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Abstract—Network communication between real-time control
systems raises system vulnerability to malware attacks over the
network. Such attacks not only result in alteration of system
behavior but also incur timing dilation due to executing injected
code or, in case of network attacks, to dropped, added, rerouted,
or modified packets.

This work proposes to detect intrusion based on time dilation
induced by time delays within the network potentially resulting in
system malfunctioning due to missed deadlines. A new method
of timed packet protection, T-Pack, analyzes end-to-end trans-
mission times of packets and detects a compromised system or
network based on deviation of observed time from the expected
time on end nodes, well in advance of a task’s deadline. First,
the Linux network stack is extended with timing information
maintained within the kernel and further embedded within
packets for TCP and UDP communication. Second, real-time
application scenarios are analyzed in terms of their susceptibility
to malware attacks. Results are evaluated on a distributed system
of embedded platforms running a Preempt RT Linux kernel to
demonstrate its real-time capabilities.

I. INTRODUCTION

Computer security is a critical requirement for any net-
worked application nowadays. Main components of computer
security include: (1) System level security, securing end sys-
tem’s code at different levels and layers from attacks lever-
aging memory (e.g., buffer overflow attacks including stack
smashing [28[, heap overflows [10]) or non-memory related
attacks (e.g., value range overflows [[17]], shell shock [24]],
port smashing); and (2) network security, securing systems
on the network from being attacked by malicious users. For
the latter, a wide range of attacks are common, including
relay, replay, phishing, spoofing, man-in-the-middle, denial
of service, eavesdropping etc. [7]], [14], [15]], [33]. One of
the common attacks in real-time systems is the delay attack.
The objective of this attack is to stall execution/packets of a
time-sensitive event (e.g., a code section within the system
or some client/server request) causing excessive delays and
resulting in performance degradation [23]]. Real-time systems
are particularly susceptible to such attacks as system behavior
is compromised when deadlines are missed, i.e., time dilation
not only results in performance penalties or reduced network
throughput but may cause a control system to malfunction,
which can result in damage to the controlled environment
or even loss of life. Past work shows how delay attacks
have affected cyber-physical systems (CPS) [23]] and network
control systems [31] subject to real-time constraints.

Significant work has been invested in analyzing and mitigat-
ing the impact of these attacks [23[], [31]. Real-time systems

offer a unique opportunity for intrusion detection besides tra-
ditional, general-purpose cyber-security techniques: Their in-
herent knowledge of worst-case execution times (WCET) [35],
an upper bound on a task’s execution budget required for real-
time scheduling, opens up opportunities for additional mon-
itoring and protection. The same techniques for establishing
timing bounds on the execution of the real-time task may be
applied to bound execution of any code section within the
application [|16]], [36]. Past works have used this model for se-
curity in real-time systems for detecting memory attacks [37],
securing clock synchronizations over the network [27] and
protecting smart grid systems [29]. Timed analysis is not just
restricted to security, it can also be used to design attack
models, e.g., in the context of hardware security tokens such
as Smartcards [13], [19]], [32], exported secret decryption
keys [19] and remote timing attacks [5]. The novelty of our
work is to utilize time-based security to detect delay attacks on
a network subject to communication with real-time constraints.
This complements methods monitoring execution times for
intrusion detection by providing a similar mechanism for
packet transmissions.

In safety-critical distributed real-time systems, missed dead-
lines due to slower or missing packets could result in signif-
icant environmental damage or even in loss of life. System
restarts often cannot be instantaneous due to an unstable
physical system state. This research focuses on detecting
intrusions due to such attacks at the packet level, i.e., before
malware in one subsystem can enter another subsystem or even
result in a deadline miss within the yet unharmed subsystems.
The earlier intrusion is detected, the easier it is to resort to
a safe operational mode with reduced or even without com-
munication to another subsystem that has been compromised,
e.g., using the Simplex design [3]], [11], thereby avoiding
any significant damage. Our work focuses on early intrusion
detection on end nodes (as opposed to routers/switches as that
would incur additional time to notify nodes), and while it
relies on established methods to transition to a safe state (e.g.,
Simplex), the safe methods are beyond the scope of this paper.

Our work contributes:

e T-Pack is developed, a novel method for packet protection
combining simplicity in design and implementation with
integrity, negligible performance cost and no hardware mod-
ifications.

e T-Pack is compatible with other security protocols and
utilizes IPSEC to establish data integrity alongside early
detection of delay attacks.



e Malware intrusion is detected by monitoring end-to-end
packet deadlines at the time of packet reception instead of
conventional detection at a task’s deadline.

e Experiments with real-time applications under attack sce-
narios assess potential and limitations.

e Results indicate that T-Pack has low overhead per packet
round-trip time (=~ 0.09 milliseconds) and detected 95%-100%
of the delays during ping flooding and distributed denial of
service (DDOS) attacks in a number of experimental systems.

