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Abstract

Characterizing the communication behavior of large-scale applications is a difficult and
costly task due to code/system complexity and long execution times. While many tools to
study this behavior have been developed, these approaches either aggregate information in
a lossy way through high-level statistics or produce huge trace files that are hard to handle.

We contribute an approach that provides orders of magnitude smaller, if not near-constant
size, communication traces regardless of the number of nodes while preserving structural
information. We introduce intra- and inter-node compression techniques of MPI events that
are capable of extracting an application’s communication structure. We further present a
replay mechanism for the traces generated by our approach and discuss results of our im-
plementation for BlueGene/L. Given this novel capability, we discuss its impact on com-
munication tuning and beyond. To the best of our knowledge, such a concise representation
of MPI traces in a scalable manner combined with deterministic MPI call replay are without
any precedent.
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1 Introduction and Overview

Petascale systems will have hundreds of thousands of processors, and their effec-
tive use will require efficient interprocess communication through complex net-
work topologies. To optimize application behavior in such environments, we re-
quire tools that can collect and analyze the communication behavior of complex
applications and large-scale runs. This, however, is a non-trivial problem, and a
wide array of analysis tools has been developed, both by academia and industry,
to aid this process. They can generally be divided into two main classes: tracing
tools, capable of capturing and recording all messaging events, albeit at the cost of
high storage requirements; and profiling tools, designed to provide low-overhead
performance summaries trading off storage space for accuracy.

One of the best known examples of a tracing tool for MPI communication is Vam-
pir [6], a tool set consisting of a trace generator and GUI to visualize a time line of
MPI events. While the trace generation supports filtering, trace files, which are
stored locally, grow with the number of MPI events in a non-scalable fashion.
In contrast to this, tools like mpiP [27], a well-known MPI profiler, gather user-
configurable aggregate metrics for statistical analysis. The output results of such
profilers are typically constrained in size by the number of unique call sites of MPI
events, which is independent of the number of nodes. However, profilers do not
preserve the structure and temporal ordering of events, which limits their use to
high-level analysis.

In contrast to this prior work, we propose a novel approach that not only bridges
the worlds of tracing and profiling by combining the advantages from both, but also
provides a highly scalable solution. We have designed ScalaTrace, a tracing frame-
work that extracts full communication traces that are orders of magnitude smaller
than traditional traces, potentially even constant size, regardless of the number of
nodes while preserving structural information and temporal event order.

Figure 1 shows a high-level overview of our ScalaTrace framework. Like most MPI
tools, we rely on the the MPI profiling layer (PMPI) to intercept MPI calls during
application execution and use it to install wrappers for each MPI call. Within each
node, these wrappers trace which MPI functions were called along with all function
parameters (except for the message payload) and compress this task-level informa-
tion on-the-fly into local operation queues within each task. At the termination of
the application, we then use a cross-node framework to perform inter-node com-
pression and to obtain a single trace file in the form of a comprehensive operation
queue that preserves the complete message trace of the application without loss
of information. Further, the final compressed data implicitly contains the structure
of the application’s communication behavior enabling efficient application replay
for further analysis or even a direct inspection of the application’s communication
structure.
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Fig. 1. Interaction of Components

We assess the effectiveness of our framework through experiments using the MPI
NAS benchmarks as well as large, scientific applications on BlueGene/L. Our re-
sults confirm the scalability of our on-the-fly MPI trace compression by yielding
orders of magnitude smaller or in several cases even near constant size traces for
processor and problem scaling. We have also designed a tool that replays our com-
pressed trace independent of the original application and without decompressing
the trace. Our replay mechanism verifies our trace compression’s correctness, can
assist in the performance tuning of MPI communication and facilitates projections
of network requirements for future large-scale procurements. To the best of our
knowledge, such a concise, scalable representation of MPI traces combined with
deterministic MPI call replay are without any precedent.

The paper is structured as follows. Section 2 and 3 detail intra- and inter-node
trace compression. Sections 4 and 5 present the experimental framework and re-
sults. Section 6 contrasts this work with prior research. Section 7 summarizes our
contributions.

2 Intra-Node/Task-Level Trace Compression

ScalaTrace uses a bi-level runtime compression approach: after creating trace
records for each observed MPI event, we first perform node local (intra-node) com-
pression on the fly, followed by a global (inter-node) compression step. Both steps
must provide lossless, yet space-efficient compression requiring us to extract and
to store the underlying structure of the communication. Together, this enables us to
represent repetitive MPI events in loops with identical parameters in constant size.

We achieve this intra-node compression by extending the idea of describing single
loops using regular section descriptors (RSDs) [14] to express MPI events nested



Compress Queue(Queue Op Queue)
Target Tail = Op Queue.tail
do

Match Tail = Search Op Queue for Target Tail match
if (Match Tail)

Target Head = Match Tail.next
Match Head = Search Op Queue for Target Head match
if (Match Head)

Sequence Matches = TRUE
Target Iter = Target Tail
Match Iter = Match Tail
while (Target Iter && Target Iter != Target Head)

if (Target Iter does not match Match Iter)
Sequence Matches = FALSE
break

Target Iter = Target Iter.prev
Match Iter = Match Iter.prev

if (Sequence Matches)
Increment iteration count on Match Head
Delete elements Target Head to Target Tail

while (No Sequence Match && distance(Target Tail, Match Tail) < window)

Fig. 2. Intra-Node Compression on MPI Events

inside a loop in constant size. We represent an RSD as a tuple <length, event1,
..., eventn> where the length indicates the loop trip count and events are MPI
trace events (MPI calls and their parameters). Similarly, we rely on power-RSDs
(PRSDs) [17] to specify recursive RSDs nested in multiple loops. PRSDs gener-
alize RSD representations by allowing events to be RSDs (or PRSDs) themselves,
effectively nested lists of events for nested loops and sequences of lists for se-
quences of loops. MPI events may occur at any level in PRSDs. For example, the
tuple RSD1 :< 100, MPI Send1, MPI Recv1 > denotes a loop with 100 it-
erations of alternating send/receive calls with identical parameters (omitted here),
and PRSD1 :< 1000, RSD1, MPI Barrier1 > denotes 1000 invocations of the
former loop (RSD1) followed by a barrier.

