows the development flow for an OpenCL application.

The host code is compiled using a C/C++ compiler and
linked to the OpenCL library to generate the host binary. The
kernel code (shown in the figure as device.cl) can either be
pre-compiled for a specific accelerator, or the host code can
compile the device code at run-time for any target accelerator
(with some exceptions to be discussed later). The host binary is
then executed on the CPU, it initializes the target accelerator,
co-ordinates data movement, compiles the device code and
finally enqueues the kernel on the device before it is run on
the accelerator.

High Level Synthesis: Traditionally FPGAs have been
dependent on Register Transfer Language (RTL) code to de-
scribe the logic that needs to be programmed into the acceler-
ator. High level synthesis (HLS) allows application developers
to write the accelerator logic in a high-level language such as
OpenCL and compile that to its equivalent RTL code that can
be programmed into the FPGA. This allows for abstraction
of the core application logic from the underlying hardware
description. HLS tools enable compilation of high-level code
to RTL and provide tools to ensure correctness. Figure 3
shows the development workflow for FPGAs under HLS.
While a full compile for the FPGA can take several hours,
application developers can ensure correctness using emulation
(on the CPU, without FPGA execution) and make changes
to the code if necessary. Furthermore, profiling tools can be
used to ensure the energy and performance requirements are

Global-Y

Global-X

Local-Y

Local-X

Slice-Y

Slice-X

Fig. 4. A 2-D NDRange kernel Fig. 5. GEMM slicing overhead + stddev

met without having to embark on a full scale compilation.
Finally, once correctness is ensured and performance and
energy constraints have been met, the application developers
can run the application on the physical hardware.

III. DESIGN AND IMPLEMENTATION

This section describes the design and implementation of our
work-sharing and co-scheduling framework by detailing our
technique of slicing of OpenCL kernels that enables work-
sharing and supports co-scheduling within our framework as
well as kernel migration between slice invocations.

Kernel Slicing: OpenCL kernels can either be pro-
grammed as a single task or an NDRange kernel. In a single-
task kernel, SIMD parallelism is not leveraged and there
is only one thread of execution. This is not suitable for
accelerators such as GPUs or even multi-core CPUs, but it
lends well to FPGAs, which utilize pipelined parallelism. An
NDRange kernel describes the computation as work items and
utilizes SIMD parallelism. In this work, we exclusively study
NDRange kernels, which can be programmed to be suitable
for all three types of accelerators, CPUs, GPUs and FPGAs.

In an NDRange kernel, the computation is divided into work
items using data parallelism, where each work item has its own
logical thread of execution. The work items are grouped into
a local work group with the ability for threads to synchronize
only within the local work group. The overall computation is
referred to by the global work group. Along with the local
and global work groups, we add the notion of a slice, which
is a multiple of the local work group size. Figure 4 shows
an NDRange kernel for a two-dimensional (2D) computation
with a single work item shown in green. Since synchronization
is possible only within a local work group, each slice can be
computed independently. While it is possible to use the local
work group as a slice, in practice, larger slices composed
of multiple local work groups allow better utilization of
the compute units available on an accelerator. Slices can
be constructed using multiples of local work groups in any
dimension or even multiple dimensions. Our framework is
configured to use slices constructed by extending the local
work group in the first dimension.

We leverage this slicing mechanism to transform a single
kernel into a series of kernels (equal to the number of slices)

with each slice being computed one after the other. Each of
the accelerators acquires the next available slice atomically.
Figure 5 shows the overhead of slicing with GEMM with
different number of slices. For a small input size (4096x4096),
we observe that a large number of slices (256) degrades
performance by about 5.6% but for larger input sizes the
performance is very close to that of a single kernel execution.

Note: For the slicing mechanism to produce correct output,
we changed the kernel to take an extra parameter that specifies
the current slice. This enables the kernel to write the result of
the computation to the correct location in the output buffer(s).
This can be avoided by using the clEnqueueNDRangeKernel
function (used to enqueue a kernel on an accelerator), which
accepts a parameter that specifies an offset for the global work
id. However, one of the versions of OpenCL on our system
has not implemented this functionality, which forced us to
resemble it by code refactoring [17].

Work and Data Sharing: With the ability to organize a
single OpenCL kernel into several slices, abstracted in a “bag
of tasks”, each of which can be scheduled as independent
kernel executions, we create a fine-grained work sharing
framework. Figure 6 shows the combined design for our
work sharing and co-scheduling framework. Memory for the
input data structures as well as the output data structures
are allocated on each of the accelerators participating in the
work sharing for the job. Input data structures are copied
to each of the accelerators (if necessary), i.e., each selected
target device (e.g., CPU+GPU) receives a complete copy of
all input data that the kernel operates on. We later discuss
potential optimizations for data partitioning. Then independent
threads for each accelerator atomically pick slices from the bag
to execute as a kernel. Once all the slices have completed,
output buffers are copied from the accelerators. Finally, each
of the accelerators’ clean-up routine is executed to release the
memory and device(s).