II. ATTACK MODEL

This work assumes a distributed environment with end
nodes connected by a network with end-to-end real-time guar-
antees of message transmission, e.g., via packet prioritization.
This can be accomplished by (expensive and proprietary) hard-
ware solutions like TTEthernet [20], protocol extensions for
time-based traffic shaping (e.g., 802.1Qbv [34], if supported),
or via enhancements on top of (less expensive) software-
defined network (SDN) equipment [30].

Each subsystem (node) within this CPS architecture is
assumed to provide its own execution environment (processor).
Inter-node communication is prioritized for real-time traffic
in a statically constructed schedule. By this design, a send-
ing subsystem puts a message on the wire via the network
stack such that it is received prior to an end-to-end message
deadline at the receiving subsystem, but the exact time of the
send/receive activity may vary within deterministic bounds as
they are determined by execution times of prior tasks.

An attacker may compromise a given subsystem and subse-
quently monitor network traffic and inject packets arbitrarily
to either execute replay attacks (injecting duplicate pack-
ets), use IP spoofing (injecting packets with an incorrectly
rewritten source address expecting lost reply packets from
the destination) or flooding (SYN or ICMP packet flooding).
Other subsystems remain unaffected in computation and their
ability to send/receive packets as packet communication is
assumed to use public key encryption, i.e., receiving nodes
can detect content modifications including packet headers.
(Even a replay attack with modified source can be detected
by encrypting all original headers in the message such that
a source mismatch between received header and decrypted
header in the message can be detected). Other subsystems
may, however, be affected by altered network behavior due to
packets originating from the compromised node (additional or
duplicated packets at any priority, modified packets, dropped
packets with respect to the original static schedule). Most
significantly, the compromised system neither has the ability
to alter packets sent by uncompromised systems, nor may
it change any router/switch functionality. A delayed packet
reception results in an intrusion notification, just as an omitted
packet, as a timeout will be raised at expected arrival time if
the packet has not arrived yet. The benefit of our method is an
early notification upon expected message arrival rather than a
late timeout upon deadline violation, which leaves more time
for exception handling / transitioning to a safe mode.

Fig. [T] illustrates T-Pack capabilities for both (a) TCP and
(b) UDP, for a packet sent at tg and received at ¢ under real-
time constraints with a task’s absolute deadline of £ (in line
D), which will trigger a timeout and exception if the packet
has not been received by then. This deadline is present with or
without T-Pack. The figure further depicts the expected arrival
of the packet in range Atr. @),3 & @ illustrate the different
distributions of the real-time events at times tg, tg & tg for
the packet sent, packet received and worst case end-to-end
time (with time duration as A), respectively. For TCP, tg is
also the T-Pack timeout relative to the time when the packet
is sent allowing earlier exception irrespective of packet arrival
at tp. Thunderbolt and cross (X) show triggered and canceled
timers, respectively, plus exception (if triggered).
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Fig. 1: T-Pack and global timeout scenarios for tasks with
real-time deadlines under (a) TCP (b) UDP

@ depicts a T-Pack scenario accepting an incoming packet
at tg followed by validation of the embedded timestamp. In
Fig[T[a) under TCP, the packet is received before timeout ¢,
i.e., the timeout at tg is canceled. In Figﬂkb) under UDP,
the duration for transmission, ¢ty — tg, matches the expected
transmission costs so that (i) no T-Pack exception needs to be
raised as the duration is less than Zg; and (ii) timeout {5 can
be canceled since the packet was received (both indicated by
an X).

3 depicts a lost packet or a long delay before the packet
is sent at tg — both triggering a timeout at to resulting in an
exception. As the packet is received at ¢y, it will neither raise
another exception at tz (TCP Fig[I[a)), nor will it indicate a
delay at tp (UDP Fig[I[b)) as a late packet is simply ignored
in hard real-time systems. In (m,k)-firm or soft real-time
environments, where m — k deadlines may be missed, the
packet would not be ignored so that ¢tz can raise an exception
if the transmission took too long, see next case.

@ depicts a packet sent early (fg) as the sending real-time
task takes less time than the budgeted WCET. A Timeout is
triggered by T-Pack at ¢ (TCP Fig[I[(a)) as the packet has yet
to be received; or, upon packet reception, the receiver notices
that the transmission exceeded the expected duration (UDP
Fig[T(b)) based on the embedded timestamp (i.e., tr —ts > tg
is too long), indicating a delay at ¢, which cancels timeout
to due to the early exception. This indicates a possible
intrusion, which subsequentl triggers mitigation techniques.
This illustrates the benefit of T-Pack over the global timeout
as the prior exception due to timestamp validation leaves
more time (tp — tg under TCP and tp — tg under UDP)
for mitigation, i.e., to transition into a safe mode. Most of



all, this scenario would not result in any exception without
T-Pack, i.e., (a) the triggered timeout at ¢tz or (b) reception at
time ¢ would cancel the timer at to even though the packet
was delayed significantly.

