OpenMP-RT: Pragma Support for Scheduling
Periodic Real-Time Tasks

Brayden MecDonald?[0009-0001-2302—-4115] o 4 Frank
Mueller2:3[0000—0002—0258—0294]

North Carolina State University, Raleigh NC 27606, USA

Abstract. The computational demand for real-time control systems has
significantly increased, particularly with the use of machine learning,
which has been met by higher core counts on embedded architectures.
Mainstream programming languages support such parallelism for gen-
eral purpose programming, but they lack native support for expressing
parallelism under real-time constraints. While external tools and real-
time operating systems offer temporal guarantees, they often fall short
in providing integrated, language-level constructs for both coarse- and
fine-grained parallelism. OpenMP is a natural candidate for this role,
but lacks support for real-time scheduling and synchronization under
deadline constraints.

This work introduces OpenMP-RT to raise a discussion for inclusion
in the OpenMP standard. OpenMP-RT is a framework that extends
OpenMP to support real-time periodic tasks and predictable inter-task
communication. We identify the limitations of standard OpenMP for
real-time applications and explore potential extensions to the OpenMP
5.1 specification to address these gaps. Our framework introduces a new
task construct, rttask, and a configuration-driven specification model.
OpenMP-RT enables time-predictable, lock-free communication across
priority levels and supports both static-priority and EDF scheduling. We
have implemented OpenMP-RT in the LLVM C compiler under OpenMP
5.1 and analyzed its performance in terms of deadlines and real-time syn-
chronization.

Keywords: Real-Time - Parallelism - Extensions.

1 Introduction

Real-time systems are integral to many safety-critical and performance-sensitive
applications, from industrial automation to autonomous vehicles. In addition to
requirements for functional correctness, these systems must meet strict timing
constraints. Periodic tasks are a foundational execution model in real-time sys-
tems, where tasks are released at regular intervals and must complete within
a defined deadline. This model aligns well with many control and monitoring
applications, such as sensor polling, actuator updates, and feedback loops in
cyber-physical systems [1].

2 McDonald & Mueller.

As computing platforms evolve, real-time software is increasingly expected to
coexist with non-real-time workloads on shared hardware, particularly on multi-
core processors. While this shift offers benefits (e.g., in allowing easier communi-
cation between components), it also introduces challenges in ensuring predictable
execution and meeting timing guarantees.

Multicore architectures have become ubiquitous as the cost of such hardware
has come down and demand for compute power by software has increased [13].
However, real-time scheduling on multicore systems remains an open research
problem. Traditional real-time scheduling techniques for single-core systems do
not always scale well in the presence of concurrent execution and shared re-
sources. This has led to the exploration of parallel programming frameworks
that can support real-time constraints.

OpenMP is one of the most widely used frameworks for shared-memory par-
allel programming [10][3]. Originally designed for parallelizing loop-heavy nu-
merical computing workloads, OpenMP has evolved to support a broader range
of applications, including embedded and real-time systems [8][11]. Despite these
advances, OpenMP lacks native support for periodic task execution and real-
time scheduling semantics [2]. It provides no mechanisms for expressing timing
constraints, and its runtime delegates thread scheduling to the operating system,
which may not be real-time aware [1]. The difficulty in expressing a periodic exe-
cution model in OpenMP inhibits its usefulness in a real-time context where such
execution is desirable (such as control or feedback loops). Moreover, OpenMP’s
synchronization primitives are not designed for real-time predictability, further
limiting its applicability in hard real-time environments.

To address these challenges, we created OpenMP-RT, an extension to the
OpenMP 5.1 specification that introduces real-time capabilities for periodic task
execution on multicore systems. OpenMP-RT adds a new rttask construct and
associated pragma clauses to express periodic behavior, inter-task communica-
tion, and hierarchical scheduling. Real-time task parameters, including task de-
pendencies, are declared via a configuration file analyzed at compile time (which
allows for checking schedulability, and ensures all real-time parameters are lo-
cated in one place). Implementation of OpenMP-RT has been realized within the
LLVM compilation framework, including modifications to both Clang and the
OpenMP runtime. In contrast to prior work on OpenMP-RT [9], the objective
of this paper is to spark a discussion on potential inclusion of OpenMP-RT into
the OpenMP standard.