This fine-grained scheduling approach ensures that the job
is held up for a short time waiting (given by the slice
granularity) for a single accelerator to complete execution
for the last remaining slice. As seen in Figure 5, such fine-
grained execution does not add significant overhead as only a
small overhead is imposed by work sharing. Multiple copies
of each data structure need to be allocated for each of the

Host Code
(Init)

Scheduler
Library

getPlatform(Profiling Data)

GPU Kernel CPU Kernel
FPGA
Kernel

Platform

pollPlatformUpdate()

Fine-grained
Scheduling

Platform
Slices
Done?

No

Yes

Host Code
(Cleanup)

Host Code
(Init)

Scheduler
Library

GPU Kernel CPU Kernel
FPGA
Kernel

Fine-grained
Scheduling

Slices
Done?

NoNo

Yes

Host Code
(Cleanup)

getPlatform(Profiling Data)

Platform

pollPlatformUpdate()

Platform

Shared
Memory

Job 0 Job 1

Platform
changed?

Yes

Host Code
(Reinit

OpenCL)

Platform
changed?

Yes

Host Code
(Reinit

OpenCL)

No

postDeviceRelease()

postJobComplete()

postDeviceRelease()

postJobComplete()

Scheduler
Interactions

Host
Code

Kernel
Code

Scheduler
Code

Application
Flow

Fig. 6. Co-Scheduler and Work Sharing Framework Design

accelerators and threads, and each accelerator needs to be
spawned. Furthermore, the data structures need to be copied
to and from the device memory for each accelerator that
participates in the work sharing adding additional overhead,
just as for GPUs. Finally, for a slow device executing a
particular kernel, the last slice allocated to this device might
only complete execution significantly later than when the
other accelerators have completed execution. This can be
mitigated by increasing the number of slices (and reducing
their respective size) for the kernel, which may, conversely,
hamper performance on the faster devices.

To maximize performance, the above mentioned trade-off
needs to be carefully assessed for each application. In this
work, we show a common OpenCL kernel being executed on
a CPU, a GPU and an FPGA. In general, the work scheduling
framework can be used to combine multiple programming
paradigms such as CUDA for GPUs or OpenMP for CPUs.
Further, our system comprises of a CPU, a GPU and an FPGA,
but the work sharing framework can be used for multi-GPU
systems (e.g., Petascale systems such as Summit and Sierra)
or even systems where GPUs with differing capabilities are
present on the same node or within a cluster.

Co-Scheduling: The details of our co-scheduling frame-
work are given in Figure 6, which shows the design of our
framework with the scheduler and its interactions. Each job
links to the scheduler library during compilation, and each
instance of the scheduler library uses a shared block of mem-
ory to store all scheduling information. Scheduling decisions
are taken whenever a new job arrives, a job switches devices,
or a job completes execution. All accesses to the scheduler’s
critical data structure is protected using a semaphore to ensure
that multiple instances of the scheduler read coherent data.
While a single job can be assigned multiple accelerators, an
accelerator can only be assigned to a single job.

The interactions between jobs and scheduler are as follows:
1) Before initialization of the application, the application
requests an available platform using getPlatformId. It sends
the scheduler profiled information about the application’s
relative performance on different combinations of devices. The
scheduler either returns an available platform to the application
(CPU, GPU, FPGA, CPU/GPU, etc.) or waits for a platform

to become available.
2) Once the getPlatformId function returns indicating the
assigned platform, the job starts execution as described in the
previous subsection. After completing each slice, it polls the
scheduler to check if a different platform has been assigned
using pollPlatformUpdate.
3) If there is no change in the platform, the job continues
with the next slice, otherwise the job waits for all of the
currently executing slices to complete. Once all current slices
are complete, the application executes a clean-up of the
held devices before finally informing the scheduler using
postDeviceRelease. The application can then initialize the
newly assigned devices and continue execution from the next
available slice.
4) Once all the slices are done, the job informs the scheduler
using postJobComplete that it may terminate.

Switching accelerator platforms incurs a significant over-
head on the application since partial output buffers need to be
copied out from the current devices, the current devices need to
be released, the newly assigned devices need to be initialized
and input data needs to be copied to them. It is possible to
mitigate some of this overhead. For example, if the scheduler
assigns the GPU+FPGA to an application currently using the
GPU, we do not need to release the GPU. But we run into an
issue with the FPGA: If the FPGA library is loaded within an
application, any use of the OpenCL library in that application
would cause any other application using the FPGA to freeze
due to an internal runtime lock in the vendor library (beyond
our control). Hence, we load the FPGA library conditionally
if and only if the platform returned by the scheduler includes
the FPGA using dlsym.

While this solves our initial issue, it creates another one. An
application using the GPU cannot switch to the FPGA since
loading the FPGA library using dlsym will not properly link
it to the OpenCL library, which was loaded when execution
started on the GPU. Fixing this issue requires us to unload
OpenCL and reload both OpenCL and the FPGA library for
the application to be able to use the FPGA. Therefore, we
have to release all devices and reinitialize them whenever a
change in platform occurs. Notice that a fix for this issue
with the FPGA library could significantly decrease platform

switching overhead, but this is beyond the scope of this work
due to partially proprietary software stacks that we do not have
sources of.