III. DESIGN

T-Pack is a novel methodology to verify end-to-end timing
of each packet on the network of a real-time system during
message transfer between subsystems. Fig [2] depicts a high-
level timing model for message transfer between two sub-
systems for unidirectional UDP (left) and bidirectional TCP
transfers (right) using the notation established by Table [II A
message from sender S to receiver R is analyzed at packet
level, considering packet P being sent at time tg from S to
R, where it is received at time t. The observed end-to-end
time, T,y, is compared with the expected time, T, to detect
malware intrusion in the network. The work assumes loosely
synchronized clocks with a constant time difference, At,.,
between any two subsystems, which may be dynamically
updated due to clock drift, as in our later implementation.
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Fig. 2: a. One-Way (UDP) b. Two-Way (TCP)
TABLE I. ABBREVIATIONS

ts Time recorded by T-Pack at which packet is sent from S
tr Time recorded by T-Pack at which packet is received at R
ACK Acknowledgment packet from R to S in a 2-way message
tas Time at which ACK is received at S (At Network Layer)
RTT Round-trip time (TCP)
ETT End-to-end time (UDP)
Atrs Constant clock difference between S and R
Tops Observed end-to-end or round-trip time
Texp Expected end-to-end or round-trip time
Ta Mean internal delay on the uncompromised network
ATy Deviation of internal delay from the mean internal delay
Te Added delay due to a compromised network
AT, Deviation of added delay from the mean added delay
Twcer | Expected worst-case end-to-end time of packet

One Way Message Transfer: The UDP transport proto-
col is a suitable protocol assuming point-to-point full-duplex
switch connectivity between network endpoints. Under UDP,
a message is transferred from S to R (Fig. Zh) without any
acknowledgment from R. In this scenario, the observed end-
to-end time (ETT) is the time it takes for the packet to reach
R having been sent by S.

ETT =tp —tg + At (D
So, the expected end-to-end time is:
Tewp = ETT 2)

Two-Way Message Transfer: TCP is a two-way message
transfer transport protocol based on a handshaking protocol
that acknowledges packets sent from the sender, S, to achieve
reliable communication over the network (Figure 2b). In this
scenario, a transfer is said to be complete once the acknowl-
edgment (ACK packet) is received at S, again under point-

to-point full-duplex switch connectivity. Here, we assume a
constant clock difference between sender and receiver for the
duration of the packet communication. Clock drift requires this
difference to be updated from time to time, which is typical
for distributed systems and beyond the scope of the paper [25].

Round-trip-time in TCP can be monitored without embed-
ding time information within the packet. Instead, it suffices to
measure the round-trip time of the packet (from the send to
receipt of the acknowledgment at the sender).

RTT =tas —tg (3)
So, the expected end-to-end time is:
Teqp = RTT (@)

TCP optimizes network traffic by consolidating multiple
small bytes packet into one (reducing header overhead) at the
sender [I] and sending cumulative acknowledgments at the
receiver (reducing multiple ACK packets). This creates non-
deterministic execution behavior in real-time system due to
delays for sending and receiving. [6] shows how this affects
the performance of a client-server application using the same
communication pattern as distributed real-time systems. With
controlled flow of packets in distributed real-time systems,
additional data due to headers/trailers hardly reduce network
bandwidth; instead, timely delivery is more important. We
ensure timely delivery via socket options “TCP NODELAY*“
(sender) and “TCP QUICKACK®* (receiver), which prevents
packet consolidation.

The impact is analyzed for our experimental model (Pa-
parazzi UAV, see Sec.[V]) by monitoring the average bandwidth
and number of packets flowing in and out of the interface
for a period of time with and without these socket options.
Without socket options, we observe an average rate of data
observed at the receiving (rx) end of 353.50 Kbps and at the
transmitting (tx) end of 779.67 Kbps over 60 seconds. With
socket options, this decreases only slightly to 347.98 Kbps
and 753.80 Kbps at receiver and sender, respectively. In and
out flows of packet also decreased slightly, i.e. from 486 to
473 packets/sec (receiver) and 742 to 713 packets/sec (sender).
More significantly, a packet sent with socket options was
instantly sent, whereas it was non-deterministically buffered
at times without options. Clearly, the latter is not acceptable
for real-time system, whereas a small decrease in bandwidth
is.