The compression algorithm maintains a queue of MPI events and attempts to greed-
ily compress the first matching sequence, an approach that is loosely based on the
SIGMA scheme for memory analysis [9]. Our algorithm uses two sequences, the
“target” and the “match” sequence, each with its own head and tail pointer. The
former describes the already detected sequence sets that have been converted into
PRSDs, while the latter is formed by newly acquired trace records. The matching
process proceeds in four steps, as depicted in Figure 2.

First, we determine the head and tail of the match sequence by traversing the local
event queue backwards from the end of the queue, which forms the “target tail”,
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Fig. 3. Intra-Node Compression Scenario

until we find a match (the “match tail”) immediately followed by the “target head”.
Second, we identify the element following the “match tail” that matches the “target
head” and note it as the “match head”. Third, we conduct an element-wise compari-
son between head and tail of the “target” and the “match”. Fourth, upon a complete
match, we merge the “match” into the “target” by incrementing the RSD (or PRSD)
counter — or by creating an RSD (or PRSD) upon initial match of two sequences.
For practical reasons, we impose a maximum window size for this search in the
first step before entries are flushed (stored without compression). This ensures that
long mismatches do not result in quadratic online search overhead. Our experi-
ments show that these restrictions do not impact our ability to compress traces in
most cases. We used a windows size of 500 in our experiments.

Figure 3 depicts an example for online trace compression. A sequence of MPI op-
erations are successively pulled into the window that the algorithm operates on. Let
the target tail be the last operation, op5, in the window. The match tail then is the
corresponding first occurrence of op5, followed by the target head and preceded by
the merge head (two operations back). Upon traversing each element between tail
and head to ensure a pairwise match, we either extend an existing RSD in its length
by one, or we create a new RSD for the matching subsequence of size two. In the
latter case, we obtain an RSD1 :< 2, op3, op4, op5 > in this example.

Matches have to be adjacent at a loop / PRSD level for compression to occur. Non-
adjacent matches with regular patterns interspersed at a different (but constant)
rate are compressed through multi-level PRSD formation. Irregular interspersed
patterns, in contrast, will hinder effective compression.

Our compression scheme requires exact matches between sequences of operations
both within a node and across nodes. To enable such matches in as many cases as
possible, we use series of encoding techniques, which are described individually in
the following paragraphs. They are all applied at the intra-node level, but prepare
traces for the inter-node compression.

Calling Sequence Identification: Identically named MPI calls, such as MPI Send,
may be scattered over various locations in a program. To distinguish events from
different locations, it is therefore not sufficient to just record the MPI event type
itself. Instead, we must capture its calling context. We achieve this by recording the
calling sequence that leads to the MPI event and gather this information from the
stack trace during the MPI event. We represent each location as a unique signature



of the stack trace, which must match when compression is attempted.

A stack signature may consist of a number of backtrace addresses of the program
counters (return addresses), one for each stack frame. For deeply nested calling
constructs, a comparison of two backtraces can become costly. To speed up this
process, we also store a hash of all backtraces computed as the exclusive or (XOR)
of all backtrace addresses. A match of the hash values for two backtraces is a nec-
essary condition for a matching backtrace. Hence, we first perform an XOR com-
parison before a pairwise match for each frame is attempted, eliminating a large
fraction of unnecessary and costly stack trace comparisons.

Recursion-Folding Signatures: Another challenge to call sequence identification
is posed by recursion. We have devised a method to scan backtraces to identify
repeated subsequences of identical return addresses. During composition of the
backtrace structure, trailing repetitions are immediately folded into their first oc-
currence. This guarantees that recorded events at different recursion depth receive
identical stack signatures in our framework. Hence, these events will compress per-
fectly, just as if the algorithm was coded up iteratively rather than recursively. This
approach covers direct and indirect recursion. Note that if the compiler eliminates
tail recursion then the stack nesting depth remains unchanged. In essence, our re-
cursion folding scheme for signatures complements compiler optimizations for the
sake of trace compression whenever tail recursion elimination is not legal.

Location-independent Encodings: Communication end-points in SPMD pro-
grams often differ from one node to another. However, their position relative to
the MPI task ID is often constant. Hence, our framework uses relative encodings
of communication end-points, i.e., an end-point is denoted as ±c for a constant c
relative to the current MPI task ID. This fosters effective compression of location-
specific parameters. Consider the communication pattern in Figure 4 depicting a
2D stencil where the two interior nodes 9 and 10 show the same exact same pattern
by communicating with their relative neighbors -4, -1, +1 and +4. Similarly, all
border and corner nodes communicate with the same relative neighbors. Therefore,
each group of nodes can be compressed to a constant size trace.
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Fig. 4. Communication End-point Encoding

Receives using wildcard end-points (e.g., MPI ANY SOURCE) are handled as a
special case. Such end-points are stored explicitly rather than as relative offsets.
Our evaluation shows that significant compression benefits can be obtained by this
domain-specific optimization. Another improvement omits tags from point-to-point



records as they were often redundant and adversely affected compression. In effect,
such cases are handled equivalently to that of a wildcard value (MPI ANY TAG).
This occasionally resulted in significantly improved intra-node compression. Yet,
the scheme is invalid if tags are utilized to distinguish end-points. We have designed
a method for automatic detection of the relevance of tags to record them only when
required. To determine if tags are semantically relevant, both relative and absolute
addressing are attempted. If one of the methods results in a match between end-
points of multiple nodes, then it is chosen over the other.

Our relative end-point encoding fails to capture rare cases of absolute addressing of
end-points, e.g., to communicate information back to the root node (task 0) or to a
coordination node within a subgroup communicator. Solutions outlined above (for
MPI ANY SOURCE and MPI ANY TAG encodings) address both of these cases.
We are currently exploring implementation issues for these solutions as we must
integrate them into the inter-node merge algorithm (see next section).

Request Handles: In MPI, handles representing request objects for outstanding
asynchronous communication are managed by the MPI library. Often, they are rep-
resented by opaque pointers to internal data structures and, hence, do not exhibit
any obvious repetitive patterns. We therefore cannot simply record the invocation-
dependent handles for asynchronous MPI calls. Instead, we record these handles in
a buffer and find the matching invocation-dependent pointer in that handle buffer
when a completion references the handle. The MPI event then records its handle
offset relative to the last element of the buffer. Relative indexing again enables sub-
sequent cross-node compression. We recreate this buffer on-the-fly during message
replay and use the offset in the trace to obtain the correct handle pointer.

