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Abstract

Incorrect computer hardware behavior may corrupt intermediate computations in numerical algorithms,
possibly resulting in incorrect answers. Prior work models misbehaving hardware by randomly flipping bits
in memory. We start by accepting this premise, and present an analytic model for the error introduced by a
bit flip in an IEEE 754 floating-point number. We then relate this finding to the linear algebra concepts of
normalization and matrix equilibration. In particular, we present a case study illustrating that normalizing
both vector inputs of a dot product minimizes the probability of a single bit flip causing a large error in
the dot product’s result. Furthermore, the absolute error is either less than one or very large, which allows
detection of large errors. Then, we apply this to the GMRES iterative solver. We count all possible errors
that can be introduced through faults in arithmetic in the computationally intensive orthogonalization phase
of GMRES, and show that when the matrix is equilibrated, the absolute error is bounded above by one.
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1. Introduction

In the field of high-end computing (HEC) the
notion of reliability has tended to focus on keep-
ing thousands of physical nodes operating cooper-
atively for extended periods of time. As chip man-
ufacturing and power requirements continue to ad-
vance, soft errors are becoming more apparent [1].
This implies that reliability research must address
the case that the machine does not crash, but that
outputs during computation may be silently incor-
rect. There have been many studies into hardening
numerical kernels against soft errors, that is, the
researchers attempt to preserve the illusion of a re-
liable machine by detecting and correcting all soft
errors. We take a more analytical approach. In-
stead of focusing on detection/correction, we seek
to study how the data operated on impacts the er-
rors that we can observe given soft errors in data
— called silent data corruption (SDC).

The driving motivation behind our work is
the uncertainty surrounding the reliability of an
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exascale-class machine [2–4]. We attempt to avoid
speculation over what hardware may be used in fu-
ture (or present) HEC deployments, and instead
analyze how a single soft error in an IEEE-754
floating-point number behaves. It has already been
shown that existing and decommissioned HEC de-
ployments have suffered from SDC [1, 5]. For the
prior reasons, we seek to study the link between the
data operated on and soft errors. We intentionally
perform our research subject to the IEEE 754 spec-
ification, which we believe will be used regardless
of the architecture. We also restrict our analysis to
single bit flips. This gives us a base line from which
to draw higher-level conclusions related to multiple
bit flips, and lets us isolate the impact of a bit flip.

IEEE 754 both defines the binary representation
of data, and bounds the rounding error commit-
ted by arithmetic operations. This work focuses on
data representation. The effects of rounding error
on numerical algorithms, including those studied in
this paper, have been extensively studied (see, e.g.,
[6]). However, these results generally only apply to
small errors, such as those resulting from rounding.
The error from bit flips can be huge and thus require
different methods of analysis, like those presented
in this paper.
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2. Related Work

Researchers have approached the problem of SDC
in numerical algorithms in various ways. Many take
the approach of treating an algorithm as a black
box and observing the behavior of these codes when
run with soft errors injected. Recently, Howle et al.
[7] analyzed the behavior of various Krylov meth-
ods and observed the variance in iteration count
based on the data structure that experiences the
bit flip. Shantharam et al. [8] analyzed how bit
flips in a sparse matrix-vector multiply (SpMV) im-
pact the L2 norm and observed the error as CG is
run. Bronevetsky et al. and Sloan et al. [9, 10] an-
alyzed several iterative methods documenting the
impact of randomly injected bit flips into specific
data structures in the algorithms and evaluated sev-
eral detection/correction schemes in terms of over-
head and accuracy. Exemplifying the concept of
black-box analysis, BIFIT [11] characterizes appli-
cations based on their vulnerability to bit flips. A
similar tool, S-FETI [12] injects soft errors through
an emulation layer, allowing arbitrary codes to be
run in a faulty virtual environment. Rather than fo-
cusing on how to preserve the illusion of a reliable
machine or devising a scheme to inject soft errors,
we investigate an avenue mostly ignored, which is
how the data in the algorithm can be used to miti-
gate the impact of a bit flip.

Hoemmen and Heroux proposed a radically dif-
ferent approach. Rather than attempt to detect
and correct soft errors, they use a “selective relia-
bility” programming model to make the algorithm
converge through soft errors [13]. Sao and Vuduc
showed that reliably restarting iterative solvers en-
ables convergence in the presence of soft errors [14].
In the same vein, Elliott et al. showed that bound-
ing the error introduced in the orthogonalization
phase of GMRES lets FT-GMRES converge with
minimal impact on time to solution [15]. Boley et
al. apply backward error analysis to linear systems
in order to distinguish small errors due to round-
ing from inacceptably large errors due to transient
hardware faults [16]. In general, our work comple-
ments this line of research. While Elliott, Hoem-
men, and Sao have investigated algorithms that can
converge through error, we show that in certain nu-
merical kernels the data itself can have a “bound-
ing” effect. For example, coupled with the work of
Elliott et al. [15], we improve the likelihood that
errors fall within the derived bound.

3. Motivation

Bit flips are the motivation for resilient algo-
rithms. Algorithms run on digital machines, so any
corruption is due to a fault at the hardware level
or radtion from space. There are many layers and
abstractions between what a user sees and what
hardware actually does. Caches for data and in-
structions are an example of these layers.

Many works in the field of algorithmic fault tol-
erance have tailored methods for a bit flip fault
model, e.g., [10, 17–21], but their fault model rarely
considers faulty hardware. Instead, researchers
simulate hardware faults by injecting bit flips into
values before or after an operation. A standard ap-
proach, e.g., [9, 14, 22], is to flip one or more bits
in the input to an operation and observe the effect
on algorithms.