Key elements of this work are:

— The design of OpenMP-RT, a framework that extends OpenMP with con-
structs for periodic real-time task execution, supporting both coarse- and
fine-grained parallelism, focused on a discussion on compatibility and exten-
sion with the existing OpenMP standard; and

— an LLVM-based implementation targeting C/C++ that integrates real-time
task scheduling and lock-free communication between rttasks into the OpenMP
runtime.

OpenMP-RT: Pragma Support for Scheduling Periodic Real-Time Tasks 3
2 Design of OpenMP-RT

The objective of this work is to present the design and prototype of a framework
that simplifies the development of multi-threaded real-time applications using
OpenMP. By abstracting low-level runtime and system calls, it reduces com-
plexity and eliminates the need for custom communication mechanisms between
parallel real-time components. These mechanisms are designed to minimize con-
tention, reduce latency, and prevent deadlocks. The framework also automates
periodic real-time task timing, reducing jitter caused by manual time handling.
Developers can focus on application logic, while real-time guarantees are enforced
via high-level OpenMP-RT pragmas and runtime extensions. Although OpenMP
supports parallelism, it lacks native real-time features such as periodic execu-
tion and scheduling policies like Earliest Deadline First (EDF) or fixed-priority
scheduling [6]. While the OpenMP task construct (not to be confused with real-
time tasks, which have different properties) does allow for a priority parameter
input, such tasks are served in a best-effort method and do not invoke a real-time
scheduler, even in systems where such scheduling is available. OpenMP-RT fills
this gap, enabling efficient development of time-sensitive parallel applications.

OpenMP-RT introduces three pragmas: rttask for periodic real-time tasks,
and rtread/rtwrite for shared memory access. These can be used indepen-
dently of rttask, supporting communication between real-time and non-real-
time tasks. Task properties, core placement, and dependencies are specified in a
concise configuration file.

2.1 Design Overview

OpenMP-RT comprises two main components: (1) A scheduling and core as-
signment framework for real-time tasks, and (2) a communication framework for
data exchange between real-time tasks. The API and associated pragmas sup-
port both real-time and non-real-time producers and consumers. Details follow
in subsequent subsections.

Each rttask is defined with standard real-time attributes — period, deadline,
phase, and worst-case execution time (wcet) — and a non-empty places set
specifying allowed cores. These properties are conveyed via the configuration file
(see Subsection 2.3).

2.2 Execution Model

OpenMP-RT supports coarse-grained inter-task parallelism via rttask, and fine-
grained intra-task parallelism using standard OpenMP constructs within rttask
contexts.

Each real-time task runs on a dedicated periodic thread, supported by stati-
cally allocated thread pools per priority level (see Figure 1). Pool sizes are com-
puted at compile time based on the maximum concurrency per priority level,
derived from the configuration file.

4 McDonald & Mueller.

EDF Priority Band

T1 Master Thread

Static Priority Band

T2 Master Thread
T3 Master Thread

Low-priority.
non-real-time
processes

Fig. 1. Hybrid scheduling system, showing the ordering between the priority bands.

Each periodic rttask is restricted to a specified subset of cores. When it
enters a parallel section, it attempts to obtain threads from the pool associated
with its priority level, distributing work via the fork-join model.

However, due to system preemption policies and the state of other tasks, an
rttask may not always obtain the requested number of threads, which is consis-
tent with OpenMP’s best-effort model (Section 1.3, OpenMP 5.1). For example,
if another real-time task of the same priority is already using threads from the
pool, contention may force sequential execution, as shown in Figure 2. To ad-
dress this, developers can either conservatively account for sequential execution
in worst-case execution time (WCET) analysis (which is undesirable), or iso-
late tasks of the same priority to disjoint core sets. Such core isolation is easily
specified in the OpenMP-RT configuration file.

Unassigned Thread Pool Unassigned Thread Pool
Periodic Task Threads & Idle Cores Periodic & Assisting Task Threads

B0 8
le) [¢]i8

Fig. 2. Periodic real-time task threads, mapped to available threads from the thread
subpool. Red is starved be cause Blue has claimed both shared cores.

