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Abstract—Bounding each task’s worst-case execution time
(WCET) accurately is essential for real-time systems to determine
if all deadlines can be met. Yet, access latencies to Dynamic
Random Access Memory (DRAM) vary significantly due to
DRAM refresh, which blocks access to memory cells. Variations
further increase as DRAM density grows.

This work contributes the “Colored Refresh Server” (CRS), a
uniprocessor scheduling paradigm that partitions DRAM in two
distinctly colored groups such that refreshes of one color occur
in parallel to the execution of real-time tasks of the other color.
By executing tasks in phase with periodic DRAM refreshes with
opposing colors, memory requests no longer suffer from refresh
interference. Experimental results confirm that refresh overhead
is completely hidden and memory throughput enhanced.

I. INTRODUCTION

Dynamic Random Access Memory (DRAM) has been the

memory of choice in embedded systems for many years due

low cost combined with large capacity, albeit at the expense

of volatility. As specified by the DRAM standards [1], [2],

each DRAM cell must be refreshed periodically within a

given refresh interval. The refresh commands are issued by

the DRAM controller via the command bus. This mode, called

auto-refresh, recharges all memory cells within the “retention

time”, which is typically 64ms for commodity DRAMs under

85◦C [1], [2]. While DRAM is being refreshed, a memory

space (i.e., a DRAM rank) becomes unavailable to memory

requests so that any such memory reference blocks the CPU

pipeline until the refresh completes. Furthermore, a DRAM

refresh command closes a previously open row and opens a

new row subject to refresh [3], even though data of the old

row may be reused (referenced) before and after the refresh.

Hence, the delay suffered by the processor due to DRAM

refresh includes two aspects: (1) the cost (blocking) of the

refresh operation itself, and (2) reloads of the row buffer for

data displaced by refreshes. As a result, the response time of

a DRAM access depends on its point in time during execution

relative to DRAM refresh operations.

Prior work indicated that system performance is signif-

icantly degraded by refresh overhead [4], [5], [6], [7], a

problem that is becoming more prevalent as DRAMs are

increasing in density. With growing density, more DRAM cells

are required per chip, which must be refreshed within the same

retention time, i.e., more rows need to be refreshed within

the same refresh interval. This increases the cost of a refresh

operation and thus reduces memory throughput. Due to the

asynchronous nature of refreshes relative to task schedules and

preemptions, none of the current analysis techniques tightly
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bound the effect of DRAM refreshes as a blocking term on

response time. Atanassov and Puschner [8] discuss the impact

of DRAM refresh on the execution time of real-time tasks

and calculate the maximum possible increase of execution

time due to refreshes. However, this bound is too pessimistic

(loose): If the WCET or the blocking term were augmented by

the maximum possible refresh delay, many schedules would

become theoretically infeasible, even though executions may

meet deadlines in practice. Although Bhat et al. make refreshes

predictable and reduce preemption due to refreshes by trigger-

ing them in software instead of hardware auto-refresh [3], the

cost of refresh operations is only considered, but cannot be

hidden. Also, a task cannot be scheduled under Bhat if its

period is less than the execution time of a burst refresh.

This work contributes the “Colored Refresh Server” (CRS)

to remove task preemptions due to refreshes and to hide

DRAM refresh overhead.

Contributions: (1) The impact of refresh delay under varying

DRAM densities/sizes is assessed for real-time systems with

stringent timing constraints.

(2) The Colored Refresh Server (CRS) for uniprocessors is

developed to refresh DRAM via memory space coloring and

shown to hide refresh overhead almost entirely .

(3) Experiments with real-time tasks confirm that both refresh

delays are hidden and DRAM access latencies are reduced.

II. BACKGROUND AND MOTIVATION

Today’s computers predominantly utilize dynamic random

access memory (DRAM), where each bit of data is stored in a

separate capacitor within DRAM memory. To serve memory

requests from the CPU, the memory controller acts as a medi-

ator between the last-level cache (LLC) and DRAM devices.

Once memory transactions are received by a DRAM controller

from its memory controller, these read/write requests are trans-

lated into corresponding DRAM commands and scheduled

while satisfying the timing constraints of DRAM banks and

buses. A DRAM controller is also called a node that governs

DRAM memory organized into channels, ranks and banks.

