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Abstract—Autonomous vehicles rely on a pre-trained object
detector to perceive surroundings. However, when never seen
before scenarios are encountered, late decisions may result in
hard braking due to perceived threats. Image sequences leading
to such a situation provide the potential to learn and improve over
time. Yet instant re-training on board with all prior training data
is infeasible given computational, storage and power constraints.
What’s more, exposure of a pre-trained CNN to only images of
the new scenario is known to result in “catastrophic forgetting”
for already learned features.

This work makes several contributions: A novel lightweight
dual-head detection network architecture is proposed to over-
come forgetting and to support fast on-board continual learning
on small sets of new images and assesses the feasibility of contin-
ual learning methods for autonomous driving. A sensitivity study
on the quality and quantity of continually learned images for
our dual-head technique is performed, including an assessment
of its real-time suitability. Experiments show that our method’s
accuracy is improved by up to 13% and performance increases
by 5.8X over a state-of-the-art continual learning framework.
This makes it suitable for autonomous driving scenarios with
real-time constraints. Source code is made available via Github.

Index Terms—Autonomous Systems, On-board Continual
Learning, Real-Time Deep Learning Inference

I. INTRODUCTION

Automobiles are increasingly becoming complex computer-
ized control systems consolidated into electronic control units
(ECUs). This evolution is also driven by green energy trends
replacing combustion engines with electric motors. Today,
major technology companies, including Intel, Nvidia, Huawei,
Baidu, Amazon, and Alphabet (Google), are pushing into the
world of autonomous driving, where they find themselves com-
peting with the “old” automotive giants, newcomers (Tesla),
and automotive suppliers (Bosch, ZF, and Magna). In this
setting, traditional control software is increasingly replaced by
machine learning as control tasks are becoming more complex.

Many vendors are promoting their own on-board automotive
hardware and software packages, often with customized oper-
ating systems (OS). Intel provides Mobileye [1], Nvidia offers
its Drive OS [2], Volkswagen and Daimler have announced an

OS [3] while Tesla has already deployed theirs [4], whereas
Google promises Android Auto OS [5], which Ford and GM
plan to use in next generation models. Many of these on-board
auto OSs (including Nvidia’s/Telsa’s) are based on customized
Linux versions, augmented with real-time kernels via virtual-
ization (e.g., Autosar Adaptive Platform), delivering security,
capability, and performance for drivers and passengers for
higher-level control functionality. This trend to replace simple
hardware control of traditional vehicles with more complex
software systems provides new capabilities for autonomous
driving and flexibly through over-the-air (OTA) updates. And
while software updates have the potential to improve capabili-
ties over time, making vehicles safer, smarter, and more energy
efficient, these trends pose significant technical challenges.
To realize vehicular autonomy, today’s prototypes combine
subsystems for perception, localization, prediction, planning,
and control. In a perception subsystem, machine learning (ML)
is widely employed. Camera/lidar images are subject to object
detection and tracking based on CNNs. To decide on steering,
acceleration and braking actions, object detection has to be
accurate and fast, i.e., subject to real-time constraints.

YOLO [6], [7] is a state-of-the-art object detection frame-
work based on one-stage CNN architecture that can meet real-
time constraints (30 FPS). In contrast, two-stage architectures,
such as R-CNN [8], Fast R-CNN [9] and Faster R-CNN [10],
are more accurate but cannot meet real-time constraints as
it suffers from much slower detection speed than one-stage
detectors. The follow-up one-stage CNN architecture conquers
two-stage ones in both accuracy and speed [11]. E.g., the
inference speed of Faster R-CNN is 9.4 FPS, while one-stage
Yolo achieves an inference speed of 54 FPS on the same
hardware with a 1.4% improvement in accuracy [11]. To reach
such frame rates, autonomous driving systems (ADS) feature
hardware acceleration via embedded GPUs and FPGAs, but
with lower performance than discrete acceleration devices.
For these reasons, most autonomous driving systems (Tesla
Autopilot, Baidu Apollo, etc.) leverage a one-stage detector in
their perception system [6], [11], [12], as does our work.
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on-board ADS should provide the ability to learn from “near-
mistakes” with current hardware capabilities. Existing CNNs
are far from perfect due to a bias in learning limited to the
training set of images. If such a set lacks certain images,
safety can be compromised. E.g., the image detector fails
to detect a stop sign at first, but the secondary radar-based
crash prevention system forced the vehicle to stop before
hitting an object. If the system has the ability of reviewing
image frames prior to the hard braking action, it would be
able to detect the similar scenario next time. The concept
of the automated online learning is based on rewinding a
sequence of images (say, from a near impact where objects
were identified late) and labeling the same, smaller objects of
previous frames by tracking objects backwards. This labeling
process can be unsupervised and is subject to ongoing work.
(Another example would be a stop sign obscured by parked
vehicles from a distance seen late, but smaller intersection
indications including lines on the ground or the backside of a
stop sign on the opposite lane could have alerted the system
earlier. Rewinding and auto-labeling can help here as well.)