Certain MPI operations (e.g., MPI Waitall) allow an array of request handles to be
specified. We observed that for some programs the size of these arrays depends
on the number of nodes. Since handles are already represented as relative indices
into the handle buffer, we can effectively compress long arrays of handles using
PRSDs. 1 Here, the PRSDs specify (via indices) which handles in the buffer par-
ticipate in the MPI operation. While originally motivated by handles, we apply this
PRSD compression to arbitrary MPI parameters that must be retained in the trace
(well beyond handles) and also in the cross-node compression framework. MPI pa-
rameters that increase linearly with the number of nodes are, of course, an impedi-
ment to application scalability. This is precisely where our tracing tool can provide
a “red flag” to developers suggesting to replace point-to-point communication with
collectives. Hence, our tool can be used to detect certain scalability problems in an
algorithm’s communication design.

To illustrate our method for retaining handle information, consider the example in
Figure 5. In a sequence of three asynchronous (non-blocking) communication calls,

1 We use a recursive definition of iterators with a start point, depth and a sequence of n

pairs of (stride, iterations), which is equivalent to nested PRSDs of the same depth.



three handles are used and consequently recorded in the handle buffer. The handle
pointer is set to H3 at this point. Next, the first handle is used in another MPI call
to inquire about the completion of the earlier call. This is abstracted as a reference
to the handle recorded in the buffer two entries prior to the current handle pointer.
Hence, instead of non-portable pointers to dynamically allocated handle objects,
we record portable handle indices relative to the current handle pointer.

H1 H2 H3 ... Handle = -2

Fig. 5. Sample Handle Buffer with Relative Indexing

Event Aggregation: Our approach must preserve event ordering and program
structure information. However, non-deterministic repetitions of MPI calls, such
as instances of MPI Waitsome, present a challenge to cross-node compression.
Depending on the number of completed asynchronous calls, a loop that termi-
nates upon completion of n corresponding asynchronous calls may result in 1 to
n MPI Waitsome calls within its body. To address this problem early, we squash
these MPI call sequences into a single event that records the number of completed
asynchronous calls. This count preserves compression capabilities while exploiting
MPI-specific semantics. Even during replay, successive MPI Waitsome calls are
aggregated until the recorded number of completions is reached.

Dealing with Inherent Application Load Imbalance: Application codes that per-
form intrinsic load balancing actually pose a challenge to ScalaTrace. Due to the
balancing act, the data volume exchanged between nodes dynamically increases
or decreases between successive timesteps depending on the amount of data cells
handled locally. Hence, communication calls show different data volumes, which
breaks the regularity of communication calls and results in potentially poor intra-
node compression.

In one application, this behavior was observed for MPI Alltoallv(). Yet, while in-
dividual message payloads varied, the collective payload over all nodes remained
constant, which is not uncommon. This opens up an opportunity for improved trace
compression. Considering that computation time is either ignored or statistically
aggregated [22], we could record the average per-node payload, which is con-
stant again. This ensures perfect compression. Traces further retain the integrity
to be suitable for later replay (see Section 5.4). If we record extreme values (mini-
mum/maximum) and associated node information as well, then outliers can still be
detected. This ensures that such traces retain sufficient information for communi-
cation analysis and tuning.



3 Inter-/Cross-Node Trace Compression

After the local compression step, we combine the trace records stored in each
node’s local memory to a global trace. We perform this operation upon application
completion within the PMPI wrapper for MPI Finalize. To guarantee scalability,
we employ cross-node compression step-wise and in a bottom-up fashion over a
binary tree. In contrast to most traditional approaches this allows us to avoid the
creation of local trace files, which would result in linearly increasing disk space re-
quirements and not scale as traces must be moved to permanent (global) file space.
The I/O bandwidth, particularly in systems like BG/L with a limited number of I/O
nodes, could severely suffer under such a load.

Events and structures (RSD / PRSDs) of nodes are merged when events, parame-
ters, structure and iteration counts match. First, the compressed trace of one child
(slave queue) is merged into the local trace of the current node (master queue), then
the trace of the other child (slave) is similarly merged into this new master queue.
A first-generation algorithm described in prior work [20] traversed both master and
slave queues. If a subsequence of events between the queues matched, the slave
events were combined with the master events by merging participant lists (node
IDs of master and slave). Intermediate non-matching slave events (which had causal
dependence on the matching events) were simply inserted in place in the master to
maintain causal ordering (see below). The process of determining causal depen-
dence involved the calculation of the intersection of the task participant set in the
unmatched sequence with that in the matched sequence. This process required a
linear scan of the slave queue starting from the head.

Based on the experience with this algorithm and to avoid such a worst case com-
plexity, we developed a second-generation algorithm, which is depicted in Figure 6
for each merge operation. As one of the key differences, we no longer need to scan
the slave queue to determine the set of events in the unmatched sequence without
causal dependence on the matched set. This is facilitated by the new causal ordering
preservation strategy, which is explained in more detail below.

The algorithm identifies matching sequences of operations when merging the
queues. This identification uses master and slave iterators, which indicate the be-
ginning of matching subsequences between the master queue and the slave queue.
The algorithm starts all iterators at the beginning of their queues. We increment the
slave iterator until we find an event subsequence matching the current master itera-
tor. If a match is found, we merge the slave iterator’s task participants with those of
the master iterator. In case of a perfect match, this constitutes the merge nodes op-
eration. If the subsequence is preceded with non-matches, only causally dependent
events are promoted to the master queue at this time (as explained below). Upon
termination of both loops, all unmatched (and causally independent) operations are
appended to the master queue. Thus, we maintain the order of operations of the



merge algorithm(master q, slave q)
master iter = master q.head
slave head = slave q.head
while (master iter) // new: loop only over master q

slave iter = slave head
while (slave iter) // loop over slave q

if (match subsequence(slave iter, master iter)) // new: partial match
// new: build dependence chain, walk dependence graph from slave iter
yank list = dfs(master, master iter, slave, slave iter)
yank(yank list)
merge nodes(master iter, slave iter)
break

slave iter = slave iter.next
master iter = master iter.next

// move any remaining (independent) events from slave to master
if (¬ master iter && slave head)

insert(master q.head, master q.tail, slave q.head, slave q.tail)

Fig. 6. 2nd Generation Merge of Slave/Child into Master/Parent Trace

slave queue with regard to their causal dependencies.