We implement and evaluate four scheduling algorithms for
co-scheduling:

Baseline: This scheduling algorithm runs applications only
on best performing device. While applications can be co-
scheduled, they will wait for their best device to become
available before being scheduled and dispatched. Priorities are
assigned to the jobs based on their arrival times. A lower
priority job can be scheduled before a higher priority job only
if both are scheduled on different devices.

Greedy + Up Migration: This algorithm starts application
execution on any device that is available. Once faster device
becomes available, jobs are switched to run on a new device.
Priorities are still assigned based on arrival time, but in this
algorithm lower priority jobs cannot run before a higher
priority job since any job can run on any device. Furthermore,
preference for switching to a newly released device is given
to the higher priority jobs.

Elastic: This algorithm leverages our work sharing frame-
work in conjunction with co-scheduling. Priorities to jobs are
still assigned by arrival time, but this algorithm can schedule
higher priority jobs on multiple devices using work sharing.
Like the previous algorithm, jobs can start on any device. As
other devices become available, jobs expand to share work
amongst multiple devices.

Elastic — Device Limiting: Finally, we implement Elastic-
DL by modifying the Elastic algorithm. Elastic-DL is similar
to Elastic with one key difference. Here, we limit the maxi-
mum number of devices that a single job can be allocated to.
In our experiments, we set the limit to the number of devices
given by a node.

IV. EXPERIMENTAL FRAMEWORK

We next describe system, applications and workloads used
to evaluate work sharing and co-scheduling.

Applications: We use four applications for the evaluation
of our work sharing framework, which together comprise
workloads to evaluate the co-scheduling algorithms.

Mandelbrot (double precision): Calculation of Mandel-
brot is an important application particularly in the field of
encryption and security. Several methods have been proposed
to speed up parallel computation of them using HPC [18], [19].
We extend the implementation of the Mandelbrot set provided
with the Intel FPGA library to support work sharing. We use
the application to generate 67 frames of the set with a certain
number of colors and vary the size of each frame.

GEMM (single precision): General Matrix Multiplication
(GEMM) is a critical kernel for HPC systems with a wide
variety of applications requiring GEMM for computation.
From AI workloads to physics simulations, all rely on GEMM.
For GEMM, we modify the implementation provided with the
OpenCL library to support our framework and evaluate its
performance for a range of different square matrix sizes using
the mean of 10 runs.

SpMV (single precision): Sparse Matrix-Vector Multipli-
cation (SpMV) is another linear algebra kernel extensively
used in scientific and engineering applications and process-
ing of large data sets. It multiplies a sparse matrix with a
dense vector to produce a vector. We implement an SpMV
application using the compressed sparse row (CSR) format as
a sparse matrix representation. We use a constant number of
non-zero elements distributed randomly across the rows for
different matrix sizes during evaluations. Each configuration
is executed for 10 iterations for evaluation.

XSBench (double precision): XSBench is mini-app repre-
senting the computation for a Monte Carlo neutron transport
algorithm [20]. We modify an OpenCL implementation of the
application provided by Argonne National Laboratory (ANL)
to support work sharing and co-scheduling. Our evaluation
uses the event-based simulation with 340k gridpoints and
a nuclide grid search. We vary the number of look-ups to
generate different application sizes and we utilize the mean of
10 iterations for each configuration.

Workloads: We have designed and implemented a work-
load generator to create randomized workloads using the above
applications with different input sizes, where inputs are pre-
distributed over all devices. Besides varying inputs, it takes
the maximum inter-arrival time between jobs as a parameter.
We created a total of 15 jobs shown in Table I.

TABLE I
APPLICATIONS AND INPUT SIZES

Kernel/Prec. (Size) S M L XL

M: Mandelbrot double-prec. 2048 4096 8192 16384
(Frame Size NxN)

G: GEMM single-prec. 4096 8192 16384 22400
(Matrix Size NxN)

S: SpMV single-prec. 28 29 30 31
(Matrix Size 2Nx2N)

X: XSBench double-prec. 16M 32M 64M -
(Lookups)

Based on these jobs, we create three randomly generated
workloads consisting of all four applications with one instance
of each job by varying the maximum inter-arrival time (IAT)
parameter (see Table II). We also create another workload
with just two of the four applications, namely GEMM and
Mandelbrot. Workloads 1, 2, 3, and 4 have inter-arrival times
of 2.3s, 10.5s, 23.9s and 2.2s, respectively.

TABLE II
WORKLOAD DETAILS WRT. APPS FROM TAB. I

Workload Applications Jobs Avg. IAT

Workload 1 M,G,S,X 15 2.3s

Workload 2 M,G,S,X 15 10.5s

Workload 3 M,G,S,X 15 23.9s

Workload 4 M,G 12 2.2s

These applications and their parameterization provide a
diverse mix of different workload characteristics. Each of
these workloads are evaluated for the co-scheduling algorithms
described in the previous section. GEMM and Mandelbrot
kernels are part of the Intel FPGA SDK and highly optimized

for both FPGA and GPU. SpMV is optimized for the CPU and
XSBench for GPUs. SpMV has the most potential for sharing
and GEMM has some but Mandelbrot may not benefit much
from sharing.