By segmenting the allowed cores for the blue and red tasks, we are able to
guarantee (fine-grained) parallel execution for both tasks regardless of which one
parallelizes first, avoiding the issue seen in the second part of the figure.

2.3 Real-Time Specifications via a Configuration File

The configuration file specifies all rttasks, including core mappings and depen-
dencies. Each task is identified by a unique name, referenced in corresponding
rttask pragmas in the source code. Provided at compile time, the configura-
tion file enables static analysis of the task set. This would not be feasible if task

OpenMP-RT: Pragma Support for Scheduling Periodic Real-Time Tasks 5

properties were embedded directly in pragmas as they may be spread across mul-
tiple files. We assume a one-to-one mapping between cores and places, consistent
with the OpenMP specification, and this mapping is enforced by checking the
OMP_PLACES environment variable. Figures 3 and 4 show the syntax and clauses
for task definitions.

rttask [clause[[,] clause] ... | new-line

Fig. 3. Task definition for rttasks in the configuration file.

name (identifier)
period(integer-expression)
deadline (integer-expression)
phase (integer-expression)
wcet (integer-expression)
depend (dependency-type : list)
priority(integer-expression)
threads (integer-expression)
place(list)

Fig. 4. Task descriptors & accepted data types for tasks in the configuration file.

The first two lines of the configuration file define the expected value of the
OMP_PLACES environment variable (using the standard syntax defined in Section
6.5 of the OpenMP 5.1 spec), and the set of places (i.e., cores) where non-real-
time tasks will be permitted to execute. While this is not a full description
of the required hardware and its capabilities to realize real-time performance,
this does allow the user to specify at least some system requirements, namely
number & distribution of cores. We note that this sort of hardware reference in
software design is commonplace in real-time development. Defining the expected
OMP_PLACES value is also necessary for the core isolation discussed previously.
Next, subsequent lines define a single rttask at a time, with the following pa-
rameters:

— name (required): The unique identifier used in the corresponding rttask
pragma.

— period (required): The task’s period (time between releases of the task),
specified as a positive integer.

— deadline: The relative deadline (time after release by which task execution
must be complete), also a positive integer. Defaults to be equivalent to the
period if omitted.

— phase: The task’s initial offset (non-negative integer). Defaults to zero,
meaning the task starts immediately upon encountering the rttask con-
struct.

6 McDonald & Mueller.

— wcet: The worst-case execution time, given as a positive integer.

— depend: Specifies communication dependencies using a subset of the syntax
from the standard depend clause.

— priority: The task’s static priority (positive integer). Required for statically
scheduled tasks; if omitted, the task is scheduled under EDF.

— threads: The number of threads requested by the task.

— place (required): The set of cores (places) to which the task is restricted.
For tasks with intra-task parallelism, each thread is confined to this set.

In our implementation, time-related parameters (period, deadline, wcet,
and phase) are expressed in microseconds. At a minimum, an EDF-scheduled
rttask must define both a period and wcet, while a statically scheduled task
must specify both period and priority. Thus, the presence or absence of the
priority field determines whether the task is scheduled under EDF or static
priority. In a system containing both EDF and static priority tasks, all tasks in
the EDF band are scheduled at higher priority than static priority tasks.

2.4 The rttask Construct

The rttask pragma encapsulates periodic real-time task code and accepts a
single name clause. All other attributes are defined in the configuration file,
allowing the compiler to instantiate the task using this reference. Figure 5 shows
the syntax.

#pragma omp rttask name(identifier) new-line
structured-block

Fig. 5. Syntax for an rttask construct.

To avoid dynamic thread creation, all threads are initialized at startup. Ex-
ecution of all rttasks is delayed until a defined absolute time after all threads
have been created, ensuring that all rttasks will have the same time zero (and
avoiding problems of favoritism caused by the time required to create all required
threads). Each rttask is further delayed by its phase parameter, which may be
zero in many cases.

The rttask pragma must be used outside other OpenMP pragmas, as it relies
on dedicated real-time threads incompatible with OpenMP’s standard parallel
model. However, a subset of OpenMP constructs is supported within an rttask,
enabling intra-task parallelism.