A. Memory Space Partitioning

We assume a DRAM hierarchy with node, channel, rank,

and bank abstraction. To partition this memory space, we ob-

tained a copy of TintMalloc [9], a heap allocator that “colors”

memory pages with controller (node) and bank affinity.

TintMalloc allows programmers to select one (or more)

colors to choose a memory controller and bank regions disjoint

from those of other tasks. DRAM is further partitioned into

channels and ranks above banks. The memory space of an



application can be chosen such that it conforms to a specific

color. E.g., a real-time task can be assigned a private memory

space based on rank granularity. When this task runs, it can

only access the memory rank it is allocated to. No other

memory rank will ever be touched by it. By design, there is a

penalty for the first heap allocation request with a color under

TintMalloc. This penalty only impacts the initialization phase.

After a “first touch” page initialization, the latency of any

subsequent accesses to colored memory is always lower than

that of uncolored memory subject to buddy allocation (Linux

default). Also, once the colored free list has been populated

with pages, the initialization cost becomes constant for a stable

working set size, even for dynamic allocations/deallocation

assuming they are balanced in size. Real-time tasks, after

their initialization, experience highly predictable latencies for

subsequent memory requests. Hence, a first coloring allocation

suffices to amortize the overhead of initialization.

B. DRAM Refresh

Refresh commands are periodically issued by the DRAM

controller to recharge all DRAM cells, which ensures data

validity in the presence of electric leakage. A refresh command

forces a read to each memory cell followed by a write-back

without modification, which recharges the cell to its original

level. The reference refresh interval of commodity DRAMs is

64ms under 85◦C (185◦F) or 32ms above 85◦C, the so-called

retention time, tRET , of leaky cells, sometimes also called

refresh window, tREFW [1], [2], [10], [11]. All rows in a

DRAM chip need to be refreshed within tRET , otherwise

data will be lost. In order to reduce refresh overhead, refresh

commands are processed at rank granularity for commodity

DRAM [12]. The DRAM controller can either schedule an

automatic refresh for all ranks simultaneously (simultaneous

refresh), or schedule automatic refresh commands for each

rank independently (independent refresh). Whether simulta-

neous or independent, a successive area of multiple cells in

consecutive cycles is affected by a memory refresh cycle. This

area is called a “refresh bin” and contains multiple rows. The

DDR3 specification [1] generally requires that 8192 automatic

refresh commands are sent by the DRAM controller to refresh

the entire memory (one command per bin at a time). Here, the

refresh interval, tREFI , denotes the gap between two refresh

commands, e.g., tREFI = 7.8us, i.e., tREFW/8192. The

so-called refresh completion time, tRFC, is the refresh dura-

tion per bin. Auto-refresh is triggered in the background by

the DRAM controller while the CPU executes instructions.

Memory ranks remain unavailable during a refresh cycle,

tRFC, i.e., memory accesses (read and write operations)

to this region will stall the CPU during a refresh cycle.

DRAM ranks can be refreshed in parallel under auto-refresh.

However, the amount of unavailable memory increases when

refreshing ranks in parallel. A fully parallel refresh blocks the

entire memory space for tRFC. This blocking time not only

decreases system performance, but can also result in deadline

misses unless it is considered in a blocking term by all tasks.

Furthermore, a side effect of DRAM refresh is that a

row buffer is first closed, i.e., its data is written back to

the data array and any memory access is preempted. After

the refresh completes, the original data is loaded back into

the row buffer again, and the deferred memory access can

continue. As a result, an additional overhead of tRP + tRAS
is incurred to close and re-open rows since the refresh purges

all buffers. By considering both the cost of a refresh operation

itself and the extra row close/re-open delay, DRAM refresh

not only decreases memory performance, but also causes the

response time of memory accesses to fluctuate. Due to the

asynchronous nature of refreshes and task preemptions, it is

hard to accurately predict and bound DRAM refresh delay.

Depending on when a refresh command is sent to a bin

(successive rows), two scheduling strategies exist: distributed

and burst refresh (see [13]).