System Details: We run both our work sharing and co-
scheduling experiments on a single node on a mid-tier HPC
cluster. The system consists of an Intel multi-core CPU, an
NVIDIA GPU and an Intel Altera FPGA.

The CPU is a 16 core Intel Broadwell Xeon E5-2620 v4
running at 2.10GHz with 20MB of L3 cache capable of up to
32 threads (with Hyper-Threading), 64GB of DDR4 memory
and PCI-E 3.0. The GPU on the system is an NVIDIA RTX
2060 with 6GB of device memory and a memory bandwidth of
336 GB/s (theoretical peak of 6.451 TFlops single and 201.6
GFlops double precision). The FPGA is an Altera Arria 10
GX DE5a-Net-DDR4 with 8GB of device memory with PHY
of up to 2666 Mbps. It is capable of 1.366 TFlops of single
precision and consists of 1.5 million logic elements and DSP
blocks.

On the software side, the system is running CentOS with
the 4.10.13 version of a backpatched Linux kernel. Each of
the three devices utilizes a different version of OpenCL: The
CPU uses OpenCL 2.1 provided by Intel, the GPU exploits
OpenCL 1.2 provided by NVIDIA, and the FPGA relies on
OpenCL 1.0 also provided by Intel. The initialization cost of
accelerators is small in all cases compared to compute times.

V. RESULTS

This section present the results of our work sharing and co-
scheduling framework for the applications and their workloads
discussed in the previous section. The objective of the results
is to highlight the capabilities of our work-sharing framework
given a set of kernels. These kernels may be optimized to
various degrees, i.e., our work is subject to the code optimiza-
tion capabilities of the compilers and their OpenCL runtime
systems. Instead of seeking peak performance for a device,
we aim to show that our framework can flexibly adapt to
relative performance differences between devices, irrespective
of their relation to absolute peak performance of a given kernel
(which is driven by compiler optimizations beyond the scope
of this paper). The GEMM and Mandelbrot kernels are part
of Intel’s FPGA framework and are therefore optimized for
the FPGA. The XSBench kernel is provided as open-source
by Argonne National Laboratory, it is optimized for the GPU.
SpMV is a CPU-optimized kernel. First, we assess results for
work sharing, followed by a discussion on how we use those
results to achieve efficient co-scheduling of these applications.

A. Work Sharing

Figure 7 depicts performance in time (normalized to the
GPU baseline, lower is better) per application (y-axis) for
various input sizes (x-axis) with work being shared amongst
combinations of devices indicated by bars in the legend. For
XSBench and SpMV, we omit certain FPGA combinations
from the results. This is due to the poor performance of the
FPGA for these applications. These results comprise the time

spent in computation including copying to and from the device
but neither include the input initialization nor the OpenCL
initialization times.

Mandelbrot: For Mandelbrot (Figure 7a), each of the
devices has somewhat comparable performance. This results
in efficient work sharing between any combination of devices.
While the CPU is the best performing of the three devices,
sharing work between any combination of devices yields better
performance. For instance, combining GPU and FPGA (slower
individual devices) yields a speed-up of 1.308 over running
only on the CPU (fastest individual devices). Similarly, run-
ning on all three devices simultaneously results in a speed-up
of 2.26 over running on the CPU alone.

GEMM: In the case of GEMM (Figure 7b), only the GPU
and FPGA show comparable performance. The CPU performs
quite poorly for this particular kernel. The GPU performs on
average 2.522 better than the FPGA for GEMM, but sharing
work between the GPU and FPGA results in a speed-up of
1.386 over running exclusively on the GPU. Adding the CPU
into the mix results in performance either being worse that
running on the GPU alone (for 4096x4096), or worse than
running on the GPU and FPGA (for 8192x8192), or only
marginal improvements (for 16384x16384 and 22400x22400)
with a speed-up of less than 1.01 over GPU and FPGA. This
is because the added overhead of scheduling slices on the
CPU is not amortized by adding the compute capability of
the CPU. Another reason for this is the long tail created
by the last slice allocated to the CPU. While the GPU and
FPGA have completed their last slices, the CPU is still
working on completing the last slice causing the long tail.
The comparatively better performance of the FPGA can be
attributed to the fact that the application uses the DSPs on-
board the FPGA to improve GEMM performance.

SpMV: Work sharing results for SpMV are shown in
Figure 7c. Due to the low memory bandwidth on the FPGA,
the performance of SpMV is over an order of magnitude
worse on the FPGA compared to CPU and GPU, and has
therefore been omitted. The CPU performs best for SpMV
with an average speed-up of 1.358 over the GPU. This is
because SpMV has an irregular memory access pattern that
benefits the CPU more than the GPU as the latter favors
regular memory access patterns. For SpMV, as seen before
for other applications, sharing work between CPU and GPU
results in better performance than using any single device
with an average speed-up of 1.236 over the best performing
device (CPU). While there has been work to improve the
performance of SpMV on GPUs [21], this requires significant
GPU-specific changes to the kernel and data representations.
These mechanisms could be incorporated with our work-
sharing framework but this is beyond the scope of the paper.
The CPU performance of SpMV can also stand to gain from a
better optimized kernel to improve its utilization of the system
cache.