We use this same fault injection methodology,
but relate our findings to the analytic model of
IEEE-754 floating point representation. Our find-
ings demonstrate the close relationship between
data and a fault model. Moreover, our findings il-
lustrate the shortcomings of evaluating algorithms
using this type of fault injection. As we will demon-
strate, the expected value obtained by sampling is
highly dependent on the characteristics of the data
operated on. While bit flips are the root cause of
errors, it is not clear that we need to assess algo-
rithmic fault tolerance approaches using a bit flip
fault methodology.

4. Overview

To explore the relation between data representa-
tion and soft errors, we first construct an analytic
model of a soft error in an IEEE-754 floating-point
scalar, and then extend this to a dot product. We
uncover through analysis that the binary pattern of
the exponent can be exploited for fault tolerance.
We show this graphically via a case study using
Monte Carlo sampling of random vectors, and then
extend the idea of data scaling to matrices by us-
ing sparse matrix equilibration. To demonstrate the
feasibly and utility of our work, we analyze the GM-
RES algorithm and instrument the computationally
intensive orthogonalization phase. We count the
possible absolute errors that can be introduced via
a bit flip in a dot product, and show that scaling
data lowers the likelihood of observing large, unde-
tectable errors.
This paper is organized as follows:
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1. In § 5, we construct an analytic model of the
absolute error for single bit upsets in IEEE-754
floating-point numbers.

2. In § 6, we extend our model of faults in IEEE-
754 scalars to vectors of arbitrary values, and
present examples of how data scaling impacts
the binary representation and absolute error
we can observe.

3. In § 7, we sample random dot products and
compute the probability of having an error
larger than one using Monte Carlo.

4. In § 8, we link data scaling to sparse matrix
equilibration, and instrument and evaluate the
impact of a soft error in the computationally
intensive orthogonalization phase of GMRES.

5. Fault Model

The premise of our work is that a silent, tran-
sient bit flip impacts data. Before we can perform
any analysis or experimental work, we must define
how such a bit flip would impact an algorithm, and
how we enforce that the bit flip was transient. To
achieve this goal, we build our model around the
basic concept that when an algorithm uses data,
this translates into some set of operations being
performed on the data. Should a bit flip perturb
our data, some operation will use a corrupt value,
rather than the correct value. The output of this
single operation will then contain a tainted value,
and this tainted value could cause the solution to be
incorrect. Note that a transient bit flip may cause
a persistent error in the output depending on how
the value is used.

A side benefit of an operation-centric model is
that we naturally avoid a pitfall to which arbitrary
memory fault injection succumbs, namely that if
a bit flip impacts data (or memory) that is never
used (read) then this fault cannot lead to a failure.
Our fault model allows a bit flip to perturb the
input to an operation performed on the data, while
not persistently tainting the storage of the inputs.
This mimics how a transient bit flip would manifest
itself, e.g., during ALU activities. As a result, the
data that experiences the bit flip need not show
signs that it was perturbed. This model allows us to
observe the impact of transient flips on the inputs,
which results in sticky or persistent error in the
result. We then utilize mathematical analysis to
model how this persistent error propagates through
the algorithm.
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Figure 1: Graphical representation of data layout
in the IEEE-754 Binary64 specification.

5.1. Fault Characterization

To derive a fault model we must first understand
what a fault is. Since floating-point numbers ap-
proximate real numbers and most numerical algo-
rithms use real values, we start from the definition
of a real-valued scalar γ ∈ R. The range of possible
values that γ can take is γ ∈ [−∞,+∞]. We assume
that the IEEE-754 specification for double-precision
numbers, called Binary64, is used to represent these
numbers. This means that γ can take a fixed set of
numeric values. The range of |γ|, excluding 0 and
denormalized numbers, is

|γ| ∈ [1.0× 2−1022, 1.9̄× 21023]; (1)

where 1.9̄ indicates the largest possible fractional
component, and 1.0 indicates the smallest fractional
component.

To approximate real numbers, Binary64 uses 64
bits, of which 11 are devoted to the exponent, 52 for
the fractional component (we refer to as the man-
tissa), and one bit for the sign. Figure 1 shows
how these bits are laid out. In addition to numeric
values, Binary64 includes two non-numeric values,
Not-a-Number (NaN) and Infinity (Inf), which may
be signed to account for infinity and values that re-
sult in undefined operations, e.g., division by zero.
The range of values in Equation (1) is not contin-
uous and has non-uniform gaps due to the discrete
precision, which is a consequence of having a fixed
number of bits in the fractional component.

We can further discretize the range of possible
values by recognizing that there is a finite number of
exponents that are possible given IEEE-754 double
precision, e.g.,

γ ∈ {0,±Inf,±NaN,±2−1022x,±2−1021x,

. . . ,±20x, . . . ,±21023x},

where x ∈ [1, 2) is some fractional value.
Analytically, this is expressed as

γ = (−1)sign

(
1 +

51∑
i=0

bi2
i−52

)
× 2e−1023, (2)
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for IEEE-754 Binary64. Note, the specification
does not include a sign bit for the exponent.
Rather, IEEE floating point numbers utilize a bias
to allow the exponent to be stored without a sign
bit, which we will later exploit for fault-resilience.
Another important characteristic that stems from
the general approach of expressing numbers in ex-
ponential notation is that we can characterize num-
bers by their order of magnitude. Of particular in-
terest is the following relation:

|2−1022| ≤ |2−1022x| < · · · < |21023| ≤ |21023x| (3)

This means that we can use the next order of mag-
nitude as an upper bound for errors in the frac-
tional component of a number — which is prac-
tically achieved by incrementing the exponent or
multiplying by two. We can also analytically model
the number of fractional bits that could contribute
an error larger than some tolerance, since the error
that could arise from each mantissa bit is relative
to the exponent of the number. This final step is
necessary since the fractional term can take values
in the range [1, 2), where the left parenthesis indi-
cates that 2 is not a member of this interval. We
can also characterize the error that a perturbed sign
bit can contribute, and, like the fractional compo-
nent, this error is relative to the exponent of the
number. Suppose the sign is perturbed in a scalar
γ, then we have γ̃ = −γ, the absolute error is
|γ − γ̃| = |γ − (−γ)| = 2γ. This means we can
bound the error from a sign bit perturbation by
incrementing the exponent of the resulting value.