A simple solution would be to re-train a CNN with addi-
tional images plus all seen before images to improve detection
capabilities, yet this would require days of computational
training, e.g., on a GPU cluster. While such rigorous training
is useful to update inference parameters of the CNN via OTA
protocols on a regular basis (weekly or monthly), our work
aims to provide instant on-vehicle training to better handle a
similar critical situation if encountered again on the same day,
even within minutes.

To account for limited on-board compute and storage , a
pre-trained CNN could be exposed to just a few new images,
but such attempts have been shown to result in “catastrophic
forgetting” — the prediction accuracy of already learned
features drops significantly — known as the stability-plasticity
dilemma [13].

In this paper, we propose CLAIRE, a continual learning
real-time framework based on YOLO [11], which enables the
on-board system to learn new scenarios from a few image
frames in a very short time. The novel lightweight architecture
is designed to elastically support continual learning from new
data. In addition, this architecture design can be applied to any
general one-stage CNN-based object detector. We demonstrate
that our design fits on-board continual learning for autonomous
driving and still meets real-time constraints in a sensitivity
study. We compare our work with existing continual learning
methods in object detection, i.e., joint-training and state-of-
the-art feature-reweighting [14], in both timing and accuracy.
Experimental results show that our method outperforms others
in both learning time and detection accuracy and only incurs
a 3.25ms delay in real-time deep learning inference.

The rest of the paper is organized as follows. Related
work on continual learning algorithms and real-time objection
detection is discussed in Section II. Section III introduces our
novel continual learning framework, CLAIRE, detailing both
design and implementation. In Section IV, the timing and
accuracy of surveyed methods and our newly proposed method

are compared. Also, a sensitivity study is performed on our
proposed method. Section V summarizes the contributions and
discusses the potential directions of future work.

II. RELATED WORK

Object Detectors: As addressed in Section I, deep CNN
based objectors can be divided into two-stage and one-stage
detectors. Two-stage detectors [8] and their variants [9], [10],
[15]–[19] identify regions of interest (containing some object)
in the first stage, and send the region proposals to the sec-
ond stage for object classification and localization. Single-
stage detectors can be anchor-based (YOLO [6], [7], [11],
[20], SSD [12], RetinaNet [21], RefineDet [22]) or point-
based (CenterNet [23], CornerNet [24], FCOS [25]) and are
capable of predicting the categories and locations of objects
without the region proposal stage. The majority of research has
focused on optimizing one-stage detectors, in both accuracy
and speed, to make them a better fit for ADS. Nowadays, Tesla
Autopilot [4] and Baidu Apollo [26] leverage the one-stage
detector due to its higher performance and accuracy compared
to a two-stage detector.

Continual Learning: The challenge of continual learning
with deep CNN models is catastrophic forgetting [13]. We
investigate the forgetting problem caused by direct continual
learning, a crucial and general problem in incremental learning
with CNNs. Well-known image classification ML methods
focus mainly on learning new categories while preserving
previously learned knowledge with different techniques, e.g.,
via ensemble modeling [27]–[29], transfer learning [28], [30],
fine tuning [31]–[35], distillation or data exemplars from
previously learned knowledge [30], [31], [36], [37], attention-
based meta-learning [38], [39], and addition or adaption of
the network architecture [40]. Bi-objective [41] focuses on
learning new instances instead of new classes.

Object detection models leverage deep CNN as well.
RILOD [29] follows the incremental learning methodology
from [31] and applies to one-stage anchor-based object de-
tection. Kang at al. [14] propose a module to change weights
in the YOLO-based architecture to recognize novel categories
from few images. ONCE [42] and PNPDet [43] leverage the
meta-learning and dedicated sub-network techniques, respec-
tively, for incremental learning in a point-based one-stage
detector. Our work focuses on the object detection’s capability
to learn additional data to improve the accuracy of existing
categories. Both of these learning techniques suffer from
potential memory loss triggered by the change in distribution
of in continual learning, which is the root cause of forgetting.

