
LegoSim: Simulation of Embedded Kernels over

Pthreads

THOMAS RÖBLITZ

Zuse Institute Berlin

and

OLIVER BÜHN

and

FRANK MUELLER

North Carolina State University

The contributions of this work are twofold. First, we describe the design and implementation

of a simulation environment for an open-source embedded kernel and an intuitive user interface

to complement it. Second, the simulator can be used for embedded program development and

research as well as instructional purposes in embedded system classes as a replacement or a
complement to hands-on experiments with embedded devices.

The technical sections of this paper stress the suitability of POSIX Threads (Pthreads) to re-
semble kernel operations in the simulation environment. We specify the prerequisites for using

Pthreads as a means to resemble embedded task execution and suggests an I/O-based represen-
tation of device information. The experience gained with a sample implementation stresses the
importance of a proper match between a Pthreads implementation and an embedded kernel. We

demonstrate the adequacy of both the simulation environment and a graphical user interface to
aid program development and debugging. Furthermore, the separation of the simulation compo-
nent from the user interface provides opportunities to utilize each component separately or even
combine them with other components. The simulation environment is publically available, and
instructions for installation and use are included in the appendix. The combination of the tech-

nical solutions provide a contribution toward embedded system simulation, an area that has not
been studied much.

Categories and Subject Descriptors: C.0 [Computer Systems Organization - General]: Mod-
eling of Computer Architecture; I.6.5 [Simulation and Modeling]: Model Development; K.3.1

[Computers and Education]: Computer Uses in Education

General Terms: Design

Additional Key Words and Phrases: Computer architecture simulator, education, embedded sys-
tems, operating systems kernel simulator

Authors’ addresses: Thomas Röblitz, Zuse Institute Berlin, Computer Science Research, Takustr.

7, 14195 Berlin, Germany; Oliver Bühn, Niederwallstr. 13, 10117 Berlin, Germany; Frank Mueller,
Department of Computer Science, Center for Embedded Systems Research, North Carolina State

University, 448 EGRC, Raleigh, NC 27695-7534, email: mueller@cs.ncsu.edu, phone: (919) 515-
7889.

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2002 ACM 1531-4278/2002/0600-0001 $5.00

ACM Journal on Educational Resources in Education, Vol. ?, No. ?, January 2002, Pages 1–9.

2 · Thomas Röblitz et al.

1. INTRODUCTION

Recently, embedded systems have increased rapidly in terms of the number of cur-
rently deployed systems as well as projections for future development [Gasperoni
1998]. These systems are characterized by low power processors to reduce operating
costs with bus width between 8 and 32 bits today. The customized environment
surrounding embedded processors and their operating systems generally requires
a cross-platform development. However, it can be very tedious to perform cross-
platform testing and debugging, which often contributes 50% of the effort in the
software development cycle [Davis 1979]. In such an environment, simulation tools
for the embedded system allow rapid prototyping and software pre-validation. In
particular, the debugging and testing phase during the software development cycle
is facilitated by means of simulation environments. Logical program errors and
runtime errors can be detected more conveniently by simulation.

This work describes the design and implementation of a simulation environment
that closely resembles the operations of an embedded operating system kernel.
The design methodology is demonstrated by replacing the tasking structure of an
operating system kernel by POSIX Threads (Pthreads) [Technical Committee on
Operating Systems and Application Environments of the IEEE 1996], on one hand,
and by redirecting I/O devices to standard I/O operations, on the other hand. This
approach is realized for the open-source LegOS kernel [Noga 1999] by implementing
a simulation environment through changes in the kernel sources in a systematic
manner.

The resulting simulation environment provides a testbed for embedded applica-
tions that can thereby readily be executed on a standard workstation with POSIX
support within or above its operating system. Input and output from the embedded
simulation is then coupled with a graphical user interface that visually resembles
the embedded environment, depicts output information of actuators and accepts
input values for sensory devices. Alternatively, the application could be coupled
with a hardware simulator that resembles the physical characteristics and feed-back
actions of the embedded device in a physical environment. Such an approach allows
additional testing of the embedded software, e.g., prior to the availability of actual
physical devices but also during a later phase where a set of simulated units can be
connected with each other or even with a set of real units.