In summary, we have demonstrated that errors
in IEEE-754 floating point numbers can be charac-
terized using the exponent of the numbers. This
property allows us to reduce the number of bits we
need to consider in a fault model, since we know
that a large number of errors are bounded by the
relatively small set of possible exponents.

5.2. Fault Characteristics of Exponents

In the context of IEEE-754 double precision num-
bers and silent data corruption, we do not model
the exponents directly. Instead, we model the bi-
ased exponents, as they are the interesting portion
of the data that allows us to characterize the errors
that the majority of the bits present in the data
can produce. For instance, in double precision data
we can characterize the errors from 53 of the 64 bits
using our approach. This type of fault characteriza-
tion is impossible if bit flips are injected randomly

2−1

20

21

 ⇒

1022
1023
1024

 ⇒

01111111110
01111111111
10000000000


Exponent Biased Storage

Figure 2: Relation of exponent, IEEE-754 double
precision bias, and what data are actually stored.

into the data’s memory, as that approach loses the
semantic information that is implicitly present in
the data.

The Binary64 specification does not store expo-
nents directly, instead it uses a bias of 1023. From
§ 5.1, this means we can characterize all faults in
double precision data by analyzing perturbations to
the possible biased exponents

{0, 1, 2, . . . , 1023, . . . , 2046}.

Note that zero is not a biased exponent and has a
special meaning. In IEEE-754, a zero pattern in the
exponent with zeros in the mantissa is used to rep-
resent the scalar zero, while a non-zero pattern in
the mantissa is used to represent subnormal num-
bers. We also assume the user does not perform
computation on the two non-numeric values NaN
and Inf, which are represented using the biased ex-
ponent 2047 (all ones). We do include zero in our
analysis because it is a valid real number.

Since we are concerned with bit perturbations in
the exponent, we express the biased exponents in
their binary form, e.g., 11-bit unsigned integers pre-
sented in binary. We can further expand Figure 2 to
show the potential change to the original exponent
should a bit flip occur, which will form the basis for
our fault model and analytic models.

In the context of bit flips, we can view a bit flip
as adding or subtracting from the biased exponent,
which in turn translates to multiplying or dividing
the number by some power of two. We model the
impact of a bit flip in the exponent as the original
scalar being magnified or minimized by a specific
power of two. The biased exponent translates to a
discrete binary pattern. We consider all single bit
flips in this binary pattern and compute all possible
perturbed values.

We summarize the absolute error and change in
order of magnitude of a scalar given a single bit flip
in Table 1. The key observation is the 4th column,
that is, the order of magnitude does not increase
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Table 1: Bit flip absolute error for a scalar λ represented using IEEE-754 double precision, with λexp as the
exponent 2x.

Bit Location Absolute Error Bit Range (j) Change in Order of Magnitude

Mantissa
∣∣λexp(1 + 2j−52)

∣∣ 0, . . . , 51 0

Exponent1→0

∣∣∣λ(1− 2−2j )
∣∣∣ 0, . . . , 10 and bitj+52 = 1 −2j

Exponent0→1

∣∣∣λ(1− 22
j

)
∣∣∣ 0, . . . , 10 and bitj+52 = 0 +2j

Sign |2λ| 1

given flips in the mantissa and always decreases if
the bit being flipped is a one. Consider Figure 2,
suppose a bit flip impacts the least significant bit
in 2−1 (a zero). This will clearly increase the order
of magnitude, but the resulting perturbed exponent
can at worst be 20. The only bit flip that can in-
troduce an error larger than 20 is the case that the
most significant bit (0) is flipped. In this case, the
error introduced is very large, e.g., 2−1 becomes
2+1023.

The goal of this work is to uncover the charac-
teristics of the data being operated on, and then
exploit these properties to improve fault tolerance
given a bit flip. This section has explored the im-
pact of a bit flip and shown that values in the range
[0, 20] have a binary pattern (thanks to the bias)
that will minimize the error introduced most of the
time. For values less than 21, bit flips in any bit
position 0, . . . , 9 will never produce an error larger
than 1. We now extend these findings to dot prod-
ucts, and then show how we can exploit the concept
of all values being less than or equal to one.

5.3. Operation Centric Fault Model

We now describe a realization of our fault model
that describes the error that could be injected if
an operation in a dot product experiences a single
bit upset. We choose the dot product because it
is a common operation, and because we will use
this model in § 8 to model the worst-case errors
that could be injected into a phase of the GMRES
algorithm.

Given two real-valued n-dimensional vectors
a,b ∈ Rn, the dot product is defined as

c =

n∑
i=1

ci, where ci = aibi. (4)

If we allow a single bit flip to impact the i-th ele-
ment of the dot product, then we have a perturbed

solution c̃, which is the result of a perturbation to
either ai, bi, or ci. In the context of our fault model,
this captures a bit upset impacting the inputs to the
multiplication operator, and it captures a bit upset
in the intermediate value, ci, which is the input to
the addition operator.