Lightweighed Models: PatDNN [44], SqueezeNet [45],
HashedNets [46], Xnor-Net [47], MCDNN [48] and Deep
Compression [49] take advantage of pruning, compression,
asymmetric encoding, and related techniques to minimize the
size of ANNs such that a lighter weight ANN can be de-
ployed on smartphones, FPGAs, and other embedded devices.
SubFlow [50] dynamically selects sub-graphs of ANNs for
both training and inference based on real-time constraints
so that training/inference can meet deadlines. However, all



these works suffer from a speed-accuracy tradeoff and do not
address continual learning.

Multi-branch Inference: HydraNets [51] proposes a dy-
namic network architecture template for efficient inference
of image classification. This architecture contains multiple
branches specialized for disjoint categories, where a gate
chooses which branches to run when performing inference.
However, this work assumes the inference branches have
already been learned conventionally offline. In contrast, we
continually train with new images of existing classes and
employ a novel dual-head architecture instead, which aims to
reduce training cost but also to keep inference cost low.

III. DESIGN AND IMPLEMENTATION

Our work aims to create the novel ability for autonomous
vehicles to learn new driving scenes on-the-fly in minutes by
updating a model incrementally on-board rather than waiting
weeks for any periodically retrained model from the cloud.
Current object detectors fail to support such a capability. This
section describes the design and the implementation of our
novel CLAIRE framework.

A. Dual-head Architecture Design

Yolov4 [11] optimizes both accuracy and speed of object
detection. Modern one-stage detectors usually consist of two
parts, a backbone that automatically extracts features from
input images and a detection head that predicts the category
and location of objects within an image. Yolov4 leverages the
same network architecture as Yolov3 [7]. In addition, Yolov4
employs deeper layers in the backbone than that of Yolov3
by optimizing the activation function and the bounding box
selection algorithm.

We designed a novel dual-head object detection architecture
that enables real-time incremental learning with new images
of existing classes based on the Yolo network architecture.

Our CNN backbone (see Figure 1) extracts features from
an input image classified as low-level, medium-level, and
high-level features output (corresponding to O1, O2, and O3,
respectively, in the figure). These feature outputs are the
inputs of our multi-scale detection comprised of the original
base head for all categories (left part in blue color bounding
box) and the incremental head specializing in learning new
scenario data (lower right part in green color ). When an
OTA update is received, the base head is reset to the newly
received base model if and only if this new model includes the
incrementally learned scenarios, i.e., if the last cloud training
cycle included the uploaded images that were subject to prior
on-board training of the incremental head.

Every detection head (both base and incremental) consists
of three prediction blocks dedicated to detecting an object of
small (S), medium (M), and large (L) size, respectively. Each
prediction block includes eight cascaded convolutional layers
and a final detection layer. The block that predicts larger-
sized objects depends on the input not only from the backbone
output but also on the output from the smaller (predecessor)
prediction block, i.e., the input of M depends on the output of

Fig. 1. CLAIRE framework

S, and L depends on M (horizontal arrows in Figure 1 between
two blocks).

Our design differs from HydraNet [51] that consists of mul-
tiple prediction branches (or heads). Each HydraNet branch is
dedicated to predicting similar categories. In the early stage
of our work, we experimented with a multi-head architecture,
where each detection head was to detect a subset of the
classes. However, this design was deemed infeasible for on-
board real-time autonomous driving since the detection time is
proportional to the number of heads. Considering the limited
on-board GPU and memory resources, more heads imply a
need for more memory to store weights and for more compute
resources. This led to much higher inference/testing time
without increasing accuracy or prediction compared to our
dual-head design.

B. Continual On-board Learning

The objective of the base head is to detect all n classes. The
base head model is an on-vehicle detector that is periodically
updated from rigorous re-training in a data center. Both the
base and incremental heads are sharing the same backbone in
prediction, so that training the base head and the backbone
of the CNN are a prerequisite for training incremental heads
and is performed offline. Back propagation is applied on all
convolutional layers when training the base head. Thus, the
base model consists of the backbone and the base detection
head.