Simulation environments for embedded kernels exist for a number of systems, e.g.,
WindRiver supplies pRISM+ for host-based development of embedded systems.
However, the design of embedded simulation environments has not been studied
much. Simulations for operating systems [Rosenblum et al. 1995] or even processors
[Hennessy and Patterson 1996; Barach et al. 1995; Magnusson et al. 1998] have
received much more attention but also require considerable overhead in terms of
simulation time. This paper focuses on fast simulations of small kernels that can be
achieved by modifying the source code of the kernel to replace tasking and device
handling with facilities available under common operating systems of workstations.

The paper is structured as follows. Section 2 identifies design issues and re-
quirements for the approach. Section 3 describes an implementation along these
guidelines and gives insight to the experience gained during the implementation.
Section 4 describes a user interface and presents the concepts used in this work for

ACM Journal on Educational Resources in Education, Vol. ?, No. ?, January 2002.

LegoSim: Simulation of Embedded Kernels over Pthreads · 3

combining different simulation components. Section 5 summarizes the work.

2. KERNEL REQUIREMENTS

A simulation of kernel operations requires that tasking and scheduling within the
embedded operating system resemble that of the simulation system. In this paper,
we assume a kernel with the characteristics listed in the following.

Multi-Tasking. allows concurrent execution of different threads of control.

Multiple Priority Levels. allow the selection of either a fixed or a dynamically
changed discrete priority value to a task.

Strict Priority Scheduling. ensures that the highest priority task executes at any
time.

Event-based Activations. resume task execution after suspension under a certain
condition.

Preemption. interrupts the execution of a lower priority task upon reception of
an event for a higher priority task.

For each characteristic, we identify a corresponding feature of Pthreads. The
scheduling model of Pthreads also supports concurrent task execution with preemp-
tion and strict priority scheduling. The number of priorities of the kernel should
not exceed the number of priority levels of a Pthreads implementation. Suspensions
and activations can be modeled though conditional wait and wakeup.

Discrepancies between the different models can also be bridged in many cases.
For example, a non-preemptive kernel can be resembled in Pthreads by a monitor
lock that is released and then acquired again at each synchronization point within
the kernel.

When reusing the original kernel source for the simulator, additional changes to
the ported kernel sources are required to provide the proper interfaces for sensory
devices and actuators while retaining the original logic for controlling these de-
vices. The algorithms to control I/O ports are replaced by providing corresponding
discrete values as standard input or output in conjunction with a characterization
of the triggered/probed functionality of a device. These values can then be used
by another software component, e.g., the GUI resembling the embedded device or
a simulator of the embedded unit. Our work includes a grammatical specifica-
tion of the I/O format for values and their functional properties, which provides a
documented interface utilized by other simulation components that connect to the
application.

Figure 1 depicts a schematic view of a kernel with its different layers. The user
is only exposed to the API. Kernels often use a shallow binding layer for map-
ping interface names onto kernel functionality but this layer can be regarded as
optional. The kernel functionality is depicted by kernel management routines, for
example, to enter and exit the kernel, handle internal kernel data and possibly
provide intra-kernel message passing. Kernels often employ kernel-level tasks dedi-
cated to certain services, which can be low-level devices, abstract file systems, etc.
These kernel tasks are scheduled and managed together with user tasks by a task-
ing layer. Finally, device drivers provide access to hardware components. In the
approach described above, only the shaded layers are subject to changes within the

ACM Journal on Educational Resources in Education, Vol. ?, No. ?, January 2002.

4 · Thomas Röblitz et al.

Hardware

device
drivers

task
management

interface bindings

internal kernel tasks

kernel management

API

m
ic

ro
−

ke
rn

el

Fig. 1. Schematic Structure of a Kernel

kernel source, namely the device drivers and the task management. The following
section discusses details of required modifications for a sample implementation.

3. SAMPLE IMPLEMENTATION

We chose the open-source kernel LegOS to perform a case study. LegOS is a
kernel for the Lego Mindstorm RCX brick containing an 8 bit Hitachi processor
(H8/3292). It replaces the standard firmware of the RCX to obtain full control
over the hardware and lifts constraints in programming present in the standard
firmware. The LegOS kernel provides the features listed in the previous section,
namely preemptive, strict priority scheduling of tasks in an event-triggered system.