Our first-generation algorithm required exact matches of all parameters during the
merge procedure. In the second-generation, we relaxed these constraints to allow
mismatches for selected parameters (e.g., source/destination) complemented by a
separate ordered list of (value, ranklist) pairs to explicitly record these (generally
rare) mismatches. Since these ranklists are stored as PRSDs in compressed format,
this results in a constant-size representation for regular patterns of end-points, oth-
erwise it grows sub-linearly in size. We observed the most significant improvements
from this optimization compared to other enhancements over our first-generation
approach.

Causal Cross-Node Reordering: The merge algorithm compresses well at lower
levels of the reduction tree but encounters problems at higher levels. The difficul-
ties arise when disjoint sequences of MPI events are encountered in rank order.
Consider entries (event;tasks) in master and slave queues < (A; 1), (B; 2) > and <
(B; 3), (A; 4) >. By matching A, the merged queue is < (B; 3), (A; 1, 4), (B; 2) >
indicating a potential to grow linearly during the merge. However, the ordering
of the operations in each sequence is irrelevant in this example, since they oc-
curred on different nodes: when disjoint tasks participate in event sequences, any
ordering is legal. Hence, another queue with the same semantic information is
< (A; 1, 4), (B; 2, 3) >, which now provides a constant-size representation.

In addition, in our first-generation algorithm, we considered all possible depen-
dencies. A dependence is said to exist if two events have at least one common
participant. To this extent, we intersected the current event’s participant list with



the participant list of all unmatched events in the slave queue prior to the current
event, one at a time. If the intersection of tasks in the unmatched sequence with
those of the matched sequence is empty, then no causal order exists.

Our second-generation algorithm maintains a dependence graph during the entire
merge algorithm. At a leaf node of the reduction tree, the dependence graph is
simply a linked list (directed backwards in the temporal ordering of events) as the
current node is a participant for each event. When a slave queue is received at non-
leaf nodes from a child, the dependence graph is reconstructed. If a subsequence of
matching events is encountered, any preceding non-matches are inspected for de-
pendencies on the current slave event by performing a depth-first search (dfs) over
the dependence subgraph originating from the current slave event (see Figure 6).
This is an improvement over the first-generation algorithm in that only dependen-
cies reachable from the current event are considered. Any dependent event is added
to a yank list during the traversal, which eventually contains those events that ca-
sually depend on the participants of the current slave event (matched with a master
event). Events in the yank list are inserted prior to the current event in the master
queue through a yank routine, which ensures that the causal order is preserved.

Matching events between master and slave queues are then merged. During this
merge process, participant lists of corresponding events are combined, and existing
dependence chains are updated to reflect their promotion to the master queue. These
dependence updates can morph the dependence graph into a forest structure, i.e.,
multiple root nodes (with different participant lists) may point to joint or disjoint
dependence chains of different participant subsets.

The upper complexity bound of the overall merge operation is O(n2) for n events
in each queue. Yet, the actual cost is generally constant due to typical regularity of
SPMD applications.

Figure 7 depicts four steps of our improved merge algorithm for a master queue
(top) and a slave queue (bottom). We denote the sequence of events by forward
edges and dependence chains by backward edges. Merging events A for nodes 1 and
2 in step (a) results in a new compound node (A,1,2). The merge procedure further
results in combining the two dependence chains in a common sink represented by
this merged node. The next match occurs for event B in step (b), which results
in a merged node (B,1,2) in (c) prepended by the dependence chains of the slave
originating from B. The dependence chain is captured in the yank list and then
yanked into the master prior to node B. After a match for event C, a compound
node of (C,1,2) is formed in (d). The dependence chains from B and C now unify
nodes 1 and 2 although only node 2 participates in communication in D and E.

Task ID Compression: In order to capture which subset of nodes participated in
some set of events, we encode task IDs as PRSDs similarly to request handles dur-
ing the merge process. Thus, we concisely represent cross-node similarities, even



Fig. 7. Inter-Node Merge Scenario

for stencil codes. Assuming non-wrap-around communication for the 2D stencil in
Figure 4, interior nodes 5, 6, 9 and 10 have an identical communication pattern.
Any boundary as well as corner node also has a unique pattern. Thus, we record
nine different patterns for this five-point stencil, regardless of the number of nodes.
This approach makes cross-node compression feasible and results in a single con-
cise trace file (in some instances of constant size) that is far more efficient than
storing per-node trace files for later consolidation.

Reduction over a Radix Tree: We use a binary radix tree internally for the re-
duction (merge) step. The radix tree representation has several advantages over an
arbitrary reduction tree. First, the tree is already balanced, which also balances
computational merge cost during cross-node compression. Second, the compres-
sion of task IDs as RSDs is naturally facilitated by a radix tree. Any subtree of the
radix tree has a constant, uniform distance between task IDs of the nodes in the
subtree, which supports a single RSD representation to describe matching events
during task ID compression.

Figure 8 depicts a radix tree for 15 nodes. Merging nodes across different levels
naturally results in regular patterns suitable for concise representation as RSDs. For
instance, nodes 7 and 11 form an RSD of length two with stride 4 starting at node
7 (< 2, 4, 7 >). Combining this RSD with node 3 extends it to < 3, 4, 3 >. At node
1, the RSDs of the children, namely < 3, 4, 3 > and < 3, 4, 4 > are combined, and
by merging them with node 1, we yield < 7, 1, 2 >. This illustrates the conciseness
of end-points resulting naturally from a radix-tree representation.

Options for Out-of-Band Compression: Our second-generation merge algorithm
is an improvement but it still impacts overall trace compression by deferring the
inter-node merge to program termination (MPI Finalize). The lower bound on al-
gorithmic complexity for this operation over a reduction tree remains quadratic in
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Fig. 8. Sample Radix Tree and Task ID Regularities

the number of events. Thus, the post-computational merging of events, which per-
forms reasonably in our experiments, has limited scalability in the extreme. Alter-
natively, we could perform inter-node merging in the background on a separate set
of nodes to improve scalability. While this is costly on typical cluster architectures,
many modern scalable systems provide such resources in the form of I/O nodes.
For example, BG/L systems dedicate an I/O node to a set of compute nodes. These
I/O nodes can be utilized for computational background work [23]. This alternative
would require merge operations that work asynchronously from the creation of the
tracing information inside the ScalaTrace MPI wrapper routines. Thus, we must
redesign both intra-node compression and inter-node merge algorithms to work in-
crementally and on-the-fly as new MPI events are encountered in order to support
it. Such a radical change is beyond the scope of this paper.