Relation to the Attack Model: Using our T-Pack model, we
aim to detect delay attacks within uncompromised subsystems.
Such an attack may originate from a compromised subsystem
that maliciously induces time overheads by injecting packets
arbitrarily. This may cause delays at the switch due to ingress
queue processing, even if packets are prioritized, in part
because the compromised subsystem can prioritize packets as
well. As a result, any (non-malicious) packet that is forwarded
through such a switch may be delayed before it can reach the
other uncompromised subsystem. For a message transfer (UDP
& TCP), we have:

Using 7., from Eq. [{]

Tops = exp T T. + AT.. &)

The objective of T-Pack is not to prevent intrusion but



rather to detect it within uncompromised subsystems due to
incorrect timing on network behavior. This can prevent these
other subsystems from becoming compromised as well — by
a timely transitioning into a safe mode, e.g., via Simplex [3]],
[L1] or other mode transitions depending on the application
scenario, which is beyond the scope of the paper. Furthermore,
intelligent switches could assist in blocking high priority
packets that are non-compliant with a statically established
end-to-end real-time message schedule under our attack model,
but we do not expect such switches to actively notify end nodes
of a compromised subsystem. This would violate the existing
real-time schedule and induce sporadic messages, which may
dilate latencies to where deadlines could be missed. Instead,
T-Pack provides a means for uncompromised subsystems
to autonomously detect intrusions by monitoring their own
communication with other nodes.

Vulnerability Of T-Pack: Encryption prevents third party
packet modifications by attackers as the private key of the
receiver is unknown, even with access to the wire. This
includes timestamp values of T-Pack within packets.

The WCET bound of a packet is determined by the end-to-
end transfer in our model as follows. T, in T-Pack includes
delays in an uncompromised system (expected delays on the
network or internal delays). Let this delay be of magnitude
Ty £ AT, (Table [[). Hence, the WCET bound includes a
maximum internal delay of Ty + ATy, which signifies the
maximum positive deviation of the WCET.

TWCET = Tewp (6)

For a compromised network, we obtain 7, from Eq. E}
For some values of T, + AT,, where the attacker delays the
packet transfer by a small value, we may find that T, <
Twcegr, 1.e., short delays may remain undetected. In other
words, our model is probabilistic and may result in missed
intrusion detection (false negatives), where our model does not
identify an attacker in the network. This illustrates two points:
(1) Our model complements existing cyber security measures
and (2) the objective of T-Pack is to make the attack window
that remains undetected as small (short) as possible, but only if
attack traffic affects control functionality (deadlines). As long
as packets are received in time, subsystems remain intact, i.e.,
additional background traffic may be tolerated.

Time Information: To support UDP, T-Pack embeds timing
information within each packet to verify that end-to-end times
of a packet are within given WCET bounds. A custom header
with timing information is added just above the packet payload
within the kernel comprising the lower level of the network
stack (instead of higher networking layers). This establishes
tighter and more deterministic bounds on the elapsed network
delay.

To support TCP, time information of a sent packet is
analyzed within the kernel with round-trip-time calculated
using the corresponding acknowledgment received without the
need to embed additional information within the packet. A
lookup table is maintained on each subsystem to store sent
time information of the packet to other subsystems.

Inclusion of TCP_NODELAY and TCP_QUICKACK en-
sures that only one outstanding packet from the same subsys-
tem exists before an ACK is sent for the respective packet at
any time.

Due to the static size of the table, the execution time of a
table lookup is constant, which makes bounds under T-Pack
highly predictable.

IV. IMPLEMENTATION

Linux: T-Pack is implemented in a PREEMPT-RT patched
Linux kernel that provides real time capabilities to the oper-
ating system. This provides the flexibility of utilizing Linux
network APIs such as socket buffers and netfilter to implement
T-Pack.

Netfilter: Netfilter is a framework provided by the Linux
kernel to implement customized handlers on events in the
network layer (for pre-routing, post-routing, etc.). T-Pack
utilizes this framework to implement callback functions to time

packets (Fig. [3).
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Fig. 3: Framework 1: Netfilter Hooks to Record Time Infor-
mation for TCP (blue) and UDP (red) using T-Pack

Socket Buffers: Socket buffers are data structures provided
by Linux as a common reference to packets in all layers of the
network stack within the kernel. The T-Pack prototype utilizes
the data types and the helper functions in the socket buffer API
to record time (TCP) or manipulate packet memory in order
to create additional space for the custom header (UDP) as
depicted in Fig. [
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Fig. 4: Framework 2: Custom Header Insertion/Removal using
Socket Buffers for T-Pack in UDP

Implementation Framework: 1) T-Pack for TCP (Fig.
with network path in blue):

1.1) At the sender, the netfilter post routing hook is utilized
to call a handler, where the socket buffer references the packet
as an argument.