XSBench: Like SpMV, XSBench (shown in Figure 7d) also
experiences poor performance on the FPGA, but unlike SpMV,
the GPU performs better for this application with an average

(a) Mandelbrot (b) GEMM

(c) SpMV (d) XSBench
Fig. 7. Normalized performance over various input sizes per device mix of each application (with standard deviation).

speed-up of 2.519 over the CPU. Sharing work between the
CPU and GPU results in the most significant performance
improvement with a speed-up of 1.3x over the GPU. Adding
the FPGA along with the CPU and GPU results in either a
slight increase (for 16M) or a slight decrease (for 32M) in
performance. This makes FPGA an unsuitable candidate for
work sharing for XSBench.

Discussion: Improvement in device technologies (e.g.,
higher memory bandwidths on the FPGA, unified memory
between accelerators, and adding more compute units to
devices) can affect the relative performance of each of the
accelerators for the applications studied. The work sharing
framework would be able to leverage these enhancements to
further improve overall application performance. Furthermore,
the framework can be used on systems with heterogeneous
accelerators, e.g., multiple GPUs with different capabilities.
With the current framework, the output is copied out of the
device when all slices are complete. A more fine-grained ap-
proach, where the output of each slice would be copied to the
other devices while the kernel is still executing, could improve
performance even more, particularly for applications that rely
on multiple kernel executions such as stencil computations.

Another aspect to note here is that when either the GPU
or the FPGA is used along side the CPU, some of the CPU
time is spent on scheduling work on the accelerators, data
movement between the primary DRAM and the accelerator’s
DRAM.

B. Co-Scheduling

Next, we present results for co-scheduling the workloads for
the previous section. These results present an end-to-end look
at the work-sharing and co-scheduling mechanisms. Each of

the scheduling algorithms leverages different aspects of work-
sharing except the baseline, which does not use any. G+Up
utilizes the ability to migrate kernels, Elastic builds on that
to split work and expand to more accelerators and Elastic-
DL leverages the ability to contract to fewer accelerators.
Figure 8 shows the timeline per and the devices they are
allocated for each of the randomly generated workloads and
the scheduling algorithms. Figure 10 shows the timeline for
the dual application / 12 job workload, where colors indicate
the application while shades indicate input sizes of a given
application per job. Figure 9 depicts the turn-around-time
for each job per workload and scheduling algorithm. Finally,
Figure 11 shows the time taken for the overall workload per
scheduling algorithm. While the previous section presented
results for the computation time, the scheduling results are for
overall job time (in seconds).

Workload 1: Figures 8a,d,g,j and 9a depict results for
Workload 1. For this workload with low inter-arrival times
(2.2s on average), we see that Greedy+Up (G+Up) outper-
forms all other scheduling algorithms with a speed-up of
1.225 over the baseline. While both Elastic and Elastic-
DL outperform the baseline (with a speed-up of 1.091 and
1.051x, respectively), they still show inferior performance
when compared to G+Up. In terms of turn-around-time, we
see that Elastic and Elastic-DL favor the longest and most
elastic jobs to the detriment of most other jobs. We see idle
time on certain devices, such as the GPU in Figure 8d in
the time range of 100-150 seconds. This occurs because the
scheduler has allocated the GPU to XSBench after it begins
execution on the FPGA. Even though the scheduler assigns the
GPU shortly after to XSBench, the job cannot switch to the
newly assigned device until it either completes initialization or

(a) Workload 1 - Baseline (b) Workload 2 - Baseline (c) Workload 3 - Baseline

(d) Workload 1 - G+Up (with init times) (e) Workload 2 - G+Up (f) Workload 3 - G+Up

(g) Workload 1 - Elastic (h) Workload 2 - Elastic (i) Workload 3 - Elastic

(j) Workload 1 - Elastic-DL (k) Workload 2 - Elastic-DL (l) Workload 3 - Elastic-DL
Fig. 8. Timeline for the jobs on each accelerator in the randomly generated workloads for each of the scheduling algorithms

execution of the current slice. In general, if the best resource
is not available, execution on an alternate device still benefits
overall performance in practice, even when considering data
migration costs.

We show the timeline with initialization times for Figure 8d.
The dashes in the figure show when application initialization
is complete, after which the application starts its kernel ex-
ecution. If application initialization has begun with a certain
device allocation, it will hold the device until initialization has
completed, even if another device has been assigned to the
application. This is particularly visible for XSBench (large
input), which starts on the FPGA as the GPU is still busy
with GEMM (large), but after initialization and a single kernel
run on the FPGA, XSBench is moved to the now available
GPU. An earlier switch to the GPU was not possible since
any single kernel cannot be preempted but rather needs to
first complete. And the FPGA had already been committed to
the first XSBench kernel in this case. Notice that the delay in
migration is dominated by initialization cost, which is high for
XSBench (large), the single FPGA kernel run contributes only
insignificantly to the migration delay. For other figures, dashed
lines are omitted to improve legibility, but their timeline still
includes application initialization time, including migration
delays, albeit none of them as significant as in Figure 8d.