Using Table 1, we have all of the tools necessary
to compose an absolute error model for a dot prod-
uct, i.e., addition is modeled by a fault in a scalar
|α+ β − (α̃+ β)| = |α− α̃|. The potential change
in order of magnitude is paramount. Consider an
exponent flip from 1→ 0. These types of exponent
bit flips produce an error that is bounded above by
the original magnitude of the result, which can be
viewed as “zeroing out” the term if a perturbation
occurs. Similar to a perturbed scalar, the man-
tissa can contribute either no change in the order
of magnitude, or in the worst case a bit flip causes a
carry, which will increment the order of magnitude
by one. The order of magnitude for a sign bit flip
is exactly the same as that of a perturbed scalar,
which introduces an error one order of magnitude
larger than the result. These error models can be
thought of as the largest additive error that we can
inject into a dot product from a bit flip, e.g.,

c̃ =

n∑
i=1

aibi + (error term). (5)

In summary, we have composed analytic models
for the the absolute error that could be introduced
into a dot product. Our models are initially con-
structed from the IEEE-754 Binary64 model, which
we extended to express how a bit upset impacts a
singular double precision scalar. We then composed
a model for the multiplication operator, and ana-
lytically expressed the absolute error. Using the
absolute error, we have a model that explains how
wrong a dot product can be, assuming a bit flip in
one of the input vectors or in an intermediate value.
Next, we refine these models to construct strict up-
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per bounds on the error introduced by a bit flip in
a dot product.

5.4. Error Bounds for a Bit Flip in a Dot Product

The models presented in Table 1 make no as-
sumptions about the bits present in the mantissa
of the operands. This is problematic if we want
to consider all possible errors that could be in-
troduced into a dot product. To account for the
mantissa, and to create strict upper bounds on
the error, we will use the relation presented in
Eq. 3. From this relation, we know that αβ <
2αexponent+12βexponent+1. We can write this as

αβ < 4αexpβexp, (6)

where αexp = 2αexponent . Using Eq (6), we are
able to account for the mantissa bits, but we can
also show that a bit flip in the sign is bounded by
Eq. (6). The sign bit introduces an absolute er-
ror equivalent to incrementing the exponent of the
result

αβ < 2αβ < 4αexpβexp, (7)

where 2αβ is the potential error introduced should
the sign bit be perturbed, which must be smaller
than the bound constructed for the mantissa.

By utilizing Eq. (6), we are able to account for
all possible mantissas and their potential faults, as
well as a perturbation to the sign bit. We will now
discuss how to use this model to understand the
relationship between the data in an algorithm and
the distribution of potential errors that could occur
should a bit flip in the data.

6. Fault Model Evaluation

In § 5, we proposed analytic models for errors
should a bit flip occur in IEEE-754 double precision
data. We now illustrate how data can impact the
size of errors that a bit flip can create. Consider
the following sample vectors

usmall =

[
0.5
0.25

]
, vsmall =

[
0.25
0.5

]
, and

ularge =

[
2
4

]
, vlarge =

[
4
2

]
.

If we compute the dot product λ = ularge ·vlarge, we
have a finite number of potential errors should a bit
flip in the data of ularge,vlarge, or in an intermediate
value in the summation. We can experience either

2̃ =



22

23

25

29

217

233

265

2129

2257

2513

Zero



, 4̃ =



21

24

26

210

218

234

266

2130

2258

2514

2−1020



, 8̃ =



24

21

27

211

219

235

267

2131

2259

2515

2−1018


Figure 3: Example of perturbed values greater than
than one.

0̃.5 =



20

2−3

2−5

2−9

2−17

2−33

2−65

2−129

2−257

2−513

21022



, 0̃.25 =



2−3

20

2−6

2−10

2−18

2−34

2−66

2−130

2−258

2−514

21019



, 0̃.125 =



2−2

2−1

2−7

2−11

2−19

2−35

2−67

2−131

2−259

2−515

21017


Figure 4: Example of perturbed values less than
one.

2̃×4+4×2, 2×4̃+4×2, or 8̃+8. For clarity we state
what the perturbed values could be in Figure 3 and
Figure 4.

By inspection it is clear that substituting any of
the above perturbed scalars into the dot product
will produce an absolute error greater than one in
all cases, and in the event one chooses to substi-
tute the near zero perturbed values, the absolute
error of the dot product still has magnitude 8, e.g.,
|16− (0 + 8)|.

Alternatively, consider the vectors usmall and
vsmall. Computing the dot product, λ = usmall ·
vsmall = 0.25, the possible values to perturb

are: 0̃.5, 0̃.25, and 0̃.125. We construct these
from our model of a perturbed scalar, and present
the perturbed variants in Figure 4. By inspec-
tion, 0̃.5 can contribute an absolute error to
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the dot product larger than one only once, e.g.,∣∣0.25− (21022 × 0.25 + 0.125)
∣∣. Likewise, 0̃.25 and

0̃.125 can perturb the result of the dot product with
error greater than one only once, and for all 3 cases
the perturbation will change the result by hundreds
of orders of magnitude.

6.1. Faults in the Mantissa or Sign

The error generated by the mantissa or sign bits
is relative to the exponent of the number that the
flip occurred in. If the exponent is larger than one,
then clearly the mantissa or sign bits can generate
an error larger than one. Alternatively, if the values
all are less than one, then mantissa errors will pro-
duce errors less than one because 2−1 × 1.x ≤ 20.
The errors from the sign bit cannot exceed 2 since
2× 2−1 × 1.x < 21.