4 Experimental Framework

We gathered experimental results for 1D, 2D and 3D stencil codes, a recursion
benchmark, the codes from the NAS Parallel Benchmark suite, as well as two sci-
entific applications, Raptor and UMT2k.

The 1D stencil has a one-dimensional logical space based on a task’s MPI rank.
Each task communicates with its two left neighbors and two right neighbors (five-
point stencil) during each time step. The communication step consists of sending
and receiving from these neighbors. A task proceeds to its next time step only after
it completes its sends and receives for the current time step.

The 2D stencil has a two-dimensional logical space of size dim ∗ dim in which
each task’s logical address (communication endpoint) is: x = rank mod dim; y =
rank/dim for dimension dim. Communication occurs with all eight neighbors (in-
cluding diagonal neighbors) for a nine-point stencil. Other details are the same as
with the 1D stencil.

The 3D stencil has a three-dimensional logical space of size dim ∗ dim ∗ dim in
which each task’s logical address is: x = rank mod dim; y = (rank/dim) mod
dim; z = rank/dim2. Communication occurs with all 26 neighbors (including
diagonal neighbors) for a 27-point stencil. Other details are the same as before.



The recursion benchmark is a modified version of the 3D stencil benchmark. Here,
the timestep loop is defined as a recursive function instead of an iterative loop, as
the original 3D stencil benchmark.

The NAS Parallel Benchmark (NPB) codes were selected from NPB version 3.2.1
for MPI [29] class C. Raptor is a framework implementing a modern Godunov
method for shock-flow simulations in a C++/Fortran hybrid with optional adaptive
mesh refinement (AMR) support [13]. It supports MPI and pthreads parallelization
and communicates on a 27-point stencil via asynchronous communication. We use
these capabilities in a hydro-dynamics simulation with a constant problem size per
node while varying the number of nodes. UMT2k is an unstructured mesh trans-
port code that solves the first-order form of the steady-state Boltzmann transport
equation [2].

We conducted our experiments on a 2048-node BlueGene/L (BG/L) machine [3].
Each node has only 1GB of memory, which restricts application problem sizes.
Hence, our traces must only consume small amounts of this memory. We report the
task-0 (root node of the reduction tree), minimum, maximum and average memory
consumption of the compression subsystem. We also report trace file sizes.

We varied the number of processors (nodes) to assess the effects of instrumentation
(PMPI wrappers) on trace file sizes and memory usage. The number of processors
was chosen as powers of two (for Raptor, UMT2k and NPB codes, except for BT
and with the omission of 32 and 64 nodes for DT, both due to input constraints) or
nd processors (for the stencil benchmark) for a d-dimensional stencil with a base
of n, e.g., 73 = 343 nodes. For the stencil benchmarks, we additionally vary the
number of time steps to assess the effect of the number of iterations on trace file
sizes.

5 Experimental Results

We conducted three sets of experiments. We assessed the effectiveness of our com-
pression techniques by examining trace file sizes. We determined the overhead of
inter-node compression in terms of memory consumption and for the overall time
incurred for trace collection and file I/O. For the latter, we assessed the cost of
writing compressed traces, one per node, to I/O nodes over GPFS. On our BG/L
system, 16 compute nodes share one I/O node for a total of 128 I/O nodes. Finally,
we verified the correctness (lossless compression) of our approach during replay.
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Fig. 9. Trace File Size (left) and Memory Usage of the Compression Algorithm (right) for
Microbenchmarks per Node on BlueGene/L

5.1 Trace Sizes & Memory Requirements

Fig. 9 depicts the size of trace files and the memory requirements of the actual
compression algorithm on a per-node basis on BG/L for the tests described in the
previous section. Figures 9(a), 9(c) and 9(e) show the trace file sizes of the 1D, 2D
and 3D stencil codes, respectively, for varying number of nodes. We show trace



sizes on a logarithmic scale for different node numbers (a) without compression
(none), (b) only with intra-node (task-level) compression and (c) with the additional
step of inter-node compression. We observe a significant increase of two orders of
magnitude in storage space without compression in the tested node range. Intra-
node compression reduces this overhead by two orders of magnitude, but trace sizes
still increase by two orders of magnitude across the node range. Hence, neither
approach is scalable with respect to the number of nodes. The fully compressed
trace sizes, in contrast, are constant in size irrespective of the number of nodes,
which illustrates that our combined intra- and inter-node compression technique
scales well. The resulting trace sizes, 3.5KB, 10KB and 14KB, for 1D, 2D and 3D
stencils, concisely represent MPI events, in contrast to trace size ranges obtained
without compression of 0.25-14MB, 0.3-21MB and .25-80MB. Increases between
stencil sizes reflect the number of distinct patterns required to represent corner
nodes, boundary nodes and interior nodes as distinct RSDs.

As BG/L is a memory-constrained architecture, keeping the memory pressure low
during on-the-fly compression is as important as the resulting trace file size. Figures
9(b), 9(d) and 9(f) depict the memory usage on a logarithmic scale reflecting the
combined intra- and inter-node compression components for the 1D, 2D and 3D
stencil benchmarks, respectively, over varying stencil sizes. This metric includes
the merge queues for intra- and inter-node compression but excludes storage of
the actual trace. We report minimum, average, maximum and node-0 (root node)
memory usage over all nodes. Within each of these categories, memory usage is
constant over different node sizes, which reinforces the claim of scalability of our
approach. The average usage decreases as the number of nodes grows, which is a
result of increasing height in the reduction tree where more nodes are at lower levels
performing less inter-node compression work and, hence, requiring less memory.
Besides the average, all other numbers remain constant when the number of nodes
grows. The memory requirements at task-0, the root node, are generally close to the
maximum memory usage, though, occasionally, a node at level 1 (child of the root)
may require insignificantly more memory. We measured a minimum (maximum)
memory usage of 5KB (13KB), 7KB (33KB) and 3KB (42KB) for the 1D, 2D and
3D stencil problems (per node), respectively.