The target platform was restricted to arbitrary operating systems adhering to
the Pthreads standard. Specifically, FSU Pthreads [Mueller 1993] under Linux
and SunOS, as well as LinuxThreads [Leroy 1996] under Linux were chosen to
demonstrate the flexibility of the approach. Different mixes of operating systems
and Pthreads implementations were intentionally chosen to evaluate the impact of
each component on the simulation environment.

The functionality of the kernel was mapped onto the proper Pthreads and I/O
functionality according to the following grouping:

—Initialization of the micro kernel was added as a prerequisite for executing the
simulated application. This includes initialization of internals of the kernel as
well as initializing the middleware, as required by FSU Pthreads.

—Task execution was mapped onto threads in a straight-forward manner, including
task cancellation (see Figure 2). Internal kernel tasks, such as a task manager for
LegOS, were resembled as high priority threads. The task manager is responsible
for making scheduling decisions and for handling events.

—Voluntary suspension was implemented either through the corresponding sleep
functionality of the operating system or, for event-based waits, by suspension on
a condition variable.

—Event handling, realized through the execution of an event handler and a subse-
quent test of its return value to resume tasks upon a match of values, required a
conditional signal upon the given match of values after handler execution.

—Device-specific directives retained their interface and simply send information to
standard output (resembling actuators) or receive values from standard input
(resembling sensors), also depicted in Figure 2. An internal observer thread was

ACM Journal on Educational Resources in Education, Vol. ?, No. ?, January 2002.

LegoSim: Simulation of Embedded Kernels over Pthreads · 5

added that receives input according to the grammatical specification and triggers
(signals) corresponding events, as described above.

device I/O, tasking,

interface bindings

internal kernel tasks

kernel management

API

si
m

ul
at

or

observer events

Operating System

ThreadsStd I/O

Fig. 2. Schematic Structure of the Simulator

The details of event handling and the observer task are depicted by the pseudo
code in Figure 3. When a task awaits an event, it supplies a handler and a parameter
for the handler. If an initial call to the handler indicates that no data is pending
(represented by the discrete value 0 in this example), the calling task is suspended
in a conditional wait. In addition, cleanup handlers have to be used around the
wait to ensure that locks are released if a waiting task was canceled during the
conditional wait, which is a cancellation point. This ensures that resources cannot
be monopolized when a task is killed, a potential cause of deadlocks. The observer
task selects a handler depending on the input (not depicted) and calls it with the
same parameters as before. If data is pending on the sensory device, the values are
supplied to the waiting task and the task is signaled to resume execution, which
includes that the sensory value is returned. Notice that we assume that a sensory
device only be accessed by one user task. If multiple tasks were competing for a
resource, then the await function would have to be augmented by a check for a race
condition between tasks to ensure strict FIFO servicing of the requesters.

These modifications of the kernel allowed the execution of arbitrary applications
in the simulation environment without significant changes of the application source
code. In fact, the only changes consisted of an initialization call at program start,
the specification of an interface file for the simulation software and the resolution
of one name conflict (since embedded API names have to be distinct from the API
of the host’s operating system).

It was then observed that the implementation over FSU Pthreads established a
complete resemblance of the tasking properties with respect to scheduling actions
as compared to the kernel, regardless of the underlying operating system. The
implementation over LinuxThreads, on the other hand, provided only partial re-
semblance of the tasking behavior. LinuxThreads implements kernel threads that
are mapped onto processes1 with a common address space and schedules these

1A thread is a process in Linux.

ACM Journal on Educational Resources in Education, Vol. ?, No. ?, January 2002.

6 · Thomas Röblitz et al.