It is reasonable to consider that the mantissa gen-
erates a carry, as discussed in § 5.4. To account
for this we construct a strict upper bound by incre-
menting the exponent of each element of the vectors
analyzed similar to Eq. (6). For example,

uoriginal =

[
2.12332
1.24568

]
⇒ uupper bound =

[
4
2

]
. (8)

We then can evaluate our models on these vectors
to determine a strict upper bound on the errors we
can experience in a dot product.

6.2. Modeling Large Vectors

We have shown how to exhaustively examine each
element in a vector, and from this analysis we can
determine precisely which absolute errors we could
experience. Given large vectors, where the dimen-
sion n may have millions or billions of elements,
exhaustively searching each element would be time
consuming, but it would also be a waste of time.
As stated previously, there is a discrete number
of exponents supported by the IEEE-754 Binary64
specification. As we have previously shown, the
exponent characterizes the faults we can observe,
so we only need to consider the 2046 possible bi-
ased exponents and the special case of zero. The
perturbations that are possible can be determined
independent of concrete data values, e.g., we can
precompute the perturbations and absolute error
because we know the relation stated in Eq. (3) and
Eq. (6).

To analyze arbitrarily large vectors, we construct
a lookup table for the absolute error in whatever op-
eration we choose to model (we have chosen prod-
ucts and addition). The table size is 2047 × 2047,

and allows us to consider the error introduced by
performing an operation on two exponents, which
will map to a unique i, j location.

For example, consider the vectors

u =


1.0
1.2
8.0

0.125

 , and v =


0.125

0.125001
0.125002

1.0

 . (9)

We first extract the biased exponents from the vec-
tors

u⇒ uexponent =


20 × 1.0
20 × 1.x
23 × 1.0

2−3 × 1.0

⇒ ubiased =


1023
1023
1026
1020


(10)

Now, we determine an interval of possible values,
and account for the mantissa values that may have
been truncated

ui ∈ [1020, 1026] ⊆ [1020, 1027] for i = 1, . . . , 4.
(11)

The range of biased exponents [1020, 1027] will
contain all possible values that the original vector
contained, and include one value that was larger
than any in the vector, the number corresponding
to the biased exponent 1027. Similarly, we can com-
pute the interval for v

v =


0.125

0.125001
0.125002

0.25

⇒


2−3 × 1.0
2−3 × 1.x
2−3 × 1.x
2−2 × 1.0

⇒


1020
1020
1020
1021

 , (12)

which leads to the interval we consider errors

vi ∈ [1020, 1021] ⊆ [1020, 1022] for i = 1, . . . , 4.
(13)

To allow us to analyze intervals efficiently, we cre-
ate a lookup table, where each entry computes the
relevant perturbations and absolute errors for the
operations being modeled. In the case of multiplica-
tion, the table has symmetry because multiplication
is commutative. In practice, computing the full ta-
ble (0, . . . , 2046) is simple and allows the modeling
of errors for arbitrary vectors.

A caveat of the above approach is that we must
know the range of values that the vector contains.
This can be achieved by directly computing the
min and max values for each vector. Alternatively,
an approximate range can be determined if the
“length” of the vector is known, e.g., the two-norm
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or if we know that the data is normalized, i.e., the
two-norm is one. One weakness to the proposed
approach is that we do not consider a flip in the ac-
cumulating sum, which we have left to future work.
We also leave to future work analysis that shows
how many of these modeled errors lie within the
rounding error bound for pairwise sums.

6.3. Summary

We have shown that the range of values used in
the dot product has a direct impact on the size of
the errors that can be observed. A general rule in
floating point algorithms has been to perform oper-
ations on numbers as close to the same magnitude
as possible, as doing so minimizes the loss of preci-
sion. We have now shown that following this rule-
of-thumb also gives the benefit of making bit upsets
generate a relatively small error when the numbers
are no larger than one. Next we present a moti-
vating case study that focuses exclusively on dot
products, and then in § 8 we show how to exploit
data scaling in an iterative solver.

7. Case Study: Vector Dot Products

To begin our investigation, we assess the suscepti-
bility of the dot product of two N -dimensional vec-
tors to a silent bit flip in arithmetic. We make this
choice since many linear algebra operations can be
decomposed into dot products, for example, Gram-
Schmidt orthogonalization or matrix-vector multi-
plications.

7.1. Computational Challenges

Given a single double-precision number, there are
64 bits that may be flipped. Extending this to an
N -dimensional vector, we have 64N bits that are
candidates for flipping. Accounting for different
numbers results in a very large sample space, and,
therefore, we utilized a hybrid CPU-GPU cluster
and created a parallel code that farms out specific
Monte Carlo trials to various nodes. In this con-
text, a trial consists of creating two vectors, which
is discussed in the follow section, and then deter-
mining pass/fail statistics given a bit flip on the
input to the dot-product kernel. We utilized the
BLAS ddot() routine, and aggregated the output
for post-processing in MATLAB. Ensuring a sam-
pling error of less than 0.001, which is discussed in
Section 7.5, required nearly 400,000 CPU hours par-
allelized over the processors of a 1700 core cluster of

AMD 6128 Opterons. The large search space cou-
pled with ensuring statistically significant results
highlights why an analytic approach is not only
more efficient, but may be required for more ad-
vanced methods and data structures, e.g., matrices
and linear solvers.