1.1.1) The current time at the sender is recorded and
stored in a lookup table for the corresponding subsystem
(IP address, port) as a key. The expected acknowledgment
sequence number is also recorded for the same key, which
is the sequence number in the packet plus the data payload.



1.2) According to TCP (with socket options as indicated in
Section [[II)), a packet is received at the receiver (1.2) and a
corresponding ACK is sent (1.3) immediately.

1.3) At the sender, the netfilter pre-routing hook is again
utilized to call a handler, where the socket buffer references
the ACK packet as an argument.

1.3.1) The received ACK is matched with the destination IP
address and port. If the expected sequence number matches the
number in the ACK packet, the stored time is subtracted from
the current time to determine the round-trip-time of the packet,
which is then compared with the worst case round-trip-time
to detect potential intrusions.

2) T-Pack for UDP (Fig. [3] with network path in red):

2.1) At the sender, the netfilter post routing hook is utilized
to call a handler, where the socket buffer references the packet
as an argument.

2.1.1) The skb_pull(sizeof(network_header)) and
skb_push(sizeof(custom_header)) function is used to
create additional space just before the packet payload to
attach the custom header (see Fig [).

2.1.2) memcpy(ptr, custom_trailer) encapsulates the cus-
tom header by copying it to the packet. The custom header
includes fields for ktime_t timestamp and long sendtime, where
timestamp contains the current time (at header creation).

2.2) At the receiver, the netfilter pre-routing hook is utilized
to call a handler, where the socket buffer references the packet
as an argument.

2.2.1) Upon UDP reception, the difference of the current
time and the timestamp embedded within the packet represents
the end-to-end processing time of lower layer UDP activities,
subject to validation against an expected upper bound for the
exchange. If validation fails, an intrusion is signaled.

V. EXPERIMENTAL SETUP AND APPLICATIONS

Experiment 1: Client Server Model: A client sends pe-
riodic messages (interval of 10ms) to the server according
to the network activity of a time triggered real-time system.
TCP messages that fit in a single packet are sent with an
explicit reply packet from the server. Measuring this ping-
pong message transfer derives the round-trip time (RTT) at the
client. We measure RTT at both application and network layers
to assess the benefits of implementing T-PACK at the network
layer. We also measure the RTT at the application layer with
and without T-Pack to analyze T-Pack’s performance overhead.

Experiment 2: Paparazzi UAV Model: The Paparazzi
UAV [4], [38] models a real-time control system utilizing
shared memory, which we transformed into a peer-to-peer
network of 3 subsystems: an auto pilot (AP), a fly by wire
(FBW) control and a ground station communicator (GSC) to
relay information from subsystems to ground or vice-versa. We
prototyped a model constrained to only Paparazzi’s periodic
messages scheduled between the above three subsystems. Each
subsystem is connected via the (1) UDP and (2) TCP protocols
with a persistent connection. The subsystems communicate
with each other periodically transferring necessary information
for flying by wire autonomously with T-Pack integration.

The RTT is measured between AP and GSC communicator
to monitor T-Pack. A delay attack as a Distributed Denial
of Service (ICMP packet flooding / ping-of-death) [12] is
induced at the GSC using other nodes in the network as
attackers. This resembles code injection by the attacker on
the compromised subsystem to inject packets arbitrarily. We
implemented this Paparazzi model on a network of Raspberry
Pi systems with a Preempt RT patched Linux kernel to provide
real-time capabilities.

Experiment 3: Waters Workshop Challenge 2018, a Drone-
like Multi-System: A drone-like multi-system [22] within
a peer-to-peer network of seven subsystems is implemented
consisting of a Mission management system (MMS), Electrical
Propulsion System (EPS), Hydraulic Braking System(HBS),
Sensors (communicating with other sensors in the Waters
model), Ground Station and Maintenance System, connected
via a hub and spoke topology within the same subnet. We again
model functions and communication patterns in each subsys-
tem, including periodic calls to the functions. Each subsystem
is connected via TCP (persistently), sending messages to other
subsystems in parallel under random network congestion with
T-Pack support. The RTT is measured between EPS and MMS
to monitor T-Pack functionality with and without a delay attack
on Raspberry Pis with Preempt RT-patched Linux.

VI. RESULTS

Experiment 1: Results for different server client config-
urations (x-axis) are depicted in Fig. @ with RTT (y-axis)
of messages shown as box plots indicating maximum, top
quartile, median, bottom quartile and minimum times as well
as outliers (dots). Min-max values or variability outside the
upper and lower quartiles are denoted by whiskers with a range
3.5 times that of the inter-quartile range (constant for all other
measurements within the paper). The outliers in this graph
are only 0.5% of the total data values. We report all values
from the experiments, even the first iteration of execution,
which may be subject to additional cache misses resulting in
an outlier.