Figure 9(g) depicts the trace file size as we vary the number of time steps (i.e., the
iteration bound of the outer-most convergence loop) and hold the number of nodes
constant at 125 for the 3D stencil problem. While the uncompressed trace does
not scale, both task-level (intra-node) and full compression provide constant-size,
scalable results. This confirms that the number of loop iterations has no effect on
compression after RSDs and PRSDs are formed, irrespective of inter-node merge
compression.

Results from the recursion experiment depicted in Figure 9(h) show trace sizes for
different numbers of timesteps, where each timestep is coded as one recursive call.
The results indicate that trace sizes with inter-node compression are orders of mag-



nitude larger when full backtrace signatures are recorded as opposed to recursion-
folding signatures (see Section 2). The full signature overhead grows proportionally
to the recursion depth, i.e., the savings due to recursion folding are even higher as
recursion depth increases.

Figure 10 shows the trace file sizes for the NPB suite as well as the applications
Raptor and UMT2k on a log-scale. We can distinguish three categories of codes,
those that result in near constant-size traces, regardless of the number of nodes,
those with sub-linear scaling of trace size as the node count increases and those
that do not scale with our current techniques.

In our previous work, we observed that for our inter-node compression techniques
the applications mapped into these three categories as follows [20]: DT, EP, and
IS exhibited near-constant trace sizes irrespective of number of tasks; LU and MG
showed sub-linear scaling with number of tasks; and BT, CG, and FT resulted in
faster growing non-scalable traces sizes. Using our second generation algorithm
describe in Sections 2 and 3) we significantly improved these results further, with
the exception of IS, as described below.

With these novel domain-specific compression enhancements, more applications
fall into the first category for inter-node compression. DT, EP, LU, and FT show
near-constant trace sizes. MG, BT, CG and Raptor exhibit trace sizes with sub-
linear growth as the number of nodes increases. IS and UMT2k result in non-
scalable traces sizes.

For the first category (DT, EP, LU and FT), trace sizes increase exponentially with-
out compression or with intra-node compression only. Inter-node compression re-
sults in constant trace sizes. These codes have few, very regular communication
calls: a pipeline of sends and asynchronous receives along the chains of ranks plus
some collective calls. LU profited significantly from encoding wildcard communi-
cation end-points (MPI ANY SOURCE) directly instead of storing them as offsets.
FT benefited from relaxed communication parameter matching, i.e., mismatches in
selected parameters, such as source/destination, are tolerated and complemented by
an ordered list of (value, ranklist) pairs.

MG, BT, CG and Raptor fall into the second category. We still observe super-linear
trace size increases without compression but sub-linear increases at orders of mag-
nitude lower for inter-node compression. Relative to our earlier results, CG ben-
efited from relaxed communication parameter matching, similar to FT. BT’s im-
provement is due to the omission of tags for point-to-point communication where
they were deemed semantically irrelevant (see Section 2), which significantly low-
ered intra-node compression sizes. Intra-node compression works well for MG, BT
and CG, but end-point mismatches in inter-node compression prevent better com-
pression. More specifically, a reduction step coded as a sequence of sends / non-
blocking receives over an application-specific overlay tree in BT prevents better
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(c) IS Trace File, Varied # Nodes
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(d) LU Trace File, Varied # Nodes
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(e) MG Trace File, Varied # Nodes
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(f) BT Trace File, Varied # Nodes
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(g) CG Trace File, Varied # Nodes
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(h) FT Trace File, Varied # Nodes
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(i) Raptor Trace File, Varied # Nodes
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(j) UMT2k Trace File, Varied # Nodes

Fig. 10. NPB, Raptor and UMT2k Trace File Size per Node on BlueGene/L

compression, which, if coded as a native MPI reduction, would have compressed
perfectly. MG utilizes 3D overlay to select communication endpoints whose map-
ping is a mismatch for relative encoding. Only Raptor shows much lower com-
pression rates for intra-node (or inter-node) methods due to its unstructured mesh
transport communication. We conclude that the main benefit of a size reduction
by multiple orders of magnitude stems from the intra-node scheme for regular



communications while unstructured communications may results in lower savings.
Nonetheless, inter-node merge can result in up to two order of magnitude of com-
pression, as seen for BT in this category, for a total of five orders of magnitude
savings over uncompressed traces at 484 nodes.

Results for the remaining codes, IS and UMT2k, indicate reductions in trace size
with inter-node compression of about 2 orders relative to no compression and up
to one order of magnitude compared to intra-node compression. IS is non-scalable
due to its dynamic rebalancing of work, which results in different sized payloads
for an MPI Alltoallv() collective upon each call (incorrectly encoded in constant
size in a previous version of ScalaTrace). Constant-size traces could be obtained
here, but only with a domain-specific parameter optimization that aggregates values
and looses information (see end of Section 2). UMT2k falls into the non-scalable
category. It still has room for improvement subject to ongoing investigation (end of
Section 2). But even for these cases, our compressed traces are already at least two
orders of magnitude smaller than traces without compression.

Figure 11 depicts the memory requirements for inter-node compression for the
same set of codes on a logarithmic scale. For codes whose trace sizes scale (DT,
EP, LU and FT), the amount of memory used remains constant irrespective of the
position of a node in the compression tree. Hence, our technique compresses well
without additional memory cost for upper-level nodes in the tree. For non-scaling
benchmarks (MG, BT, CG, Raptor and, even more so, IS, UMT2k), memory usage
is constant at leaf nodes (minimum metric) but increases for larger node counts
towards the root (node 0). These two fundamental trends are representative of all
codes.