Workload 2: Figures 8b,e,h,k and 9b depict results for
Workload 2 with an average inter-arrival time of 10.5s. We see

that both G+Up and Elastic perform comparably with a speed-
up of 1.085 and 1.08x, respectively, over the baseline. Elastic-
DL experiences almost similar performance to baseline with a
speed-up of 1.023 due to the overhead of switching between
devices. We see a similar pattern with the turn-around-time as
Workload 1, where Elastic and Elastic-DL give preference to
the longest and most elastic jobs while showing an increase in
the turn-around-time for most other jobs. The idle times on the
GPU and FPGA at the beginning of the workload are due to
there not being a job in the scheduler queue. Finally, we still
see the impact of idle devices due to applications waiting for
initialization and slice completion before switching devices.

Workload 3: Figures 8c,f,i,l and 9c depict results for
Workload 3, which has an inter-arrival time of 23.9s. We
observe that both Elastic and Elastic-DL convincingly out-
perform G+Up migration. Elastic and Elastic-DL have speed-
ups of 1.198 and 1.167x, respectively, while G+Up has a
smaller speed-up of just 1.066 over the baseline. Because of
the comparatively longer inter-arrival times, G+Up migration
experiences significant idle times on the FPGA. Elastic and
Elastic-DL, in contrast, leverage work-sharing resulting in
higher utilization of the available accelerators on the system.
We see improvements in turn-around-time for more jobs
compared to Workloads 1 and 2 but it is still the longer and
more elastic jobs that experience a noticeable decrease in turn-
around-times. Furthermore, jobs that do suffer from a negative

(a) Workload 1 (b) Workload 2 (c) Workload 3
Fig. 9. Turn around time for the jobs in the workloads for each scheduling algorithm (with standard deviation).

(a) Workload 4 - Baseline (b) Workload 4 - G+Up

(c) Workload 4 - Elastic (d) Workload 4 - Elastic-DL
Fig. 10. Timeline for jobs over accelerators in the two-application workload
per scheduling algorithm, same color coding as in Fig. 8
impact on their turn-around-times do so to a much lesser extent
compared to the previous workloads.

Workload 4: Finally, we run a workload consisting of two
applications, GEMM and Mandelbrot, and a total of 12 jobs for
each of our scheduling algorithms. Figure 10 shows the results
for Workload 4 (average inter-arrival time of 2.25). We observe
that Elastic-DL performs the best with a speed-up of 1.249
over the baseline while Elastic shows a speed-up of 1.142 over
the baseline. G+Up, in contrast, shows a slight slowdown of
0.986 due to the overhead of device switching. This workload
shows that applications with fine-grained slices as well as
small application initialization times cause minimal idle times
on devices, and therefore achieve superior performance with
work-sharing even for low inter-arrival times.

Discussion: As for work-sharing, co-scheduling opens sev-
eral optimization opportunities.
1) While our scheduling algorithms prioritize arrival time of
the jobs when allocating accelerators to jobs, other scheduling
algorithms can be developed that schedule jobs based on rela-
tive performances of applications on different accelerators. For
instance, a job that arrives later can be scheduled earlier if the
available accelerator is better suited for it. This can be achieved
using static profiling and accelerator-specific priorities.
2) Coordination between work-sharing, data distribution and

Fig. 11. Overall time for workloads per scheduling algorithms (w/ std. dev.)

co-scheduling can further enhance performance. Instead of
devices holding all kernel input data, a scheduled prefetch
action could selectively populate only the input data of a
slice on a device, just ahead of kernel execution but as late
as possible, which would also facilitate the handling of data
exceeding the accelerator’s memory capacity. If the scheduler
determines that the overhead of switching devices is more than
running the job on the current device, it can let the application
continue with the existing configuration. Furthermore, the
scheduler can be made aware of the initialization time of the
job. This would resolve a significant amount of the idle time
that we see on devices in Figure 8.
3) Instead of offline profiling, the scheduler can estimate
relative performance of jobs on different accelerators in order
to make scheduling decisions. This would eliminate the need
to collect profiling data for each application as well as enable
applications to run on arbitrary systems.

VI. RELATED WORK

Prior work has explored methods to efficiently use het-
erogeneous devices on HPC systems. Scogland et al. [22]
use OpenMP-like directives to schedule computational load

across CPUs and GPUs. Aji et al. [23] schedule task-parallel
workloads on devices by mapping OpenCL queues to devices
at run-time to achieve ideal performance. Spafford et al. [24],
Guzman et al. [25] and Pandit et al. [26] provide frameworks
to orchestrate data and task decomposition for multi-device
cooperative execution. Ahmed [27] implements OpenCL sup-
port for a Xilinx FPGA and demonstrates pipelined execution
across FPGA, GPU and CPU with an application without
kernel sharing across devices. Kim et al. [28] co-schedule
over CPU/GPU devices by translating OpenCL to CUDA for
GPUs but do not handle FPGAs. Al-Zoubi et al. [29] propose
a predictive approach for coarse-grained OpenCL scheduling
to consider both power consumption and execution time, yet
no experiments are conducted for this conceptual proposal.
Rodriguez et al. [30] derive a model for near-optimal chunk
prediction for CPU+FPGA execution of a single kernel. Our
approach goes further with its dynamic migration and elasticity
in response to workload and system environment changes,
readily supported by our data-oriented bag-of-task scheduling
for CPU, GPU and FPGA devices.