Specifically, OpenMP task and parallel pragmas retain their syntax but
are adapted to OpenMP-RT’s real-time constraints. Parallel regions reuse pre-
allocated threads from the pool associated with the rttask’s priority level, which
are returned after use.

While thread existence is guaranteed, availability is not as other rttasks
with the same priority and overlapping core bindings may have already acquired

OpenMP-RT: Pragma Support for Scheduling Periodic Real-Time Tasks 7

them. Availability can be ensured by assigning disjoint core sets to rttasks of
the same priority, verifiable via static analysis of the configuration file [7]. Pre-
allocated threads already have the correct priority and remain idle in the pool
until needed.

Within parallel sections, OpenMP-RT supports task pragmas, which behave
similarly to standard OpenMP tasks, including support for taskwait and critical
sections. Each rttask defines an isolated execution context, so synchronization
constructs are scoped accordingly. Thus, two threads may simultaneously execute
critical sections if they belong to different rttask teams. This requires extending
the OpenMP critical construct (Section 2.19.1) to scope contention groups to
individual rttask contexts.

2.5 Inter-task Communication Framework

Communication between rttasks is facilitated through a lock-free framework
designed to support data exchange both among real-time tasks and between
real-time and non-real-time threads. Our work introduces and compares two
such frameworks, each with distinct semantics: (1) A retry-based mechanism,
implemented via the rtread and rtwrite pragmas, and (2) a double-buffered
approach, using rtreadbuffer and rtwritebuffer. Both rely on lightweight
atomic operations to ensure efficiency and correctness. Atomic operations them-
selves are thread-safe, making it possible to construct a thread-safe communica-
tion framework atop them, so long as the ordering of certain memory accesses is
respected (enforceable via memory fences). Lock-free communication is essential
when interfacing real-time and non-real-time threads. Allowing a non-real-time
thread to block a resource required by a real-time task would compromise real-
time guarantees. Notably, the operating system (in this case Linux) does not
permit non-real-time tasks to inherit real-time privileges, rendering priority in-
heritance ineffective in this context. Nonetheless, bidirectional communication
between real-time and non-real-time tasks is often necessary (e.g., for user in-
terfaces in autonomous vehicle systems).

For diagnostic and evaluation purposes, a simpler lock-based alternative is
also provided. This version employs the Priority Ceiling Emulation Protocol
and is implemented via the rtreadlock and rtwritelock pragmas. It uses per-
channel mutexes and ensures deadlock avoidance by enforcing a total ordering
over shared data. Lock acquisition and release operations are automatically gen-
erated to follow this order, with unlocks occurring in reverse, thereby adhering to
a sufficient condition for deadlock freedom [16]. Each rttask declares its shared
memory dependencies in the configuration file. These dependencies specify both
the identifier names and the task’s access mode. An in dependency denotes
read-only access (i.e., acting as a consumer), while an out dependency indicates
write-only access (i.e., acting as a producer).

Retry-based method In the retry-based communication framework, each shared
dependency variable is accompanied by two timestamp registers in addition to

8 McDonald & Mueller.

the data itself. These timestamps are used to validate the integrity of the data
during concurrent access, enabling a lock-free, single-producer, multi-consumer
communication model.

#pragma omp rtread source(identifier) dest(identifier) size(integer-expression) flag(identifier) [num_tries(integer-expression)] new-line

#pragma omp rtwrite source(identifier) dest(identifier) size(integer-expression) new-line

Fig. 6. Syntax for the rtread and rtwrite pragmas.

The rtread pragma supports the following clauses:

— source (required): The shared memory variable to read from. Must be de-
clared as an in dependency in the configuration file.

— dest (required): The local destination address for the copied data. Must be
private to the executing thread.

— size (required): The number of bytes to copy from source to dest.

— numtries (optional): The maximum number of retry attempts if timestamps
do not match. Defaults to 1 if unspecified.

— flag (required): A pointer to a flag variable that is set to 0 upon a successful
read, or 1 if all retry attempts fail.

The rtwrite pragma includes:

— source (required): The local variable to write from. Must be private to the
executing thread.

— dest (required): The shared memory variable to write to. Must be declared
as an out dependency in the configuration file.

— size (required): The number of bytes to copy from source to dest.