This creates additional memory pressure on the nodes responsible for higher layers
of the reduction tree and reduces the memory available to applications. We could
reduce these memory costs by off-loading the inter-node compression to an ex-
ternal reduction infrastructure only leaving the leave nodes of the reduction tree,
which only have low memory requirements, co-located with application tasks. In
particular on BG/L, dedicated I/O nodes that are automatically allocated together
with any program partition can easily be used for this kind of work without requir-
ing additional resources. In this case, the inter-node compression could also occur
incrementally as traces are generated, which would allow them to be generated con-
currently to the application’s computation, thereby further reducing the overhead.
MRNet [23] provides a framework for computation offloading to I/O nodes (see
end of Section 3).
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(c) IS Memory Usage, Varied # Nodes
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(d) LU Memory Usage, Varied # Nodes
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(e) MG Memory Usage, Varied # Nodes
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(f) BT Memory Usage, Varied # Nodes
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(g) CG Memory Usage, Varied # Nodes

min average max node 0

010

110

210

310

410

51
2

25
6

12
86432

M
em

or
y 

U
sa

ge
 [

B
yt

es
]

Number of CPUs

(h) FT Memory Usage, Varied # Nodes
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(i) Raptor Memory Usage, Varied #
Nodes
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(j) UMT2k Memory Usage, Varied #
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Fig. 11. NPB, Raptor and UMT2k Memory Usage per Node on BlueGene/L

5.2 Inter-Node Merge Overhead

Figures 12(a), 12(b) and 12(c) depict the runtime overhead on a logarithmic scale
for LU, BT and IS with no compression (none), with only intra-node compression
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Fig. 12. NPB Compression / Write Time per Node on BlueGene/L

and with inter-node compression. The first two include the overhead of writing a
trace file per node to the parallel file system while inter-node includes the over-
head of inter-node compression and that of writing the compressed trace at the root
node. These times were measured as the difference between an instrumented run
and an uninstrumented run of the respective benchmark. The three benchmarks are
representative of the three classes of benchmarks.

We observe that inter-node compression has the lowest overhead for LU, which rep-
resents the class of benchmarks with constant-space compression. This overhead
increases slightly with the number nodes, yet a slower rate (and a much smaller
absolute overhead) than the other schemes. BT’s overhead is nearly the same, irre-
spective of the compression scheme. We suspect that there is room for improvement
for intra- and inter-node compression due to missed opportunities, as discussed for
benchmarks with sub-linear compression. IS shows the lowest overhead without
compression. Not surprisingly, inter-node compression is most costly since IS be-
longs to the class of benchmarks with super-linear compression space requirements.



These benchmarks are representative for their respective classes.

Figures 12(d) and 12(e) show the average and maximum inter-node compression
time measured inside of MPI Finalize. These results indicate a wide spread of
overhead, which generally correlates with the compression rate achieved. Consider
Figure 12(e). IS has the highest asymptotic overhead exceeding that of other NPB
codes, followed by MT, BT and CG and then the remaining code with near-constant
size trace sizes. However, relative differences exist, particularly for smaller number
of nodes since the overhead with fewer nodes is more closely related to the amount
of MPI calls issued by the respective application than scalability of compression.
Also, average and maximum overheads (Figures 12(d) and 12(e)), widely match in
their trends between mid-level and top-level nodes during inter-node compression
in the tree. Still, other enhancements, such as off-loading inter-node compression
to I/O nodes, should further lower the overhead.

5.3 Timestep Loop Identification

The trace format utilized by ScalaTrace preserves the program structure, even in its
compressed form. This provides novel opportunities for program analysis in a scal-
able and efficient manner. To illustrate this capability, we conducted a study with
the NPB codes to determine their timestep loop, i.e., the outermost loop of the code
that contained repeated MPI calls. This timestep loop is of particular interest for
performance modeling as convergence algorithms are often based on either fixed-
iteration bounds for the number of timesteps or epsilon-based error constraints re-
sulting in input-specific number of timesteps.

NPB Code Actual # Timesteps Derived # Timesteps
BT 200 200
CG 75 1 + 37 × 2
DT N/A N/A
EP N/A N/A
IS 10 2 × 5, 2 × 2 + 2 × 3
LU 250 250
MG 20 20, 2 × 10

Table 1
Actual and Derived (from Trace) Number of Timesteps

Table 1 depicts for each NPB code the actual number of timesteps for class C in-
puts and the equivalent number derived from the compressed trace representation.
Benchmarks DT and EP do not contain a timestep loop at all. The traces identified
the exact number of timesteps for BT and LU within their trace representation. For
IS, mismatches between MPI call parameters result in an outer loop with a longer
pattern of fewer iterations, e.g., a sequence of three MPI calls is flattened into a
sequence of six calls, which is then repeated five times. The total number of MPI
calls (30) is the same, and so is the number of unique MPI calls (three) if parameters



were ignored, which are repeated ten times. Yet, two different compressed patterns
are observed in intra-node traces (2× 5 and 2× 2+2× 3 repetitions). CG and MG
resulted in traces that, at first sight, did not reveal the number of timesteps. Closer
inspection revealed mismatches between parameters that are similar to IS but result
in repetitions with a reordered event sequence. For example, instead of repetitions
of a <*, op1, op2, op3> sequence, we would observe op1, op2, <*, op3, op1,
op2>, op3 in the trace with one less iteration, which is actually equivalent, and we
report them in Table 1 as expressions to emphasize that these patterns are less ob-
vious. We are currently refining our trace compression scheme to handle parameter
lists similar to ranklists, either at inter-node compression or at inter-node merge.
This would result in a more obvious timestep pattern. Locating the timestep loop in
the trace further gives ScalaTrace the ability to indicate the location of the loop in
the source code. By traversing the stack trace, we can indicate the location of the
actual MPI calls of a timestep loop (or any other loop in the trace, for that matter),
and we can provide information about calls from higher-level routines along the
backtrace. The loop itself can thus typically be located in the source code as being
contained within the highest stack frame with a common call across multiple MPI
calls within a PRSD. Occasionally, the loop may be coded at a higher level if a
subroutine contains just the sequence of calls without iteration, but following the
call sequence to find the actual loop is trivial.

5.4 Verification of Replay Correctness

We conducted additional experiments to verify the correctness of our approach.
We replayed compressed traces to ensure MPI semantics are preserved as well as
to verify that the aggregate number of MPI events per MPI call matches that of
the original code and that the temporal ordering of MPI events within a node are
observed. The results of communication replays confirmed the correctness of our
approach.

During replay with our ScalaReplay tool, all MPI calls are triggered over the same
number of nodes with original payload sizes, yet with a random message payload
(content). Thus, the replay incurs comparable bandwidth requirements on commu-
nication interconnects, albeit with potentially different contention characteristics.
Communication replay also provides an abstraction from compute-bound applica-
tion performance, which is neither captured nor replayed. This makes the replay
mechanism extremely portable, even across platforms, which can benefit rapid pro-
totyping and tuning. In our recent work, we showed that delta time recording of
computational overhead still results in near constant-size traces for many codes and
enables time-preserving replay of communication traces without running the actual
application [22]. This supports the assessment of communication needs for current
and particularly future platforms for large-scale procurements. We are currently
pursuing these directions, among others to improve communication performance



in a systematic, yet experimental manner on BG/L and to support procurement of
large scale machines.