III. DESIGN

The core problem with the standard hardware-controlled

auto-refresh is the interference between periodic refresh com-

mands generated by the DRAM controller and memory access

requests generated by the processor. The latter ones are

blocked once one of the former is issued until the refresh

completes. As a result, memory latency increases and becomes

highly unpredictable since refreshes are asynchronous. The

central idea of our approach is to remove DRAM refresh inter-

ference by memory partitioning (coloring). Given a real-time

task set, we design a hierarchical resource model [14], [15],

[16] to schedule it with two servers. To this end, we partition

the DRAM space into two colors, and each server is assigned

a colored memory partition. (We show in [13] that two colors

suffice, i.e., adding additional colors does not extend the

applicability of the method, it would only make schedulability

tests more restrictive.) By cooperatively grouping applications

into two resource servers and appropriately configuring those

servers (period and budget), we ensure that memory accesses

can no longer be subject to interference by DRAM refreshes.

Our approach can be adapted to any real-time scheduling

policy supported inside the CRS servers. In this section, we

describe the resource model, bound the timing requirements

of each server, and analyze system schedulability.

A. Assumptions

We assume that a given real-time task set is schedulable

with auto-refresh under a given scheduling policy (e.g., EDF or

fixed priority), i.e., that the worst-case blocking time of refresh

is taken into account. As specified by the DRAM standards [1],

[2], the entire DRAM has to be refreshed within its retention

time, tRET , either serially or in parallel for all K ranks. . We

also assume hardware support for timer interrupts and memory

controller interrupts (MC interrupts).

B. Task Model

Let us denote the set of periodic real-time tasks as

T = {T1...Tn}, where each task, Ti, is characterized by

(φi, pi, ei, Di), or (pi, ei, Di) if φi = 0, or (pi, ei) if pi = Di



for a phase φi, a period pi, (worst-case) execution time ei,
relative deadline Di per job, task utilization ui = ei/Di, and

a hyperperiod H of T . Furthermore, let

tRET be the DRAM retention time,

L be the least common multiple of H and tRET , and

K be the number of DRAM ranks, and let ki denote rank i.

C. DRAM Refresh Server Model

The Colored Refresh Server (CRS) partitions the entire

DRAM space into two “colors”, such that each color con-

tains one or more DRAM ranks, e.g., c1(k0, k1...ki), and

c2(ki+1, ki+2...kK−1).
We build a hierarchical resource model (task server) [16],

S(W,A, c, ps, es), with CPU time as the resource, where

W is the workload model (applications),

A is the scheduling algorithm, e.g., EDF or RM,

c denotes the memory color(s) assigned to this server, i.e., a

set of memory ranks available for allocation,

ps is the server period, and

es is the server execution time (budget). Notice that the

base model [16] is compositional (assuming an anomaly-free

processor design) and it has been shown that a schedulability

test within the hyperperiod suffices for uniprocessors.

The refresh server can execute when

(i) its budget is not zero,

(ii) its available task queue is not empty, and

(iii) its memory color is not locked by a “refresh task”

(introduced below). Otherwise, it remains suspended.

D. Refresh Lock and Unlock Tasks

We employ “software burst parallel refresh” [3] to refresh

multiple DRAM ranks in parallel via the burst pattern (i.e., an-

other refresh command is issued for the next row immediately

after the previous one finishes [13]. In our approach, there

are two “refresh lock tasks” (Trl1 and Trl2) and two “refresh

unlock tasks” (Tru1 and Tru2), Trl1 and Tru1 surround the

refresh for color c1 and are allocated to server S1 while Trl2

and Tru2 surround the refresh for color c2 and are allocated

by server S2. The top-level task set T⊤ of our hierarchical

model thus consists of the two server tasks S1 and S2 plus

another two tasks per color, with the highest priority, for

refresh lock/unlock, Trl1 and Tru1 as well as Tru2 and Tru2:

T⊤ = {S1, S2, Trl1, Tru1, Trl2, Tru2}.