FUNC await event(handler, data) RETURN int IS

result := handler(data);

IF result = 0 THEN

pthread cleanup push(&pthread mutex unlock, L);

pthread mutex lock(L);
global data := data;

global wakeup := FALSE;

WHILE ¬ global wakeup DO

pthread cond wait(CondVar, L);

ENDWHILE;

result := global data;

pthread mutex unlock(L);

pthread cleanup pop(0);

ENDIF;

RETURN result;

ENDPROC;

TASK observer IS

FOREVER DO

input := read();

result := handler(global data);
IF result 6= 0 THEN

pthread mutex lock(L);
global wakeup := TRUE;

global data := result;
pthread mutex unlock(L);
pthread cond signal(CondVar);

ENDIF;
ENDFOR;

ENDTASK;

Fig. 3. Simulated Event Handling

threads in the same manner as processes, i.e., it provides round-robin time-slicing
rather than strict priority scheduling. As a result, different scheduling actions may
be taken, possibly even violating valid assumptions made throughout the design of
an embedded application. This may cause an application to fail to properly execute
in the simulation environment, although the application was otherwise completely
valid, due to the task interleaving imposed by the given priorities. This problem
could be fixed by either using real-time priorities or kernel modifications within
Linux. However, the former requires additional system privileges (to execute a
process within the real-time priority range) and may potentially be harmful if the
program is faulty. The latter may only be possible with a different kernel, such
as RT-Linux, which imposes unnecessary restrictions on the development platform.
In summary, a Pthreads implementation with the proper features, such as FSU
Pthreads, proved to be superior for simulation purposes of embedded kernels.

4. USER INTERFACE AND WORKING EXPERIENCE

The user interface developed for the simulation environment is based on a pictorial
representation of the embedded unit, the RCX, enhanced by an interface for user
interactions. A picture of the embedded unit provides an intuitive representation

ACM Journal on Educational Resources in Education, Vol. ?, No. ?, January 2002.

LegoSim: Simulation of Embedded Kernels over Pthreads · 7

of the actual system. It also allows a straight-forward association between I/O
information and the state of the unit. A Java Applet was chosen as a portable and
easily configurable means to display an image of the RCX. It provides a graphical
user interface through the Java AWT classes. Figure 4 depicts a snapshot of the
GUI. The LCD of the RCX interactively outputs messages (“fwwd”) generated by

Fig. 4. Sample GUI for an Embedded Application

the application. Buttons on the RCX adjacent to the LCD (e.g., on/off, run) can
be pressed to control the base state of the application. The black squares above
the LCD (labeled 1 through 3) can be pressed to simulate a touch sensor. Other
sensory input is provided through the empty panels right above that allow the user
to enter discrete values. At the very top, messages from infrared transmissions are
displayed or can be entered and then sent. Below the RCX, the panels (labeled A,
B, C) depict the state of the actuators (motors). Finally, a debugging window on
the bottom summarizes all device activity in the temporal order, i.e., in the order
of message arrival or message generation, respectively.

ACM Journal on Educational Resources in Education, Vol. ?, No. ?, January 2002.

8 · Thomas Röblitz et al.

A number of test programs have been used to validate the functionality of the
user interface as well as the simulation environment. These tests have shown the ad-
equacy of the interface to analyze program states, find logical errors in the program
and simplify application development. In addition, the simulation environment
facilitated the detection of runtime errors, such as null pointer references, which
would not have been easily detected on the actual hardware since the embedded
processor lacks an MMU. In this environment, regular source-level debuggers could
be used to probe the state of the simulated application, which facilitates program
testing and increases the productivity of embedded system development.

The user interface adheres to the same grammatical specification as the simula-
tion component. It accepts actuator output and sends sensory input in an exchange
of messages over standard I/O with the simulated application. A simple protocol
was used to connect the standard I/O components to each other. Figure 5 depicts
how actuator output (on the left) from the application passes through a network
interface before being accepted as input at the GUI. Sensor information travels the
opposite direction through the same layers.

Application

Simulator

GUI

(Java Applet)

<hostA 4711>

stdout2tcp

tcp2stdinstdout2tcp

tcp2stdin

re
m

ot
e

pi
pe

rem
ote pipe

<hostB 4712>

Picture 2

Fig. 5. Combining Simulation Components

Combining components through (possibly remote) pipes in such a fashion en-
hances the flexibility of the simulation approach. This user interface is just one
example of how the simulation environment can be used. Another example would
be a set of simulation units combined by linking their I/O to each other. This could
be used to resemble a broadcast medium, such as the infrared communication built
into the RCX. An alternative would be to link simulation units to actual units
for testing purposes and observe their interactions. Finally, components can be
chained to obtain any of the above functionalities while monitoring I/O streams,
for example, to visually depict the states of units, to probe and log messages, or to
filter them for debugging purposes.