We observe that the time measured for T-Pack (box plot 1
in Fig. Pa)for the reduced network stack is much lower than
the one measured by the application, both with and without
T-Pack (plots 2+3). By monitoring time within the kernel,
T-Pack eliminates the cost of upper kernel layers both for
sender and receiver resulting in an earlier intrusion detection
at the network layer than at the application layer (baseline).
Measuring RTT at the application layer would also require the
applications to have explicit replies to every sent request, i.e.,
up to twice the number of messages are required in contrast
to an implementation within the kernel. This could lead to
unnecessary saturation of the write buffer of the receiver,
which might be due to a send causing corresponding receivers
to delay their communication. This increase in traffic would
also result in higher RTTs for all the packets,in turn resulting
in delayed intrusion detection because of larger timeouts. False
negatives for timeouts at the network layer were measured
by introducing a DDOS attack in Experiment 1 using a



single attacker with 10 attack threads, each sending 100 bytes
of ICMP packets at an interval of 0.001 seconds. Over a
range of 300 packets sent, ~170 detected in intrusion due
to timeouts at the kernel-level network layer of which 130
were false negatives (F1 score of 0.723) compared to ~289
false negatives at the user-level application layer (F1 score
of 0.071). This illustrates the benefits of our approach with
T-pack within the kernel at the network layer. The attack
introduced above is of intensity between A5 and A6 [5b]

The results also reveal the overhead without the T-Pack
module. Fig. [5a indicates that T-Pack incurs a modest perfor-
mance cost as the overall mean RTT of the client request-reply
increases by a marginal amount of approximately 0.09 msecs.

We analyze consistency, flexibility and integrity of T-
Pack over secure communication between the client and the
server by implementing the client-server model on top of a
communication channel protected by the IP-Security (IPSec)
protocol at the transport layer with RSA key authentication
and encryption.

Any data packet is encrypted by IPSec after T-Pack in UDP
adds its custom header. Should an attacker (who does not hold
the private key) modify the packet, this would be detected as
data then becomes corrupted after decryption, including T-
Pack’s timestamps.

IPSec provides security against session hijacking, man-in-
the-middle attacks etc. This cannot prevent attackers imposing
delays by transmitting unwanted packets, but T-Pack will
detect such delays. Of course, data integrity comes at the price
of increased RTT (TCP) and ETT (UDP), as assessed in the
next experiment.

Experiment 2a: UAV Paparazzi Subsystems under TCP:
We monitor the RTT under TCP from AP to GSC (i.e., send
and acknowledgment) under a delay attack. Each attacker
features a multi-threaded program to send large ICMP ping
packets in quick intervals to the GSC. This causes a buffer
overflow at the receiving interface, which is handled but results
in performance degradation. The sensitivity to attack intensity
is investigated dependent on a tuple, P(n,t,b,i), by varying
the number of attackers, n, the number of threads within
an attacker, t, the ping packet size, b (in bytes), and the
time interval, ¢+ (in seconds), between packets for the tuples
indicated in Figures [5b| and By modifying parameters, the
intensity gradually increases to a level where the DDOS attack
results in a noticeable impact due to buffer overflows on the
network devices, which eventually causes deadline misses due
to excessive RTT (TCP)/ETT (UDP).

Fig. [5b] depicts RTT as box plots again (y-axis) over
different intensities of DDOS attack (x-axis). The outliers in
this graph are only 0.5% of the total data values (eliminating
only 1% of the extreme outliers including the first iterations)
As attack intensity increases, the RTT increases slightly.
Compared to attack Al, A2 hardly effects the average RTT,

A6 increases the RTT on average by ~ 0.65 msecs, and A7
by ~ 2.6 msecs. For A7, all the measured RTTs exceed those
of Al without any false negative (no overlapping values). In
other words, T-Pack accurately captures the “attack vector”,

since the WCET bound of RTT without intrusion is lower
than the minimum RTT on a compromised network. Recall
that to take over an entire kernel, millions of instructions are
typically required. We can limit an attack to 15k instructions
here assuming, e.g., a CPU clock of 1GHz at an instruction
per cycle rate of one, which restricts undetected intrusions
under T-Pack to a =~ 0.2 msec window. Thus, a chain of 5
attack instances with 200K instructions each would be required
(adding up to 1M instructions) to take over the system without
being detected.