Several techniques have been explored in prior work to
make maximum use of available resources by reducing idle
time. Weidendorfer et al. [31] characterize applications for
their suitability for co-scheduling. Frachtenberg et al. [32] use
jobs as fillers to reduce fragmentation and achieve reduced
idle time. Zacarias et al. [33] create a resource manager that
uses machine learning to predict the cost of co-scheduling
and a scheduler that reduces performance degradation. Further,
Xiong et al. [34] propose Tangram, which oversubscribes
nodes resulting in CPU sharing. They use prior knowledge to
determine if co-scheduling will result in overall performance
improvement. Dauwe et al. [35] create a model to predict
an application’s execution time and energy usage when co-
scheduled with other applications. They demonstrate that their
model can significantly improve scheduling performance.

In contrast to these works, to the best of our knowledge,
ours is the first that holistically combines work sharing and
elasticity of kernels with the ability to expand, contract and
migrate kernels on devices combined with co-scheduling and
enabled by pluggable scheduling algorithms to coordinate the
execution of multiple kernels on the same node.

VII. CONCLUSION

This work contributes novel methods to more effectively
use the computational resources available in a current and
future HPC node. We create a framework to share single
kernels across several different accelerators, to migrate a
kernel from one device to another, to expand the kernel to
occupy more devices, or to contract the kernel to occupy
fewer devices, all done dynamically. Our framework leverages
these capabilities to enable sharing of a single node amongst
multiple, concurrently running applications.

Evaluations with four applications composed into workloads
with different input sizes show speedups of up to 2.26X
when work is shared amongst all the available accelerators
compared to our baseline. Furthermore, co-scheduling can

achieve speedups of up to 1.25X with an Elastic-DL algorithm
over baseline co-scheduling. Beyond performance, our work
contributes an unprecedented ease of programmability, where
a single code base readily compiles and executes under fine-
grained runtime controlled scheduling with migration across
three heterogeneous execution platforms.

ACKNOWLEDGMENTS

This work was supported in part by NSF awards CISE-
2316201, CISE-2217020, PHY-1818914 and a subcontract
from LLNL and by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the US Department of Energy (DOE).

REFERENCES

[1] ORNL, “Summit,” https://www.olcf.ornl.gov/olcf-resources/
compute-systems/summit/, Oak Ridge National Laboratory, 2023.

[2] LLNL, “Sierra,” https://computing.llnl.gov/computers/sierra, Lawrence
Livermore National Laboratory, 2023.

[3] ORNL, “Frontier,” https://www.olcf.ornl.gov/frontier/, Oak Ridge Na-
tional Laboratory, 2023.

[4] NERSC, “Perlmutter,” https://www.nersc.gov/systems/perlmutter/,
NERSC, 2023.

[5] J. S. Vetter, R. Brightwell, M. Gokhale, P. McCormick, R. Ross,
J. Shalf, K. Antypas, D. Donofrio, T. Humble, C. Schuman et al.,
“Extreme heterogeneity 2018-productive computational science in the
era of extreme heterogeneity: Report for doe ascr workshop on extreme
heterogeneity,” 2019.

[6] Amazon, “Amazon ec2 f1 instances,” https://aws.amazon.com/ec2/
instance-types/f1/, Amazon AWS.

[7] Microsoft, “Deploy ml models to field-programmable gate arrays (fp-
gas) with azure machine learning,” https://learn.microsoft.com/en-us/
azure/machine-learning/v1/how-to-deploy-fpga-web-service, Microsoft
Azure.

[8] C. Nvidia, “Compute unified device architecture programming guide,”
Nvidia, 2007.

[9] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp.
879–899, 2008.

[10] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W. Arnold,
J. E. Stone, J. C. Phillips, and W. Hwu, “Gpu clusters for high-
performance computing,” in 2009 IEEE International Conference on
Cluster Computing and Workshops, 2009, pp. 1–8.

[11] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 3, pp. 66–73, 2010.

[12] Intel, “Intel oneapi,” https://software.intel.com/en-us/oneapi, Intel, 2023.
[13] R. Dimond, S. Racaniere, and O. Pell, “Accelerating large-scale hpc

applications using fpgas,” in 2011 IEEE 20th Symposium on Computer
Arithmetic. IEEE, 2011, pp. 191–192.

[14] W. Vanderbauwhede and K. Benkrid, High-performance computing
using FPGAs. Springer, 2013, vol. 3.

[15] B. Betkaoui, D. B. Thomas, and W. Luk, “Comparing performance and
energy efficiency of fpgas and gpus for high productivity computing,”
in 2010 International Conference on Field-Programmable Technology.
IEEE, 2010, pp. 94–101.