The write operation proceeds as follows: The current timestamp is first writ-
ten to the initial timestamp register. Then, the data is copied from the local
source to the shared destination. Once the copy completes, the same timestamp
is written to the second timestamp register. This ensures that during the write,
the two timestamps are temporarily inconsistent, signaling that the data is in
an invalid state. So long as the order of access (timestamp 1, data, timestamp
2) is adhered to (enforceable via memory barriers), this property holds.

During a read operation, the flag is initially set to 1. The first timestamp
is read and stored, followed by copying the data from the shared source to the
local destination. After the copy, the second timestamp is read and compared
to the first. If they match, the read is considered valid, the flag is set to 0, and
execution continues. If the timestamps differ, the read is invalidated, indicating
that a concurrent write occurred. The operation may retry, up to the number of
retries allowed by the numtries value.

So long as the ordering of the steps in each rtwrite or rtread is respected
(e.g., a writer only equalizes the timestamps values after completing write to
the shared data), these operations are thread-safe. This property is enforceable
via a memory fence.

OpenMP-RT: Pragma Support for Scheduling Periodic Real-Time Tasks 9

Double-Buffer method An alternative to the retry-based lock-free communi-
cation method is the double-buffer approach, implemented using the rtreadbuffer
and rtwritebuffer pragmas. These pragmas share the same syntax as their
retry-based counterparts, namely rtread and rtwrite, including the source,
dest, and size clauses. However, rtreadbuffer omits the numtries and flag
parameters, as it does not rely on retry logic.

The double-buffer mechanism operates by maintaining two memory buffers
for each shared dependency. These buffers are managed by the producer task, as
specified by the depend(out:) clause in the configuration file. A shared pointer
field designates which buffer is currently readable. While one buffer is being
read, the other is available for writing. Once a write operation completes, the
producer atomically updates the shared pointer to reference the newly written
buffer, effectively swapping the roles of the two buffers. This ensures that readers
always access a consistent snapshot of the data, while writers can update the
alternate buffer without interference. A memory fence is used to ensure the
pointer update only occurs after writing data is complete.

Notably, read operations in this model are guaranteed to succeed without
retries. Even if a write occurs concurrently with a read, the reader continues to
access the previous buffer, which remains valid and unaffected by the ongoing
write (which is occurring in a separate location in memory and is therefor irrel-
evant). This design eliminates the risk of read failures and ensures deterministic
behavior in real-time systems.

3 Implementation

Listing 1.1. Pseudocode of lock-free communication.

void rtread(src, dest, size, numtries, flag) {

flag = 1;
for (int i = 0; i <= numtries; i++) {
timestamp = src.timeRegl;
mfence () ;
copy (src.data, dest, size);
mfence () ;
if (timestamp == src.timeReg2) {
flag = 0
break;
}
}
}
void rtwrite(src, dest, size) {
dest.timeRegl = clock_gettime();
mfence () ;

copy(src, dest.data, size);
mfence () ;
dest.timeReg2 = dest.timeRegl;

We implemented a prototype of OpenMP-RT by extending the OpenMP
language and runtime support within the LLVM compiler infrastructure. The

10 McDonald & Mueller.

Listing 1.2. Sample RT-Task. Some variable declarations truncated for brevity.

#pragma omp rttask name (domain2)

{
int £ = 0;
int*xx U;
#pragma omp rtread source(borderl) dest(U) size (4000) flag(f) num_tries(3)
#pragma omp parallel for
for(j=1;j<Coord2Dsize;j++){ //iterate over subdomain for calculation
godunov_domaincol(j, U, Coord2D); //invoke subdomain calculation
}
#pragma omp rtwrite source(U) dest(border2) size (4000)
}

current implementation targets C programs running on Linux systems with the
PREEMPT RT patch, supporting both static priority and EDF scheduling.

The prototype serves as a proof-of-concept to demonstrate OpenMP-RT’s
feasibility and enable experimental evaluation via a benchmark suite. While
support for other languages (e.g., C+-+) is possible, it is beyond the scope of
this work.