We also observe a sudden increase in RTT in Fig. [5b when
as attack intensity increases. DDOS prevents effective resource
utilization by consuming most of the resources (network and
receiver buffer here) within the attacker [26]. A low intensity
of such an attack does not affect the performance of a low
traffic network, which is typical for a number of distributed
real-time systems. However, intensifying the attack can cause
sudden spikes that instantly degrade the network latency
leading to packets arriving after a deadline, if at all. T-Pack
detects this, which allows a system to transition to a safe mode
while continuing to operate. Transitioning back online requires
the attack source to be removed in a DDOS attack, both for
real-time or commodity computing environments, i.e., counter
measurements addressing the root cause remain unchanged
and are beyond the scope of this paper.

We further analyze the results of frequency distributions
in Figures [6] [7] and [8] which depict the number times (y-
axis) a certain RTT (x-axis) was measured in experiments.
Figure [6] indicates the distribution for without intrusion (Al in
blue) and with high-intensity intrusion (A7 in red). An empty
intersection between the distributions indicates that both the
cases can be discretely distinguished, i.e., the attach vector is
accurately identified by T-Pack.

Fig.[7]depicts distribution results without intrusion (A1) and
a relatively intense attack (A6). We observe a slight overlap
between the blue (no attack) and red (A6) curves ranging from
0.9-0.95 msecs, a data range covering less than 1% of the
samples, i.e., more than 99% of the attacks are detected (F1
score of 0.993).

Fig.[8|depicts distributions without intrusion (A1) and a mild
attack (A2). Results indicate a significant overlap between
the blue (no attack) and red (A2) curves ranging from =~
0.65-0.85 msecs, a range with over 99% of the samples (F1
score of 0.014). This illustrates the limitations of T-Pack. Any
attack with similar delays does not cause deadline misses. This
illustrates why T-Pack complements, but does not substitute
other security methods. In fact, T-Pack functions as expected:
When deadlines are met, system functionality remains intact
as sufficient network bandwidth remains available, and no
intrusion is detected, but when attack intensity increases,
intrusion is flagged requiring, e.g., Simplex mode changes.

Results in Fig. reinforce our qualitative analysis of
consistency, flexibility and integrity of T-Pack with IPSec from
Experiment 1. Just as in Fig. [5b] we observe a similar trend in
Fig. |5c|in the distribution of RTT values when the Paparazzi
model is subjected to different intensities of DDOS attacks.
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Absolute round-trip times are elevated by about 0.65ms. We
observe that for higher intensity attacks (A7 in red), the RTT
increases such that the entire box plot+whiskers range lies
above the maximum RTT without attacks (Al in purple).
Also, =99% of the RTT values under A6 (blue) lie above
the maximum RTT of Al.

Experiment 2b: UAV Paparazzi Subsystems under UDP:
We next assess T-Pack under UDP for the UAV system by
assessing packet ETT from one subsystem (AP) to another
(GSC). Recall that unidirectional message transfer (UDP)
requires a clock offset value between the two subsystems to
calculate the ETT, which we implemented in analogy to the
Network Time Protocol (NTP) within T-Pack. At system ini-
tialization, T-Pack measured RTT values of a UDP packet from
AP to GSC. AP embeds timestamp information in the packet
via T-Pack and sends it to GSC. GSC replies with another
timestamped UDP packet plus its calculated time difference
from the prior reception from AP. AP uses GSC’s reply to
calculate its offset to GSC using GSC’s timestamp. In addition,
the RTT is calculated just as for TCP using the time difference
at AP between the reply from GSC and original send to GSC
using AP’s local clock. We experimentally verify that the
RTT value closely approximates the one-way send overhead
considering the clock offset between AP and GSC plus the
one-way overhead plus offset for the reply. Subsequently, the
clock offset is used to calculate ETT according to Eq. [I}
Assuming loosely synchronized clocks, we expect a linear
increase in the clock offset due to clock drift. This is handled
by periodic re-synchronization of clock offsets in our protocol.

Fig. 0] shows that the ETT increases slightly as we keep

RTTinms
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Fig. 8: Frequency Distribution and Over-
lapping Region of Attack 1 vs. 2

increasing the attack intensity from Al1-A6. Compared to
Fig. 5b] ETT values are close to half the values of the RTT
for the corresponding attack vectors. T-Pack can detect 100%
of the delay for attacks with A6 intensity as values of ETT
under A6 are slightly higher than half the RTT in Fig. [5b]
We were able to determine that this is due to a higher RTT
value obtained due to increasing clock drift not reflected in
offsets (before the next clock synchronization), which results
in perceived increases in ETT. (Since A6 already shows 100%
coverage for its attacks, A7 is omitted.) With intrusions as
intense as A6 or more, attacks can be identified whereas low
intensity attacks such A2 do not result in intrusion detection
as the system meets all deadlines, just as for A2 in Fig. [5b
We also observe similar overhead when enabling IPSec for
Paparazzi under UDP (Fig. as seen previously under TCP
(in Fig. [50).