The incremental head is online trained with few images per
class at a time, which reflects resource scarceness (in storage
and computation) of on-board devices. The incremental head is
trained for all current categories. During the continual learning
process, the architecture initializes a new specialized incre-
mental head for training. Backward propagation and update
operations are not performed on the backbone during continual



learning. Instead, only the weights of convolutional layers in
the detection head (green boxes in the figure) are updated. This
has two advantages: First, accuracy is guaranteed because we
share low level features and update high level ones during
continual learning of new data to fine-tune the incremental
head. Second, without any back-propagation and backbone
updates during training, computation power is conserved while
also reducing training time significantly. Since the volume
of data for incremental training is small, we leverage data
augmentation (i.e., image cropping, flipping, rotating, etc.) to
increase the diversity of input images. This data augmentation
is also applied to the training of the base head.

Any periodic OTA update can still be applied to the base
model in the proposed architecture since we do not modify
the structure of the backbone and the base detection head,
i.e., the base model network architecture is retained. Thus,
weights from both offline retraining with massive old/new
data and online/on-board training with (smaller) new data are
accommodated simultaneously for the dual-head design.

C. Online Testing:

During inference/testing, image sequences are sent to the
backbone of the network. The backbone is responsible for
extracting features per image. During this process, the low-
, medium-, and high-level feature outputs are routed to the
associated detection blocks of the base head while the back-
bone caches the intermediate output state. Both the base and
the incremental heads are activated during the online inference.
The purpose of the gate function is to choose the top detection
from the final layers with the highest probability. For example,
detecting a single object may have multiple prediction results
in both class IDs and locations. The gate selects the best
among all of these results.

The output of the base head is a list. Each item within the
list includes objectiveness score, class scores, and coordination
information of predicted bounding box. The algorithm first
filters out detection with predicted objectiveness score lower
than a pre-defined threshold value, and then uses quicksort to
order the detections by descending class score. In this way,
the detection with highest class score is first in the list. Any
subsequent list item is compared to the class score of the
first item, and if they differ by only a small threshold ε, the
corresponding (top-k) classes are activated for detection. If the
difference exceeds ε, the loop is terminated and the selected
classes are returned (as differences only increase in subsequent
iterations). The gate selection is presented in Algorithm 1.

The final prediction bar at the bottom of Figure 1 combines
the outputs from both base and incremental heads and selects
the prediction output with maximum probability, i.e., either a
class from the base or from the incremental head. This fusion
step guarantees that prediction outputs enjoy the best of both
worlds. After all, the incremental head may not always predict
the best result for all data.

Algorithm 1 Select Class IDs
for i = 0 to N − 1 do

if detections[i].objscore < threshold then
detections.remove(i)

end if
end for
Sort detections in descending order by class score
for i = 1 to N − 1 do

if (detections[0].cs− detections[i].cs) < ε then
selectedCls.insert(detections[i].clsId)

else
break

end if
return selectedCls

end for

D. Implementation

The implementation of our method is based on the state-
of-the-art real-time object detector framework Yolo [7]. It is
compatible with Yolov3 and Yolov4, since both use the same
architecture in the detection head. The framework is written
in C and CUDA, as is our implementation of the incremental
multi-scale head. The incremental learning based on data from
a single or more classes is realized by appending an incremen-
tal detection head to the end of the current backbone network.
Three-level feature outputs are consolidated within each head
to provide a single prediction. The incremental head can be
dedicated to a subset of the n classes, which differs from
the base head that covers all n classes. A reflection interface
implemented via a member variable, the so-called classid,
identifies the classes of a given head (or returns the base as
an identification). This facilitates (a) the selection of classes
using the output of the base head and (b) the identification
of the prediction class resulting from multiplexing of final
predictions from base and incremental heads.

The gate activates any incremental detection classes based
on the objectiveness scores and class probability from the
prediction of the base head. If there is an “approximate tie”
in the selection condition, the gate triggers multiple corre-
sponding incremental classes simultaneously. An approximate
tie exists if the probabilities of the top class and another
class differ by less than some threshold ε. The implementation
uses an ε of 10%. Additionally, if the base head fails to
detect a class altogether, all classes within the incremental
head are activated. The gate function can also selectively
only trigger the base head if and only if this newly OTA
updated model includes the incrementally learned scenarios.
This avoids duplicate predication on the incremental head,
thereby reducing the inference cost.