[16] T. Nguyen, C. MacLean, M. Siracusa, D. Doerfler, N. J. Wright, and
S. Williams, “Fpga-based hpc accelerators: An evaluation on perfor-
mance and energy efficiency,” Concurrency and Computation: Practice
and Experience, p. e6570, 2021.

[17] Khronos, “Opencl api,” https://khronos.org/registry/OpenCL/sdk/1.0/
docs/man/xhtml/, Khronos, 2023.

[18] X. W. Duan, W. C. Shen, and J. Guo, “The mpi and openmp implemen-
tation of parallel algorithm for generating mandelbrot set,” in Applied
Mechanics and Materials, vol. 571. Trans Tech Publ, 2014, pp. 26–29.

[19] B. M. S. V. Gamage and V. M. Baskaran, “Efficient generation
of mandelbrot set using message passing interface,” arXiv preprint
arXiv:2007.00745, 2020.

[20] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “Xsbench-the de-
velopment and verification of a performance abstraction for monte carlo
reactor analysis,” The Role of Reactor Physics toward a Sustainable
Future (PHYSOR), 2014.

[21] P. Jiang, C. Hong, and G. Agrawal, “A novel data transformation and
execution strategy for accelerating sparse matrix multiplication on gpus,”
in Proceedings of the 25th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2020, pp. 376–388.

[22] T. R. Scogland, W.-c. Feng, B. Rountree, and B. R. de Supinski, “Coret-
sar: Adaptive worksharing for heterogeneous systems,” in International
Supercomputing Conference. Springer, 2014, pp. 172–186.

[23] A. M. Aji, A. J. Peña, P. Balaji, and W.-c. Feng, “Multicl: Enabling
automatic scheduling for task-parallel workloads in opencl,” Parallel
Computing, vol. 58, pp. 37–55, 2016.

[24] K. Spafford, J. Meredith, and J. Vetter, “Maestro: data orchestration
and tuning for opencl devices,” in European Conference on Parallel
Processing. Springer, 2010, pp. 275–286.

[25] M. A. D. Guzmán, R. Nozal, R. G. Tejero, M. Villarroya-Gaudó, D. S.
Gracia, and J. L. Bosque, “Cooperative cpu, gpu, and fpga heterogeneous
execution with enginecl,” The Journal of Supercomputing, vol. 75, no. 3,
pp. 1732–1746, 2019.

[26] P. Pandit and R. Govindarajan, “Fluidic kernels: Cooperative execution
of opencl programs on multiple heterogeneous devices,” in Proceedings
of Annual IEEE/ACM International Symposium on Code Generation and
Optimization, 2014, pp. 273–283.

[27] T. Ahmed, “Opencl framework for a cpu, gpu, and fpga platform,”
Master’s thesis, Master’s thesis, 2011.

[28] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “Snucl: An opencl
framework for heterogeneous cpu/gpu clusters,” in Proceedings of the
26th ACM International Conference on Supercomputing, ser. ICS ’12.

New York, NY, USA: Association for Computing Machinery, 2012, p.
341–352. [Online]. Available: https://doi.org/10.1145/2304576.2304623

[29] A. Al-Zoubi, K. Tatas, and C. Kyriacou, “Towards dynamic multi-task
schedulling of opencl programs on emerging cpu-gpu-fpga heteroge-
neous platforms: A fuzzy logic approach,” in 2018 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
2018, pp. 247–250.

[30] A. Rodrı́guez, A. Navarro, K. Nikov, J. Nunez-Yanez, R. Gran, D. Suárez
Gracia, and R. Asenjo, “Lightweight asynchronous scheduling in hetero-
geneous reconfigurable systems,” Journal of Systems Architecture, vol.
124, 2022.

[31] J. Weidendorfer and J. Breitbart, “Detailed characterization of hpc ap-
plications for co-scheduling,” in Proceedings of the 1st COSH Workshop
on Co-Scheduling of HPC Applications, 2016, p. 19.

[32] E. Frachtenberg, D. G. Feitelson, F. Petrini, and J. Fernandez, “Flexible
coscheduling: Mitigating load imbalance and improving utilization of
heterogeneous resources,” in Proceedings International Parallel and
Distributed Processing Symposium. IEEE, 2003, pp. 10–pp.

[33] F. V. Zacarias, V. Petrucci, R. Nishtala, P. Carpenter, and D. Mossé,
“Intelligent colocation of hpc workloads,” Journal of Parallel and
Distributed Computing, vol. 151, pp. 125–137, 2021.

[34] Q. Xiong, E. Ates, M. C. Herbordt, and A. K. Coskun, “Tangram:
Colocating hpc applications with oversubscription,” in 2018 IEEE High
Performance extreme Computing Conference (HPEC). IEEE, 2018, pp.
1–7.

[35] D. Dauwe, E. Jonardi, R. D. Friese, S. Pasricha, A. A. Maciejewski,
D. A. Bader, and H. J. Siegel, “Hpc node performance and energy
modeling with the co-location of applications,” The Journal of Super-
computing, vol. 72, no. 12, pp. 4771–4809, 2016.