Linux was selected for its widespread use, mature ecosystem, and increas-
ing adoption in real-time systems, including industrial applications like Tesla’s
autonomous driving stack. With PREEMPT _RT, Linux provides the necessary
OS-level support for OpenMP-RT, including EDF and static priority schedul-
ing in high-priority bands isolated from standard threads. This dual support
for real-time and non-real-time tasks allows OpenMP-RT to demonstrate hybrid
scheduling, where both types of threads coexist and interact safely.

As described in Section 2, OpenMP-RT includes frameworks for safe data
exchange between rttasks and across the real-time boundary. Listing 1.1 shows
a pseudocode example of the retry-based communication mechanism triggered
by rtread and rtwrite pragmas, represented as function calls.

4 Results and Example

Let us provide an example application created using OpenMP-RT, including a
configuration file (see Listing 1.3) as well as one relevant rttask construct (see
Listing 1.2, consolidated for space). Deadline misses in this sample application
are compared against a version of the task set implemented without OpenMP-
RT, using a combination of Linux PREEMPT-RT syscalls as well as ordinary
OpenMP task pragmas.

This sample task set is based on a version of the HYDRO Benchmark,
which incorporates OpenMP tasks [4] in a parallel computation of fluid dy-
namics equations. This workload was selected because it includes clearly-defined
producer and consumer dependencies between tasks, and the computational in-
tensity makes it easier to observe deadline misses. Our modified version of this
benchmark uses real-time threads (in one version implemented as OpenMP-RT

OpenMP-RT: Pragma Support for Scheduling Periodic Real-Time Tasks 11

Listing 1.3. Sample configuration file.

ompplaces "{0:24}"
nonrtplaces "{4:24}"
task name (domainl) period(1000) wcet (700)
depend (inout:borderl) threads(5) place(0,1)
task name (domain2) period(1000) phase (100)
depend (inout:borderl) depend(inout:border2) priority(10) threads(5) place(2,3)
task name (domain3) period(1000) phase (200)
depend (inout:border3) priority(20) threads(5) place(0,1,2,3)

Table 1. Utilization versus observed deadline misses.

Total Utilization|Deadline Misses

OMP-RT (retry)|OMP-RT (double-buffer) PREEMPT-RT + OMP
3.6 0 0 59,124
3.72 0 0 109,628
3.8 8 3 161,452
3.96 7622 8195 182,929

rttask pragmas, and, for comparison, in another using PREEMPT-RT Pthread
syscalls), to handle each subdomain calculation. The OpenMP-RT version is
compared using both Retry and Double-Buffer synchronization primitives. As
the actual workload is static between experiments, we are instead able to con-
trol utilization by varying the periods and deadlines associated with subdomain
calculations. Experimentation was conducted using an Intel i7-14700 KF proces-
sor with 24 cores. For our purposes, the benchmark was constrained to 4 cores.
Slightly over 2 million task releases occur in the calculation, giving context to
the number of observed deadline misses.

As can be seen in Table 1, OpenMP-RT dramatically reduced the number of
deadline misses, eliminating them completely at utilization values below 3.8 (at
4 cores, this is equivalent to a per-core utilization of 0.95, or 95%). Note that
deadline misses without OpenMP were mostly caused by the fine-grained paral-
lelization inside subdomain calculations, where threads did not inherit priority
from the initial launching thread before launch, thus resulting in potential prior-
ity inversions. This demonstrates the benefit of OpenMP-RT’s real-time priority
support.

Further experiments were conducted in order to compare the two options for
synchronization in OpenMP-RT, namely the Retry and Double Buffer methods.
The same task set as in the previous experiments was used.

Both techniques result in relatively similar response times, with Double-
Buffer expressing superior response times on average only in the case of very high
utilization. (This is a side effect of the retry-based method having a much higher
likelihood of invalidating data during a read.) Notably, under very high utiliza-
tion, there is a significant increase in reader response time but no corresponding
increase for writers. This is caused by the rtread and rtwrite implementations

12 McDonald & Mueller.

1000
Double Buffer (reader)

)
Retry (reader) —3¢—
Double Buffer (witer)
800 - Retry (writer)

600 |- —

400 |-

Average Response Time (ms;
\

200 |-

ol | I | [| |
24 28 32 36 372 38 39

Total Utilization (4 cores)

Fig. 7. Response time comparison between Double-Buffer and Retry based synchro-
nization methods.

favoring write operations in the event of a preemption. The increased response
time for readers is an artifact of increased frequency of retries (or, in the double
buffer case, switching to a new buffer).