Since the incremental head has the same number of layers,
any selected classes are mapped to a range of layers within
the network. This allows an incremental head to automatically
obtain (a) input from layers belonging to the backbone and (b)
forward output of the incremental head to the final prediction
multiplexer. These capabilities are replicated in C and CUDA



for both CPU and GPU computation. A local barrier within
each head consolidates the output from the prediction layers
corresponding to the small/medium/large image sizes while a
global barrier within the final prediction block ensures that the
multiplexer provides as a final output the highest prediction
probability among both heads (base and incremental ones).

Testbed Experiments were conducted on an X86 64 plat-
form with two Intel Sandy bridge processors (with a combined
16 cores) utilizing 16GB DDR3 1600 ECC DRAM and a
Nvidia RTX 2070 GPU with 8 GB of memory. The CUDA
and CUDNN version are 10.0 and 7.4, respectively, running
on a CentOS 7.7.1908 distribution with a 4.10 Linux kernel.
This setup provides GPU acceleration for both training and
inference/testing, both of which exploit the linear algebra
libraries provided by Nvidia. Our source code and dataset are
available on the Github repository.

IV. EXPERIMENTS

A. Dataset

The dataset for both training and testing is Microsoft’s
Common Objects in Context (COCO) [52]. As indicated by its
name, images in the COCO dataset are taken from everyday
scenes augmented by a “context” to the objects captured. There
are 80 object categories in COCO. We extract the object label
from the annotation file associated with the image and cus-
tomize the label format based on our needs. Since our research
focuses on autonomous driving, we use a subset of COCO
categories related to driving. Other categories, such as food,
appliance, and kitchenware, do not contribute to autonomous
driving. A reduction in categories also significantly reduces the
training time and, to a smaller extent, inference cost as the total
number of images is reduced. This facilitates experimentation
with a larger set of model variations.

We leverage COCO’s APIs to filter out excluded categories
as we select the relevant subset of COCO. To meet the image
label requirement of the Yolo model, we convert the label from
COCO to Yolo format, i.e., each image is associated with a
corresponding label file (distinguished by file extension). A
label file has one or more entries, each representing a five
tuple to identify an object with a class ID, object center (x,y
coordinates), width, and height.

Table I depicts the number of images (for training and
testing/inference) and the number of objects in them, where
images may contain multiple objects that can partially overlap,
i.e., only parts of an object are visible.

B. Evaluation Metrics

We use the conventional ML metrics of precision, recall,
and F1-score, detailed in the following, to assess experimental
results.

The Intersection over Union (IoU) measures the overlap
between the predicted bounding box and the ground truth box
divided by the union of the two boxes in object detection.
We include IoU as a metric since the predicted location of
an object is of significant importance in autonomous driving,
and it affects object classification. In the experiments, we

TABLE I
DATASET DETAILS

Class ID # train imgs # train objs # test imgs # test objs

0 2287 4955 1098 2439
1 8680 19741 6117 19230
2 2442 6021 1200 3023
3 2243 3833 840 1445
4 2791 4327 1044 1935
5 2464 3459 1278 1599
6 4321 7050 1602 2923
7 2098 7590 1046 3597
8 2893 9159 1116 3472
9 1205 1316 570 628
10 1349 1372 454 594
11 481 833 257 501
12 3844 6571 1958 3494

use a uniform IoU threshold 0.5 for all incremental learning
methods. If the IoU value exceeds the threshold, an object is
detected; otherwise, no object is detected.

A model recognizes an object detection as a true posi-
tive (TP) when the object is detected (IoU greater than the
threshold) and classified correctly. For detecting class A, the
predicted result counts as a false positive (FP) when the object
is recognized as A but the ground truth is ¬ A. There are two
cases counting as a false negative (FN). One is no detection
and the other is detected as ¬ A while the ground truth of the
object is A for both cases.

We also measure the training and inference time for each
continual learning method. Training time is important since we
want to start using the new model with additional capabilities
as soon as possible. While continual learning is not subject
to the hard real-time constraints (in contrast to inference), any
training performed at a lower priority in the background as best
effort should still provide a new model within minutes. Infer-
ence can then switch over to the new model, and automated
driving decisions may benefit from earlier object detection in
high-level decision making. Inference time is crucial as well
since it has hard real-time constraints, where the continually
learned on-board model has to predict the result by a deadline
(before the next image frame arrives).