7.2. Monte Carlo Sampling

We next develop a better understanding of how
vector magnitudes impact the expected absolute er-
ror should a bit perturb a dot product. To conduct
Monte Carlo sampling, we must first determine a
mechanism for tallying success, and we must define
success and failure.
• Vector Creation
1) Mantissa generated randomly using C stdlib

rand().
2) For each vector, we fix each element’s mag-

nitude to the bit pattern 2−50 to 250 (101 bit
patterns). This corresponds to the base ten
numbers in the range 8.8×10−16 to 1.1×10+15.
This range was chosen because 2−50 roughly is
the machine precision. The numbers in this
range are utilizing the highest precision that
Binary64 offers.
• Sample definition and Error Calculation
1) A random sample is defined by generating two

random N length vectors and computing the
absolute error considering all possible 2×64×N
bit flips.

2) A tally is defined by failure, which we define
to be any absolute error that is greater than 1.

3) An empirical estimate of the expected absolute
error is computed by dividing the number of
failures by the number of bits considered times
the vector length times 2 times the number of
random samples (M) taken for a given magni-
tude combination, i.e., failures/(2×64×N ×
M).
• Visualization
1) To visualize the expected absolute error, we

construct tallies for each magnitude combina-
tion, i.e., 101 × 101 unique combinations, and
each combination is sampled M times.

2) We summarize this information in a surface
plot, where the x- and y-axes denote the log2

of the relative magnitude of the vector u and
v, respectively. The height of the surface plot
indicates the probability of seeing an absolute
error larger than 1.

Figure 5 presents a surface plot as described in
the Visualization bullet. To interpret this graph,
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Figure 5: Probability of observing an absolute er-
ror larger than 1, given dot products with vectors
of various magnitudes. Failure is defined to be an
absolute error larger than 1.

the x-axis indicates the magnitude that all elements
of the vector u were forced to have while the man-
tissa was randomly generated. Likewise, the y-axis
indicates the magnitude that all elements of the
vector v were forced to have. Each x-y intersec-
tion represents 1,000,000 random vector samples,
where the dot product was computed and failures
tallied. The height of the surface at an (x, y) loca-
tion indicates the probability of observing an abso-
lute error larger than 1 given a single bit flip. From
this surface, one may immediately recognize the un-
usual structure of this graph: When both vectors
have magnitudes larger than 20, the probability of
failure is noticeably higher; yet, when both vectors
have magnitudes less than or equal to 20, the prob-
ability of failure is approaching zero.

The key finding presented in Figure 5 is that
when we operate on vectors that are normalized,
e.g., values in the range [0, 1], we have a very low
probability of seeing a large error should a bit flip
occur. The lowest probability, i.e., the flat re-
gion in the quadrant [0,−50]× [0,−50], is precisely
Prob(Abs Error > 1) = 0.015625, which is 1/64.
The single bit that can introduce an absolute error
larger than one is the most significant exponent bit.
Also, should the most significant exponent bit flip,
the error is quite large and can be detected [15].

7.3. Scaling and Error

We defined a failure to be an absolute error larger
than one. This is not an arbitrary value. It can

be shown that the expected absolute error behaves
in two asymtotically different ways given single bit
flips in the exponent of IEEE-754 scalars [23, Fig-
ure 9]. We have emperically discovered this behav-
ior, which motivates the theoretical analyses pre-
sented in [23]. Operating on normalized values has
a substantial impact on the absolute error. Be-
yond the scope of this work, it can also be shown
that the relative error will be less than one most
of the time, because mantissa errors are consider-
ably more likely than exponent or sign errors. Fur-
thermore, the relative error in the exponent will
be small approximately 50% of the time , if bit
flips from one to zero and zero to one are equally
likely. This work represents an empirical study of
bit flips in double precision, following an error in-
jection methodology that is consistent with other
resilience works, i.e., flip a bit in the input and ob-
serve the effect on the output.

7.4. Per Bit Analysis of Surface Plot

To better understand the structure of the surface
plot, we take two slices of the surface and look at
the per-bit probability of a failure (Figures 6 and 7).
The slices chosen feature dot products of vectors
with similar relative magnitudes and dot products
of vectors of many magnitudes (the x-axis) with a
vector that contains magnitudes up to 23. Intu-
itively, these figures slice from the back-most cor-
ner of Figure 5 to the front for similar magnitudes
(Figure 6), and they slice from the left to right for
Figure 7.

We have shown why this shape should be ex-
pected in § 5.2, and in the example presented in
§ 6. This feature is an artifact of how the expo-
nent is implemented in the IEEE-754 specification,
i.e., a biased exponent. The lowest probability pre-
sented in the surface plot is 0.015625 = 1/64. We
graphically show this in Figure 6, where one can see
that bit #62 (2nd from the top) is the only bit that
can contribute a large error. We also show that
the sign and mantissa bits cannot introduce a large
error when values are in the range [0, 1].

Conversely, Figure 7 shows that when mixing
large and small values, we expect to see large er-
rors for faults. The green shading in Figure 7 (up-
per left quadrant) indicates a roughly 50% chance
that we see an absolute error larger than one. The
reason for this is that values larger than 2 have a
binary pattern that introduces a large error most of
the time (recall Figure 3). The increased likelihood
of a large error from the large numbers, coupled
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Figure 6: Probability of observing an absolute error
larger than 1, with exponents of similar magnitudes
(back corner to front corner of Figure 5)

with the low chance from small numbers, creates a
scenario where it is equally likely to see both large
and small absolute errors. The more we deviate
from operating on numbers in the range [0, 1], the
closer we get to having a 50/50 chance of seeing a
large error.