5. CONCLUSION

This paper discusses the design issues and implementation details of a simulation
environment for an open-source embedded kernel. In addition, an intuitive user in-
terface is provided. This work shows the suitability of Pthreads to resemble kernel
operations in the simulation environment. In particular, the prerequisites for using
Pthreads as a means to resemble embedded task execution are identified. Further-
more, an I/O-based representation of device information allows other components,

ACM Journal on Educational Resources in Education, Vol. ?, No. ?, January 2002.

LegoSim: Simulation of Embedded Kernels over Pthreads · 9

such as the user interface, to interact with the simulation environment. The ex-
perience gained with a sample implementation stresses the importance of a proper
match between a Pthreads implementation and an embedded kernel. It also shows
the adequacy of both the simulation environment and a graphical user interface
to aid program development and debugging. Furthermore, the separation of the
simulation component from the user interface provides opportunities to utilize each
component separately or even combine them with other components. The appendix
contributes instructions for the installation and use of the simulator, e.g., for the
purpose of program development or for teaching embedded system classes.

Availability

The modified kernel for embedded simulations of LegOS and
the user interface resembling the RCX can be obtained from
http://moss.csc.ncsu.edu/∼mueller/legosim under the Mozarilla Public Li-
cense. They have also been submitted as LegoSim: A Simulator for LegOS with
the Computer Science Teaching Center at http://www.cstc.org. The web site and
appendix contain instructions on installation and usage of the simulator.

REFERENCES

Barach, D., Kohli, J., Slice, J., Spaulding, M., Bharadhwaj, R., Hudson, D., Neighbors, C.,
Saxena, N., and Crunk, R. 1995. Halsim – a very fast sparc v9 behavioral model. In Workshop
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems. 52–58.

Davis, C. G. 1979. Testing large, real-time software systems. In Software Testing, Infotech State
of the Art Report. Vol. 2. 85–105.

Gasperoni, F. 1998. Embedded opportunities. In Ada Europe. 1–13.

Hennessy, J. and Patterson, D. 1996. Computer Architecture: A Quantitative Approach, 2nd
ed. Morgan Kaufmann.

Leroy, X. 1996. The linuxthreads library. http://pauillac.inria.fr/∼xleroy/linuxthreads.

Magnusson, P. S., Larsson, F., Moestedt, A., Werner, B., Dahlgren, F., Karlsson, M.,
Lundholm, F., Nilsson, J., Stenström, P., and Grahn, H. 1998. SimICS/sun4m: A virtual

workstation. In Proceedings of the USENIX 1998 Annual Technical Conference. USENIX
Association, Berkeley, USA, 119–130.

Mueller, F. 1993. A library implementation of POSIX threads under UNIX. In Proceedings of
the USENIX Conference. 29–41.

Noga, M. L. 1999. Legos. http://www.noga.de/legOS/ .

Rosenblum, M., Herrod, S. A., Witchel, E., and Gupta, A. 1995. Complete computer sys-
tem simulation: The SimOS approach. IEEE parallel and distributed technology: systems and

applications 3, 4 (Winter), 34–43.

Technical Committee on Operating Systems and Application Environments of the IEEE 1996.
Portable Operating System Interface (POSIX)—Part 1: System Application Program Interface
(API). Technical Committee on Operating Systems and Application Environments of the IEEE.

ANSI/IEEE Std 1003.1, 1995 Edition, including 1003.1c: Amendment 2: Threads Extension [C

Language].

Received November 2001; accepted February 2002

Appendix

A. INSTALLATION AND USE OF LEGOSIM

This information is available from
http://moss.csc.ncsu.edu/∼mueller/legosim and http://www.cstc.org.

ACM Journal on Educational Resources in Education, Vol. ?, No. ?, January 2002.

10 · Thomas Röblitz et al.

LegoSim is (yet another) simulator for LegOS (http://www.noga.de/legOS/).
Why another simulator?

—At the time the project started, there was no other simulator.

—Once Emulegos was announced, we did not like the look-and-feel.
(http://www.geocities.com/∼marioferrari/emulegos.html)

—We wanted to separate the GUI from the simulator.

—We prefer a GUI that closely resembles the RCX.

—We wanted a flexible GUI that can also serve as a control unit, not just as a
simulator interface.