C. Analysis of Our Dual-Head Method

We compare our dual-head architecture with the state-
of-the-art work called feature reweighting [14] due to the
following considerations: First, based on our literature survey,
all continual learning approaches on object detection focus
on learning new classes. Yet, our method is on continually
learning new data with different distributions for existing
classes. Second, although it adapts the model to new classes,
feature reweighting is the most relevant work to compare to.
It only uses a small amount of new data like ours to train
the model continually. This is practical in an onboard contin-
ual learning scenario. Their approach is based on the same
object detection model as ours. Third, feature reweighting
has released their source code, which allows us to reproduce



their approach. We have also compared our method with joint
training. Our approach has almost the same accuracy with that
of joint training. Due to space constraints, we have to omit the
experimental result of joint training in the following figures.

We next assess detection accuracy with newly learned data,
never seen before, and seen before data. A comparison in terms
of timing analysis is given Sec. IV-D (Timing Analysis). In
this comparison, the base method is trained with the full base
data as it is not subject to continual learning. Instead, it should
be considered an OTA update resulting from vendor-initiated
periodic retraining in their data center, with both old and
new data from the field collected over longer periods of time
(weeks to months). We take a snapshot of such a base model as
a baseline to compare to the two continual learning methods,
(1) feature reweighting and (2) our dual-head method. These
two are trained with the same baseline data plus new data
under continual learning. The hyperparameters are unchanged
and remain the same for all methods.

Evaluation with New Data: The purpose of this experiment
is to determine how well the dual heads have learned the new
data during continual training. We use 20 new images from
each class to train the incremental detection heads and thus
assess our dual-head architecture. As shown in Figure 2, the
x-axis denotes the class ID. Compared to the base detection
head (top) that has never seen these data, our dual-head method
(bottom) has detected 0%–150% more TPs and dramatically
reduced the number of FNs. Moreover, there is a decrease in
the number of FPs 0% – 22%. The precision of the dual head
has increased by 1%–13% across all n classes, and the recall
of the dual head has improved by 17% – 59% for all n classes.

Although the recall of the reweighting method (middle)
remains about the same as that of the base model across
all n classes, accuracy drops significantly among all classes
due to the high number of FPs, which are misclassifications.
For detection of a ground truth with only one class (id = 1),
the reweighting method tends to predict multiple bounding
boxes with classes (nearly all n), thereby generating n times
more FPs for every class. Our method performs detection,
on average, 61.4% better in terms of precision and 44.4%
in recall over all classes than that of the reweighting method.
The results show that the incremental head has learned new
data for all n classes. This is the key advantage of the dual-
head method over other methods, without access to previously
trained data.

Evaluation with Never Seen Before Data: Figure 3 de-
picts the detection metrics of n classes contrasting the base,
reweighting, and dual-head methods for the given testing data
(not subject to prior training).

Our dual-head detection architecture results in a larger
number of TP cases and fewer FNs across all n incrementally
learned classes. Although our method incurs a slightly higher
FP rate than that of base-head detection, the average precision
over all n classes is 3.4% lower, with a standard deviation of
0.03. The dual head resulted in 247 more TPs than the base
head. The average recall over all n classes is 1.1% higher
than that of base-head detection, with a standard deviation

of 0.01. However, the average precision and recall over all
classes of the reweighting method is 51.8% and 14.5% lower
than those of the base model. The prediction results of the
reweighting model have both high FP and FN, which is an
indication forgetting issues during continual learning. This
is rooted in their method that focuses on learning new data
from new classes instead of learning new data from existing
classes. If there is not new class to learn, the reweighting factor
balances across all n classes, which makes the model associate
an object with all n classes, leading to high FP for all classes.
In contrast, our continual dual-head method has learned new
data with high precision and recall while still retaining prior
levels for both metrics of the base method for other test data.
Moreover, its testing results on new data outperform that of
the feature-reweighting method in Figures 2 and 3.

Sensitivity Analysis: The purpose of this experiment is to
test the robustness of our dual-head method, i.e., to ensure
that continual learning over many images does not result in
catastrophic forgetting of learned features. This sensitivity
study exposes the base to all training data. The incremental
head is then continually trained with 20 new images of each
class. We then expose this trained dual-head system in testing
(inference) to the same training data across all n classes.
Notice that this is only done as a validation experiment to
assess the ability to retain prior seen knowledge. Figure 4
(bottom) depicts detection results of our dual-head architecture
over all n classes indicated by their index (see dataset details
in Table I).