7.5. Comparison of Analytic Model and Monte
Carlo Sampling

In Figure 8, we compare the error observed while
performing Monte Carlo sampling with the ex-
pected error computed from our model. We sam-
pled up to M = 1 million random vectors per
data point, which implies a Monte Carlo error of
errorMC = 1/

√
M ≈ 0.001. We observe a perfect

fit, which is to be expected because we have analyt-
ically shown that the exponent bits dictate the size
of the absolute error we will observe. Even with
random sign and mantissa bits evaluated, we see
that the likelihood of experiencing a large error is
entirely determined by the exponent bits.

8. Matrices and Iterative Solvers

Having recognized that dot products on numbers
less than one can produce errors less than one, we
will relate this idea to matrix equilibration. We
then provide an example of how to use this concept
in an sparse iterative solver (GMRES), while ex-
haustively counting the possible errors that can be
introduced.
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Figure 7: Probability of observing an absolute error
larger than 1, with exponents of mixed magnitudes
(magnitude 23 sliced front to back of Figure 5)
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8.1. Matrix Equilibration

The idea of scaled vectors is analogous to vector
normalization, i.e., ‖u‖2 = 1. Applied to matri-
ces in the context of solving linear systems, scaling
takes the form of matrix equilibration: for a matrix
A, scale the rows and columns such that ‖A‖∞ = 1.
Scaling can also be performed before a matrix is
created. For example, the equations leading to the
matrix can be scaled prior to assembling a matrix.
To scale a sparse matrix after its creation, we use a
sparse matrix implementation of LAPACK’s equili-
bration routine DGEEQU [24]. Equilibration does
not cause fill, i.e., it will not increase the number of
non-zeros. In general, equilibrating a matrix is only
beneficial, but equilibration may not be practical in
all cases, e.g., see [25, p. 126].

8.2. GMRES

The Generalized Minimum Residual method
(GMRES) of Saad and Schultz [26] is a Krylov
subspace method for solving large, sparse, possi-
bly non-symmetric linear systems Ax = b. GM-
RES is based on the Arnoldi process [27], which
uses orthogonal projections and basis vectors nor-
malized to length one. Arnoldi and GMRES relate
to this work because the orthogonalization phase of
Arnoldi is often Modified Gram-Schmidt or Clas-
sical Gram-Schmidt, which are dot product heavy
kernels.

We present the GMRES algorithm in Algo-
rithm 1. The Arnoldi process is expressed on
Lines 3–14 in Algorithm 1. At its core is the Mod-
ified Gram-Schmidt (MGS) process, which con-
structs a vector orthogonal to all previous basis vec-
tors qi. The MGS process begins on Line 5 and
completes on Line 8. We now describe how we in-
strument the orthogonalization phase and count the
absolute errors that could be injected.

8.3. Instrumentation and Evaluation

To demonstrate the benefit of data scaling we
have chosen 2 test matrices. We instrument the
code and for each dot product in the orthogonaliza-
tion phase we determine an interval that describes
the range of values possible in the vectors. Using
our fault model, we compute the absolute errors
that are possible. We know the basis vectors (qi)
are normalized, hence the intervals for the values in
the vectors are [0,1]. We compute the min and max
for the unknown vector v, and this determines the
interval for the values in v. We use the intervals

Algorithm 1 GMRES

Input: Linear system Ax = b and initial guess x0

Output: Approximate solution xm for some m ≥
0

1: r0 := b−Ax0 . Initial residual vector
2: β := ‖r0‖2, q1 := r0/β
3: for j = 1, 2, . . . until convergence do
4: vj+1 := Aqj . Apply the matrix A
5: for i = 1, 2, . . . , j do . Orthogonalize
6: hi,j := qi · vj+1

7: vj+1 := vj+1 − hi,jqi
8: end for
9: hj+1,j := ‖vj+1‖2

10: if hj+1,j ≈ 0 then
11: Solution is xj−1 . Happy breakdown
12: return
13: end if
14: qj+1 := vj+1/hj+1,j . New basis vector
15: yj := arg min

y
‖H(1:j + 1, 1:j)y − βe1‖2

16: xj := x0 + [q1,q2, . . . ,qj ]yj . Solution
update

17: end for

and our fault model to evaluate all absolute errors
that can be introduced from a single bit flip in the
input vectors. We classify the absolute error into
four classes:

1. Absolute error less than 1.0,
2. Absolute error greater than or equal to 1.0, but

less than or equal to ‖v‖2,
3. Absolute error greater ‖v‖2.
4. Error that is non-numeric, e.g., Inf or NaN.

We choose to include the 2nd class of errors due
to work by Elliott et al. [15] that demonstrates
how to use a norm bound on the Arnoldi process to
filter out large errors in orthogonalization. We drop
the subscript of v, because this vector is merely a
temporary vector that is normalized to form the
next basis vector qj+1.

Classes 1 and 2 are undetectable, while
Classes 3 and 4 are detectable. Our goal is to
ensure that should a bit flip, the error falls into
Classes 1, 3, and 4 while minimizing or eliminating
the occurrence of Class 2 errors. We refer to Class 2
errors as the grey area, as they are undetectable er-
rors that we consider to be large.