As one of the driving objectives for the development of OpenMP-RT is de-
veloper ease-of-use, we can compare the length (in lines of code) of an applica-
tion implemented via OpenMP-RT versus the same application using existing
PREEMPT-RT Pthread syscalls. While lines of code is not an exact metric for
overall complexity, it is useful in a before/after comparison. As we already have
two versions of a real-time application based on the HYDRO Benchmark with
and without OpenMP-RT, we use it as an example for reduction in code com-
plexity. Previous experiments highlighted that the non-OpenMP-RT application
struggles to meet deadlines, but that is not relevant to this analysis. Reduction
in utilization (accomplished through increasing periods and deadlines, with no
change in workload) allows both versions of the test application to execute with
no missed deadlines in any case.

Table 2. Reduction in lines of code for HYDRO benchmark derived application.

Pthread| OpenMP-RT|Percentage Decrease
Lines of Code|1562 1297 17%

Table 2 shows the difference in total lines of code between the implemented
PREEMPT-RT Pthread and OpenMP-RT versions of the sample application.
The reduction in code length is mainly due to the removal of all code involved in
setting up real-time Pthreads (as this functionality is relegated to the OpenMP
runtime). For completeness’s sake the length of the OpenMP-RT configuration
file has been added to the line total of the OpenMP-RT version. However the
configuration file, included above, totals 8 lines, i.e., its effect on the length is
inconsequential. We also note that the PREEMPT-RT Pthread version includes

OpenMP-RT: Pragma Support for Scheduling Periodic Real-Time Tasks 13

only the minimum required to launch a real-time thread, along with the timer
setups for inducing periodic behavior. It includes no error checking, which would
be vital in a real application to prevent silent failure, and is included in the
OpenMP-RT implementation.

5 Related Work

There has been significant interest in the use of multicore architectures in real-
time systems, despite the inherent difficulties of real-time scheduling on such
platforms [12][5][14]. Several studies have evaluated OpenMP’s potential in this
domain, particularly in the study of timing bounds [14][15]. These works high-
light limitations in the predictability of OpenMP, mostly stemming from the
best-effort execution model and lack of native support for real-time semantics [3].
In comparison, OpenMP-RT introduces new pragma constructs and semantics
for expressing periodic real-time execution and synchronization primitives with
calculable bounds.

Serrano et al. [11] propose extending the existing OpenMP task pragma
with event, deadline, and priority clauses to support recurrent tasks and
coarse-grained parallelism. This approach uses user-defined event expressions
to define periodic tasks, in contrast to OpenMP-RT’s use of dedicated rttask
construct with explicitly-defined period (and other real-time task descriptors)
information for periodic task creation and expressing hierarchical scheduling.
Our implementation integrates with the Linux PREEMPT_RT kernel, supporting
both static priority and EDF scheduling, making OpenMP-RT the first to pro-
vide hard real-time guarantees under Linux using OpenMP.

OpenMP-RT was first introduced in [9] with a focus on ease of real-time pro-
gramming and synchronization primitives. In contrast, our current manuscript
focuses on OpenMP compatibility, semantic constraints and discusses benefits
and challenges in the context of considering OpenMP-RT for potential inclusion
in the OpenMP standard.

6 Conclusion

We introduced OpenMP-RT, a framework built on top of OpenMP to support
the development of parallel real-time applications. Our implementation, target-
ing the C language via the LLVM compiler infrastructure, leverages Linux’s
real-time scheduling capabilities to enable predictable execution and supports
coarse-grained parallelism among periodic tasks, core isolation, hybrid schedul-
ing strategies, along with multiple lock-free inter-task communication mecha-
nisms. Future work will explore expanding the inter-task communication model,
supporting additional scheduling policies beyond EDF and static priority, and
developing tooling to assist with system design, such as automated optimization
of core-to-task bindings, core migration and schedulability analysis.

14

McDonald & Mueller.