Results of the dual-head configuration remain nearly the
same across classes as for the base head, i.e., continual training
retains prior knowledge across original and retrained classes.
The average precision and recall difference is 4.3% and 0.1%,
respectively, with a standard deviation of 0.03 and 0.003.
In contrast, the average precision and recall difference is
59.9% and 26.5% between the base model (top) and the
reweighting method (middle). The experiment in Section IV-C
(New Data) additionally showed that new knowledge could
also be retained. In other words, our dual-head method is
not subject to memory loss with respect to already learned
features.

D. Timing Analysis

In this section, we compare both learning and test-
ing/inference time among multiple learning methods and as-
sess why our continual learning method with its dual-head
architecture is the fastest. We also conduct a preliminary
experiment that executes both online testing/inference and
continual learning instances on the same machine to outline
directions of future work.

Training Time: The second column of Table II shows
the single image re-training time of each continual learning
method performed on our testbed. The indicated training time
is per image. This implies that the model retraining time for
the base method is much longer since it is exposed to both
new and old data.



Fig. 2. Evaluation with new data

Fig. 3. Evaluation with never seen before data

Re-training cost is a function of both data volume and
computation. While the computational overhead of direct
learning and joint training per image through the CNN layers
is the same, a different number of images is used in re-
training. Direct continual learning only uses images of new
scenarios while joint training exposes the same fraction of
images across all classes, a 13-fold increase in data. The
runtime costs in the figure indicate that this data volume causes
joint training to take 16 times longer than direct continual
learning. The discrepancy (13X data vs. 16X runtime) is due
to less I/O caching in the operating system layer but also
increasingly denser matrix operations inside the CNN of the
latter — resulting from data not being evenly distributed
across categories, as we uncovered. Changing weights of
features [14] leverages an additional CNN-based module to

assist in incremental learning. Although it can learn new
classes from a small amount of images, the model still needs
to access old data in both learning phases. This makes the
training time of the reweighting method longer (by 3X).

The dual-head method has the lowest re-training cost, only
50% that of direct learning. It follows the same computation
pattern and data volume as Direct, but without back prop-
agation on the backbone. In addition, the number of filters
in the last convolutional layers is reduced since a head may
only learn a subset of classes. Learning new images in the
order of seconds can be feasibly done as a background task,
or even when a vehicle is not in motion, without straining its
computational and energy resources.

Finally, learning from scratch by training with all images
under the YOLO base framework takes 33hrs, 50min (not



Fig. 4. Evaluation with seen before data

shown in the table), requires excessive storage and consumes
considerable energy. This underlines the advantages of incre-
mental learning with our novel dual-head method.

TABLE II
TIME DETAILS

Method Training (s) Detection (ms) Speed (FPS)

Base 4.61 18.76 53.29
Direct 4.61 18.15 55.09
Joint 73.80 18.67 53.54
Reweight 13.80 581.8 1.95
Dual-head 2.34 22.25 44.94

Testing/Inference Time: As shown in third column of Ta-
ble II, the average inference time of conventional continual
learning methods (direct and joint) is under 19ms per image.
The test dataset has a total of 11,404 images containing 41,495
objects. While base, direct and joint methods meet real-time
constraints at over 50fps, their precision and accuracy are
unacceptable compared to our dual-head design. While feature
reweighting recognizes new objects, it fails to meet real-time
requirement falling short of 2 FPS. Its main computation
overhead originates from generating weight vectors from all
trained data. This slow speed and excessive access to all
old data render the method unsuitable for on-board continual
learning. Our proposed method has a 3.5ms higher detection
time than the average time of conventional methods, but still
within real-time constraints at 45fps with at least equally high
precision and accuracy than any other method. Its slower frame
rate is due to having to forward through more layers than the
base method.

V. CONCLUSION

This work contributes (1) the design and implementation of
a real-time on-board continual framework that learns within

seconds, (2) a novel dual-head architecture to support real-
time object detection with new images of existing classes,
(3) a fair comparison in timing and accuracy between these
methods in the context of continual learning for autonomous
vehicles, and (4) a sensitivity study on the quality and quantity
of continually learned images for our dual-head technique,
including its real-time suitability.

Our method overcomes the memory loss problem of knowl-
edge from old data and performs well in both training and
inference. These properties plus its fast learning capability
make the proposed method the best candidate for deployment
in autonomous driving, where continual learning is performed
in the background within a short time while retaining realistic
frame rates for real-time foreground object detection.
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