8.3.1. Sample Problems

We have chosen two sample matrices to demon-
strate our technique. To ensure reproducibility, we
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Table 2: Sample Matrices

Properties Poisson CoupCons3D

number of rows 10,000 416,800
number of cols 10,000 416,800
nonzeros 49,600 17,277,420

Table 3: Norms of Sample Matrices

Norm Poisson Equation CoupCons3D

No Scaling Scaled No Scaling Scaled
‖A‖∞ 8.0 2.0 1.30× 106 1.0
‖A‖2 7.999 1.999 1.20× 106 1.0
‖A‖F 446 112 2.75× 106 291

did not create any of these matrices from scratch,
rather we used readily available matrices. The first
matrix arises from a second-order centered finite
difference discretization of the Poisson equation.
We generated this matrix using MATLAB’s built-
in Gallery functionality. The second matrix, Coup-
Cons3D, presents a more realistic linear system. It
comes from the University of Florida Sparse Ma-
trix Collection [28] and arises from a fully coupled
poroelastic problem. The matrix is symmetric in
pattern, but not symmetric in values. It is also
fairly large, and has explicitly stored zero values.
The matrix is poorly scaled, with a mixture of large
and small values. We have summarized the charac-
teristics of each matrix in Table 2.

We now scale the Poisson and CoupCons3D ma-
trices and right-hand side vectors such that they
are equilibrated. Table 3 summarizes the norms
for each of our test matrices. We use the infinity
norm (‖A‖∞ ≈ 1) to measure whether a matrix is
well scaled. The Poisson matrix has infinity norm
not much larger than one, while the CoupCons3D
matrix is inherently poorly scaled.

8.4. Results

We ran Algorithm 1 for 1000 total iterations, us-
ing a restart value of 25. By instrumenting the
code, we determined the numerical range of values
each vector contained, and then computed the pos-
sible absolute error that a bit flip could introduce.
We classified the absolute error according to § 8.3,
and counted each class of errors for the duration of
the algorithm.

Table 4 summarizes the results of evaluating all
possible bit flips in the data used in Arnoldi pro-
cess of GMRES. For each matrix, we exhaustively
analyze the data used in each iteration of GMRES,
e.g., the mat-vec with a normalized vector and the
following dot products used in the Gram-Schmidt
orthogonalization. At each iteration of the Gram-
Schmidt process we analyze the vectors used and
determine the possible errors that could be intro-
duced due to a bit flip in the data. We aggregate
this information and classify the errors into four
classes.

A large proportion of the absolute errors possible
in orthogonalization fall into Class 1 (undetectable
and small). We can explain this distribution given
that the vectors qi are normalized (a side effect of
GMRES being derived from the Arnoldi process).
Given normalized vectors, we know that of all the
dot products in Gram-Schmidt orthogonalization,
at least one of the vectors has data in the inter-
val [0, 1]. We previously established that the inter-
val [0, 1] aids in minimizing absolute error if a bit
perturbs a dot product. Now, we show how equili-
brating the input matrices can assist in forcing the
non-normalized vector (vj+1) as close as possible to
being in the normalized interval.

The Poisson matrix has relatively good scaling,
but still sees benefit from equilibriation. That is,
the percentage of absolute errors less than one is
already high (greater than 90%), but the unde-
tectable errors that lie in the range [1, ‖A‖2 ‖v‖2]
decrease from 0.066% to 0.015%. Likewise, even the
large errors are decreased from 0.348% to 0.047%.
The likelihood of seeing a non-numeric value in-
creases, which is beneficial as well, as these errors
are detectable.

The CoupCons3D matrix, which has poor scal-
ing benefits greatly from equilibrating. By scal-
ing the matrix, we decrease the percentage of un-
detectable errors from 9.840% to 0.023%, we also
decrease the large detectable errors from 6.993% to
0.120%. Similar to the Poisson matrix, equilibriat-
ing results in roughly 9% of errors potentially being
non-numeric.

Our results show that scaling tends to produce a
distribution of absolute error that is roughly 91%
less than or equal to one, while 9% are non-numeric.
This is expected when most of the numbers are
near one. Flipping the most significant exponent
bit produces 11111111111, which will generate a
non-numeric value. Similarly, the 10 remaining ex-
ponent bits will produce an error less than one —
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Table 4: Exhaustive analysis of all possible bit flip absolute errors originating from data used in GMRES’s
Arnoldi process.

Error Class Poisson CoupCons3D

No Scaling Equilibriated No Scaling Equilibriated

Absolute error ≤ 1 90.623% 90.847% 76.210% 90.836%
1 < Absolute error ≤ ‖v‖2 0.066% 0.015% 9.840% 0.023%
‖v‖2 < Absolute error 0.348% 0.047% 6.993% 0.120%
Non-numeric 8.963% 9.091% 6.957% 9.021%

that is, 1/11 ≈ 9% and 10/11 ≈ 91%. As previ-
ously discussed, the mantissa errors are determined
entirely by the exponent bits.

9. Conclusion

Our results indicate a clear benefit to good scal-
ing. We have shown that a widely used numerical
method (the Arnoldi process coupled with Gram-
Schmidt orthogonalization) inherently minimizes
absolute error in dot products. Furthermore, stan-
dard matrix equilibration algorithms can be used
to scale input matrices, which further enhance the
inherent robustness of the Arnoldi process. We
demonstrated our theoretical finding experimen-
tally by instrumenting the GMRES iterative solver,
which is based on the Arnoldi process.

We cannot enforce that data are always normal-
ized. Some linear systems may be inherently poorly
scaled, or it may be impractical to equilibrate them.
We can advocate that scaling, while typically used
to improve numerical stability and reduce the loss
of precision, can also benefit fault resilience. We
have shown that this result has broad applicability,
because many iterative solvers are based on orthog-
onal projections using normalized vectors, i.e., they
create an orthonormal basis. While this work does
not propose an end-to-end solution to soft errors,
it does indicate that data scaling can help mitigate
the impact of such errors should they occur.
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