—We wanted a simulator that can live without the GUI, for example, to connect
it to other RCXs via IR.

—You may run the GUI on a different machine than the simulator.

How does it work?

—There are two separate components, a Java-Applet GUI and a simulator library,
which are coupled by Perl scripts.

—The simulator library
—is a replacement for LegOS that can be linked with any LegOS application.
—Tasks are mapped onto POSIX Threads.
—Input and output of any devices is simulated as a string on stdin/stdout fol-

lowing a grammatical specification (see Section B).

—The Java-Applet GUI
—displays the actions of the RCX received in stdin as closely as possible.
—accepts inputs and generates the appropriate stdout string to forward the input

to the RCX.

—Perl scripts connect the GUI to the LegOS application and vice versa (see Figure
5).

What is or is not supported?

—API based on LegOS 0.1.7 (see Section C).

—sensors: touch (press black Lego brick of sensor 1/2/3) or enter value in yellow
input field above respective sensor.

—actuators: last action is displayed in yellow fields below respective actuators
(motors).

—IR: output of RCX displayed in to yellow field, input to RCX can be entered into
same filed, then press "ir send".

—buttons: Press On-Off or Run. View and Prgm not supported yet.

—LCD: basic LCD output, but not in 7 segment format. Refresh ignored.

—Sound: not at all.

Where do I get it, what kind of software is required, how do I install it?

—Here are the bundled sources: http://moss.csc.ncsu.edu/∼mueller/legosim/legosim.tgz

—Prerequisites:
—Linux: gcc/egcs, glibc2 or some POSIX Threads, Java JDK, Perl.

ACM Journal on Educational Resources in Education, Vol. ?, No. ?, January 2002.

LegoSim: Simulation of Embedded Kernels over Pthreads · 11

—SunOS 4.1.x: gcc/egcs, FSU Pthreads, and (maybe on some other host) Java
JDK, Perl.

—others: Tested under Linux but may run elsewhere with the same require-
ments.

—Install for Linux as follows (for SunOS 4.1.x, replace LINUX → SUN4):
—get two windows (xterms)
—in window 1:

—cd $HOME
—tar xzf legosim.tgz
—cd legosim
—if your installation path is not $HOME/legosim, then edit Make-

file.common to set correct SIM ROOT (and, if using FSU Pthreads, also
THREAD ROOT)

—cd LINUX
—make
—cd ../examples/LINUX
—make simple-rover
—../../tcp2stdout 4712 | simple-rover | ../../stdin2tcp localhost 4711 5
—now you have 5 seconds to execute the last command in window 2; if you

see "Connection refused", enter the previous command again
—in window 2:

—cd $HOME
—cd legosim
—tcp2stdout 4711 | appletviewer legosim.html | stdin2tcp localhost 4712 5

—Once you see "Connected to localhost, port #4711/4712", you have done it!
The simple-rover program is running in the simulator (how does this work?
see Figure 4.)

—Now click on the black Lego brick above sensor 1.
—You should see the motors (and LCD) reverse, go left (A reverse, C forward),

and forward again.
—Notice the required changes to your LegOS program: When you want

to test LegOS programs with this simulator, you need to:
—insert sim init(); as the first thing in main()
—replace kill → sim kill
—#include "kmain.h" to get rid of a warning

How about Documentation and other Pointers?

—Simulation Library Documentation (see Section C)

—Java Applet-GUI Documentation (see web site)

—Real-Time Systems Project at North Carolina State University

Bugs and a wish list:

—On-Off clear the memory, i.e., the program cannot run again.

—Run only toggles the walker. It does not run/stop the program.

—View/Prgm do not work yet.

—LCD refresh is ignored.

ACM Journal on Educational Resources in Education, Vol. ?, No. ?, January 2002.

12 · Thomas Röblitz et al.

—Sound does not work.

—The simulator should really be a library, not just a collection of object files.

—The sensors and actuators should be displayed with symbols, directions and slides
bars (for speed).

—Mail your enhancements to Frank Mueller.

Who is responsible for this software?

—No liability, Mozilla MPL license2.

—But we designed and implemented it: Frank Mueller, Thomas Röblitz and Oliver
Bühn.