�✁✂✄ ☎✆✝✄ ✞✟

✠✡☛☞ ✌✡✍✡✎

✏✑✒✑✓ ✔ ✕✖ ✓✗✘✓✗✖✙✕✚✛

✜✗✓✢✗✓ ✣ ✕✖ ✤✥✗✦✧★✕✚✛
✩✪✫✁✂✄ ☎✆✝✄ ✞✟

✬✭✍✡☛☞ ✌✡✍✡✎

✜★✮✓★ ✯✗✘✓✗✖✙

✏✑✰✰✮✚✱

✲✚★✗✓✓✧✳★

✏✴✵ ✶✑✓✷ ✏✴✵ ✶✑✓✷

✸✯✹✺ ✶✑✓✷

Fig. 1. Refresh Task with CPU Work plus DRAM Controller Work

When a refresh lock task is released (Fig. 1), the CPU

sends a command to the DRAM controller to initiate parallel

refreshes in a burst. Furthermore, a “virtual lock” is obtained

for the colors subject to refresh. Due to their higher priority,

refresh lock/unlock tasks preempt any server (if one was

running) until they complete. Subsequently, the refresh lock

task terminates so that a server task (of opposite color) can be

resumed. In parallel, the “DRAM refresh work” is performed,

i.e., burst refreshes are triggered by the controller. We use er1
and er2 to represent the duration of DRAM refresh per color

r1 and r2, respectively. A CPU server resumes execution only

if its budget is not exhausted, its allocated color is not locked,

and some task in its server queue is ready to execute.

Once all burst refreshes have completed, an interrupt is

triggered, which causes the CPU to call the refresh unlock task

that unlocks the newly refreshed colors so that they become

available again. This interrupt can be raised in two ways:

(1) If the DRAM controller supports interrupt completion

notification in hardware, it can be raised by the DRAM

controller. (2) Otherwise, the length of a burst refresh, δ, can

be measured and the interrupt can be triggered by imposing a

phase of δ on the unlock task relative to the phase of the lock

task of the same color. Interrupts are triggered at absolute

times to reduce jitter (see Sect. IV). The overhead of this

interrupt handler is folded into the refresh unlock task for

schedulability analysis in the following. In practice, the cost

of a refresh lock/unlock task is extremely small since it only

programs the DRAM controller or handles the interrupt.

The periods of both the refresh lock and unlock task are

tRET . The refresh lock tasks are released at k∗ tRET , while

the refresh unlock tasks are released at k ∗ tRET + δ. The

phases φ of Trl1 and Trl2 are tRET

2
and 0, respectively, i.e.,

memory ranks allocated to S2 are refreshed first followed by

those of S1. Let us summarize:

T⊤ = {S1, S2, Trl1, Tru1, Trl2, Tru2}, where

S1 = (0, p1, e1, p1), S2 = (0, p1, e2, p1),

Trl1 = (tRET/2, tRET, erl, δ), Trl2 = (0, tRET, erl, δ),

Tru1 = (tRET/2+δ, tRET, eru, δ), Tru2 = (δ, tRET, eru, δ).

The execution times erl and eru of the lock and unlock

tasks are upper bounds on the respective interrupts plus

programming the memory controllers for refresh and obtaining

the lock for the former and just unlocking the the latter

task, respectively. (They are also upper bounded by δ.) The

execution times e1 and e2 depend on the task sets of the servers

covered later, while their deadlines are equal to their periods

(p1 and p2). The task set T⊤ can be scheduled statically as

long as the lock and unlock tasks have a higher priority than

the server tasks. A refresh unlock task is triggered by interrupt

with a period of tRET . Since we refresh multiple ranks in

parallel, the cost of refreshing one entire rank is the same as

the cost of refreshing multiple ones. Furthermore, the cost of

the DRAM burst refresh, δ, is small (e.g., less than 0.2ms for

a 2Gb DRAM chip with 8 ranks).

E. CRS Implementation

Consumption and Replenishment: The execution budget

is consumed one time unit per unit of execution. The execution

budget is set to es at time instants k∗ps, where k ≥ 0. Unused

execution budget cannot be carried over to the next period.











i.e., CRS is directly applicable to them as well. Bhat et al. [3]

make DRAM refresh more predictable. Instead of hardware

auto-refresh, a software-initiated burst refresh is issued at the

beginning of every DRAM retention period. But the memory

remains unavailable during the refresh, and any stalls due

to memory references at this time increase execution time.

Although memory latency is predictable, memory throughput

is still lower than CRS due to refresh blocking, i.e., CRS

overlays (hides) refresh with computation. Furthermore, a task

cannot be scheduled if its period is less than the duration of

the burst refresh.

VIII. CONCLUSION

A novel uniprocessor scheduling server, CRS, is developed

that hides DRAM refresh overheads via a software solution for

refresh scheduling in real-time systems. Experimental results

confirm that CRS increases the predictability of memory

latency in real-time systems by eliminating blocking due to

DRAM refreshes.
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