Discussion: IPSec encrypts the packet at the network layer
including the T-Pack header. This cannot be achieved with SSL
as encryption is realized above network layer. Additionally, T-
Pack can incorporate SSL encryption alongside IPSec without
any modification. T-Pack’s ability to mesh with other security
protocols underlines the advantages of its simplicity without
any reliance on specialized hardware.

Experiment 3: For the drone-like multi-system, subsystems
EPS and MMS are selected as sender and receiver, respec-
tively. An attack model with the same attack parameters as in
Experiment 2 (A2-A7) (see Fig. [5b) assesses performance and
vulnerability of T-Pack.

Fig depicts the RTT as box plots (y-axis) over DDOS
attack intensities (y-axis). The outliers correspond to 0.5% of
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the total data. As attack intensity increases, a slight increase in
RTT is seen — until a sudden and significant increase (A6 and
A7) under more intense attacks. Under increasing attack, all
RTT values eventually exceed those without attack, at which
point 100% of attacks are detected with T-Pack at A7.

In summary, we experimentally demonstrated consist behav-
ior of T-Pack for different real-time applications and varying
attack intensities for DDOS ping-of-death scenarios that affect
network delays, ranging from tolerated low intensity attacks
without missed deadlines to high intensity attacks resulting
in all deadlines being missed. Notably, deadline misses are
detected early, at packet reception time (or, if a packet is
omitted, at the latest scheduled reception time), which is well
before a task’s deadline — the earliest point of intrusion
detection in the absence of T-Pack.

VII. RELATED WORK

Prior work exploited timing bounds derived from timing
analysis of code to detect malware intrusion. Zimmer et
al. [37] developed techniques to provide micro-timings for
multiple granularity levels of application code. They imple-
mented a set of timed analysis methods, T-Rex, T-Prot and
T-Axt, which demonstrated an advantage of timed analysis of
code execution in constraining the window of vulnerability for
code injections, from usually tens of millions of cycles down
to tens, hundreds, or thousands of cycles, depending on the
respective protection technique. In contrast, our work focuses
on network protection.

Cyber-physical control systems subject to real-time con-
straints are vulnerable to malware intrusion over the network.
Prior work [[8]], [9]], [21]] demonstrated the viability of attacks
on the network of a real-time system and uncovered potential
damages. Our work proposes to mitigate damages by detecting
intrusion prior to such attacks using timed analysis of packets
on the network, which establishes end-to-end packet delivery
times allowing intrusions to be detected in a hard real-
time systems, where the size of messages and time of data
transmission can be bound a priori.

Time sensitive networking systems can be implemented by
scheduling and traffic shaping using the IEEE standards for

%—%—%%—%—% 1t
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bridges (or switches), e.g., IEEE 802.1Qbv extensions, which
could detect any abnormal flow of packets due to attacks on
the network but lack any means to notify end nodes. T-Pack
fills this gap as intrusion is detected on end systems, which can
instantaneously transition into another mode using the Simplex
architecture.

Both [2]] and [27] detect attacks by analyzing time delays
under secure clock synchronization. However, they propose to
embed time information in packets measured at the time of
transmission and received right at the end of the propagation
using hardware timestamping (see [2]), which requires such
support in switches/routers thereby raising cost. Instead, T-
Pack embeds time inside the packet within the kernel relying
on hardware support.

The IEEE 1588 standard for a precision time protocol [[18]]
calculates end-to-end time for clock synchronization by send-
ing prior transmission time as a message payload in follow-
up packets and sends burst of such packets, which — in
contrast to T-Pack — would increases the number of packets
and thereby reduce network bandwidth. The 1-step method
of the IEEE 1588 standard reduces the packet burst duration
on the network, however, unlike T-Pack, it utilizes hardware
timestamping, which raises implementation cost.

VIII. CONCLUSION

This work contributes the design and implementation of a
novel network timed security method, T-Pack, that monitors
end-to-end response times of packet delivery in the Linux
network stack for early detection of malware intrusion, before
a task’s deadline, if time delays of packets are discovered in
relative to a real-time schedule of expected packet reception
times. Results indicate successful detection of malware intru-
sion in 95%-100% of the cases during distributed denial of
service attacks that induce time delays under three application
scenarios. T-Pack was further shown to incur a small overhead
to the overall network performance of the system relative to the
range of delays for the attacks it protects against. T-Pack com-
bines efficiency and simplicity because of its implementation
with low performance overhead without relying on specialized
hardware.
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