B. I/O SPECIFICATION

<simulation> ::= {<input> | <output>}*

<input> ::= "input" <idevice> <nl>

<idevice> ::= <sensor> | <ir> | <button>

<sensor> ::= "sensor" <snr> <svalue>

<snr> ::= "1" | "2" | "3"

<svalue> ::= <INT NUMBER>

<ir> ::= "ir" <msg length> <msg>

<msg length> ::= <NUMBER>

<msg> ::= {<BYTE>}+

<button> ::= <bnr> <baction>

<bnr> ::= <bview> | <bonoff> | <bprgm> | <brun>

<bview> ::= "1" | "view"

<bonoff> ::= "2" | "onoff"

<bprgm> ::= "3" | "prgm"

<brun> ::= "4" | "run"

<baction> ::= "pressed" | "released"

<nl> ::= "\n"

<output> ::= "output" <odevice> <nl>

<odevice> ::= <actuator> | <lcd> | <ir> | <osensor>

<actuator> ::= "actuator" <anr> <acommand>

<anr> ::= "A" | "B" | "C"

<acommand> ::= <avalue> | <speed> | <direction>

<avalue> ::= "value" <NUMBER>

<speed> ::= "speed" <NUMBER>

<direction> ::= "direction" <dvalue>

<dvalue> ::= "off" | "fwd" | "rev" | "brake"

<lcd> ::= <show hex> | <show string> | <show number> |

<show segment> | <hide segment> |

<refresh> | <clear>

<show hex> ::= "x" "0x"([0-9a-f])+

<show string> ::= "s" <STRING>

<show number> ::= <NUMBER> "(" <number style> ","

2See URL http://www.mozilla.org/MPL/

ACM Journal on Educational Resources in Education, Vol. ?, No. ?, January 2002.

LegoSim: Simulation of Embedded Kernels over Pthreads · 13

<comma style> ")"

<number style> ::= "digit" | "sign" | "unsign"

<comma style> ::= "digit_comma" | "e0" | "e_1" | "e_2" | "e_3"

<show segment> ::= "show" <NUMBER>

<hide segment> ::= "hide" <NUMBER>

<refresh> ::= "refresh"

<clear> ::= "clear"

<osensor> ::= "sensor" <snr> <smode>

<smode> ::= "active" | "passive"

C. SUPPORTED API

The following minor changes are required to LegOS applications to execute under
the simulator. At the first possible place in main, insert a call to sim init(). All
kill() calls have to be replaced by sim kill().

Function Output / Comment

sim init() - / initializes the simulator

delay(n) - / waits n milliseconds
msleep(n) - / waits n milliseconds

cputw(word) output lcd x word / output of word as hex number
cputs(string) output lcd s string / output of the first 5 characters

of string

dir write(buf, buflen) output ir buflen buf / output of the size of the
buffers(buflen) and their content (buf)

dir read(buf, buflen) - / input of buflen bytes into a buffer (buf)
dir fflush() - / -

motor a dir(dir) output actuator A direction dir / output of the
(new) direction of the motors (off, fwd, rev, brake)

motor b dir(dir) output actuator B direction dir / output of the
(new) direction of the motors (off, fwd, rev, brake)

motor c dir(dir) output actuator C direction dir / output of the
(new) direction of the motors (off, fwd, rev, brake)

motor a speed(speed) output actuator A speed / output of speed of motor

motor b speed(speed) output actuator B speed / output of speed of motor

motor c speed(speed) output actuator C speed / output of speed of motor
ds active(sensor) output sensor sensor active / set state of sensor to

active

ds passive(sensor) output sensor sensor passive / set state of sensor to
passive

lcd number(i,nstyle,cstyle) output lcd i (nstyle,cstyle) / output i according to
number style / comma style simulating the display.

lcd show(segment) output lcd show segment / specify segment to be set
on display.

lcd hide(segment) output lcd hide segment / specify segment to be

cleared on display.

lcd clear() output lcd clear / clear display.

tm start() - / call pthread exit.

wait event(handler, data) - / wait for handler to return value 6= 0.
execi(func, prio, stack) - / start new thread with start function func.

sim kill(thread) - / kill thread.

Table I. Supported Functions

ACM Journal on Educational Resources in Education, Vol. ?, No. ?, January 2002.