Acknowledgments

This work supported in part by NSF awards CISE-1747555, CISE-1813004,
CISE-2316201 and a grant by CISCO.

References

10.

11.

12.

13.

Alrawais, A.: Parallel programming models and paradigms: Openmp
analysis. In: 2021 5th International Conference on Computing
Methodologies and Communication (ICCMC). pp. 1022-1029 (2021).
https://doi.org/10.1109/ICCMC51019.2021.9418401

Ayguade, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F.,
Teruel, X., Unnikrishnan, P., Zhang, G.: The design of openmp tasks. IEEE
Transactions on Parallel and Distributed Systems 20(3), 404-418 (2009).
https://doi.org/10.1109/TPDS.2008.105

Chandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D., McDonald, J.: Parallel
programming in OpenMP. Morgan kaufmann (2001)

Gaidamour, J., Lecas, D., Lavallée, P.F.: Introducing OpenMP Tasks into the HY-
DRO Benchmark (2021), https://arxiv.org/abs/2106.13465

Godabole, P., Bhole, G.: Timing analysis in multi-core real time systems. In: 2021
IEEE International Symposium on Smart Electronic Systems (iSES). pp. 38-43
(2021). https://doi.org/10.1109/iSES52644.2021.00021

Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the ACM 20(1), 4661 (Jan 1973)

Liu, J.: Real-Time Systems. Prentice Hall (2000)

Marongiu, A., Capotondi, A., Tagliavini, G., Benini, L.: Improving the
programmability of sthorm-based heterogeneous systems with offload-enabled
openmp. In: Proceedings of the First International Workshop on Many-Core
Embedded Systems. p. 1-8. MES ’13, Association for Computing Machin-
ery, New York, NY, USA (2013). https://doi.org/10.1145/2489068.2489069,
https://doi.org/10.1145/2489068.2489069

. McDonald, B., Mueller, F.: Openmp-rt: Native pragma support for real-time tasks

and synchronization with llvm under linux. In: ACM SIGPLAN Conference on
Language, Compiler, and Tool Support for Embedded Systems. pp. 119-130 (Jun
2024)

Peng, J., Hu, C., Xi, J.: Msi a new parallel programming model. In: 2009
WRI World Congress on Software Engineering. vol. 1, pp. 56-60 (2009).
https://doi.org/10.1109/WCSE.2009.114

Serrano, M.A., Royuela, S., Quifiones, E.: Towards an openmp specification for
critical real-time systems. In: de Supinski, B.R., Valero-Lara, P., Martorell, X.,
Mateo Bellido, S., Labarta, J. (eds.) Evolving OpenMP for Evolving Architectures.
pp. 143-159. Springer International Publishing, Cham (2018)

Sha, L., Caccamo, M., Mancuso, R., Kim, J.E., Yoon, M.K., Pellizzoni,
R., Yun, H., Kegley, R., Perlman, D., Arundale, G., Bradford, R.: Real-
time computing on multicore processors. Computer 49, 69-77 (09 2016).
https://doi.org/10.1109/MC.2016.271

Vaidehi, M., Nair, T.R.G.: Multicore applications in real time systems. In: Journal
of Research & Industry. vol. 1, pp. 30-35 (2008)

14.

15.

16.

OpenMP-RT: Pragma Support for Scheduling Periodic Real-Time Tasks 15

Vargas, R., Quinones, E., Marongiu, A.: Openmp and timing predictability: A
possible union? In: Design, Automation and Test in Europe. pp. 617-620 (2015).
https://doi.org/10.7873/DATE.2015.0778

Wang, Y., Guan, N., Sun, J., Lv, M., He, Q., He, T., Yi, W.: Benchmarking openmp
programs for real-time scheduling. In: 2017 IEEE 23rd International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA). pp.
1-10 (2017). https://doi.org/10.1109/RTCSA.2017.8046322

Wang, Y., Liao, H., Nazeem, A., Reveliotis, S., Kelly, T., Mahlke,
S., Lafortune, S.: Maximally permissive deadlock avoidance for multi-
threaded computer programs (extended abstract). In: 2009 IEEE Interna-
tional Conference on Automation Science and Engineering. pp. 37-41 (2009).
https://doi.org/10.1109/COASE.2009.5234118