6 Related Work

RSDs have been used to describe data references in a loop [14]. PRSDs originally
targeted on-the-fly memory trace compression [17]. While that work introduced
the general concepts and an algorithm for compressing regular data references,
our work uses an entirely different algorithm. Our task, compressing events com-
posed of MPI call IDs and their parameters, is considerably more complex. We
also use semantic-specific encodings, such as for MPI Waitsome, which are unique
to the trace domain. Further, our work is the first to utilize the structural informa-
tion retained during compression, i.e., our replay mechanism relies on this unique
compression property. The approach is superior to run-length encoding and sliding
window compression [30] in that it allows recursive compression while preserving
loop structures in the compressed format.

The mpiP tool consists of a lightweight profiling library for MPI applications that
collects statistical information about MPI functions [27]. It reports aggregate met-
rics. Hence, structural information and event ordering are not preserved. There are
many other tools [1,26,28,12] that report aggregate information, often based on the
profiling layer of MPI, as is the case with mpiP or produce terabytes of traces. None
of these tools are suitable for lossless tracing and later replay in a scalable manner
with a single trace file in the megabyte range.

Vampir is a commercial tool set including a trace generator and a display engine
to visualize MPI communication [6]. However, traces are generated in local files
such that total trace file size increases linearly with both the number of MPI calls
made and the number of tasks. This limits the applicability as scalability is compro-
mised. In contrast, our technique compresses traces to sizes that are three orders of
magnitude smaller and do not significantly increase in size, if at all, during strong
scaling. Our current work [22] further shows that scalability need not be sacrificed
even when timing information is included.

Paraver/Dimemas is an MPI tracing tool set from the Technical University of Cat-
alonia (UPC) in Barcelona [21]. Paraver provides functionality similar to Vampir
and its trace generator has similar limitations. Dimemas is a discrete-event-based
network performance simulator that uses Paraver traces as input. While it bears
some similarities to our replay mechanism, it does not support replaying traces on
actual systems. Instead, it uses a processor ratio and network latency and band-
width parameters to simulate the application’s MPI usage on a theoretical alterna-
tive system. Our tool set provides scalable MPI tracing; the traces could be used in
a discrete event simulator like Dimemas as well as with our replay mechanism.



Casas et al. [7] recognize multi-level regularities in large, post-mortem trace files.
By detecting patterns, they compress these flat trace files offline and can filter back-
ground (operating system) activity artifacts. The compression is reported to take up
to an hour for benchmarks comparable to NAS. Our method, in contrast, com-
presses regularities on-the-fly and never generates any flat trace file.

Geimer et al. [11] obtain per-node traces stored locally at each node and later re-
play these communication traces on the same architecture with the same number of
nodes to detect communication bottlenecks. Later work generalized this approach
to Grid environments using distributed time stamp synchronization [5]. In contrast,
the focus of our work is primarily on concise tracing. The representation of time is
beyond the scope and discussed in one of our more recent papers [22]. While our
traces remain small and often constant size, their trace sizes are reported to reach
10GB, the same order of magnitude reported by others [8].

Arnold et al. [4] developed a scalable tool to identify task behavior equivalence
classes with high similarity based on stack signatures. Their approach utilizes MR-
Net, a software overlay network that provides efficient multicast and reduction
communications [23]. MRNet uses a tree of processes between the tool’s front-
end and back-ends to improve group communication. MRNet introduces additional
complexity, which we decided to avoid in our current prototype. MRNet would sup-
port on-the-fly and asynchronous trace compression across tasks. By using MRNet,
we would further reduce the memory pressure of our trace generator. MRNet could
be used in a future version of our tool using P NMPI as the glue layer between the
tools [24].

The Open Trace Format (OTF) is targeted at scalable tracing, yet without any ad-
vanced (domain-specific) compression scheme [15]. In contrast to our work, it uses
regular zlib compression on blocks of data, which loses structure and limits anal-
ysis on the compressed format. They also do not support cross-node compression
schemes. Hence, the complexity of aggregate trace size over n processors is O(n).
However, OTF provides the ability to produce multiple streams and, hence, store
and load a trace in parallel with user-defined granularity.

An alternate trace format by the same group uses so-called cCCGs, a structural
compression format that combines regular patterns into common sub-trees [16].
This ultimately results in a rooted directed acyclic graph where ancestors can have
common children, which denotes a regularity (or commonality) between these an-
cestors in terms of their calling pattern of traced events. In their data structure,
measurements (e.g., delta times) are stored one-by-one per call up to a maximum
branching factor b. Beyond that threshold, an interior node is split into two nodes
(with an aggregate storage capacity of 2b) so that further delta values can be stored.
By combining deltas that only differ by a certain percentage of their value, com-
mon nodes in the graph can be combined resulting in a set of parents for the merge
candidate. The theoretical upper bound on their storage complexity is linear to the



number of traced events, a case that would only occur if all deltas differ signifi-
cantly. In practice, the observed storage requirement for regular event patterns is
reported to be logarithmic due to combining nodes upon matching patterns and
deltas. In contrast, our storage overhead is as low as constant when event patterns
are regular.

Freitag et al. [10] describe a window-based compression scheme and evaluate its
applicability to OpenMP traces. Our PRSD compression is more powerful as it
allows recursive compression online. Neyman et al. [19] designed a tool to detect
races in PVM codes using a trace generation and a replay tool. Also, recent work
by Mesnier et al. focuses on I/O trace generation and replay [18]. Neither of these
techniques scale as they do not perform any compression. Our approach is also
designed to handle MPI I/O calls much the same as regular MPI events.

A characterization of MPI communication patterns for the NAS parallel bench-
marks has determined that communication end-points are, if not static, almost ex-
clusively persistent and hardly ever dynamic [25]. Here, persistent denotes a set
of end-points that, once determined dynamically, does not change anymore. This
is consistent with our findings and explains why our compression techniques are
scalable within the domain of SPMD programs.

7 Conclusion

One of the central problems in petascale computing is posed by the requirement
for communication to scale to hundreds of thousands of nodes. However, com-
munication patterns of large-scale scientific applications are often too complex to
analyze at the source-code level. Existing tools can be classified into two different
categories: profilers gather aggregate metrics statistically in a scalable manner, but
temporal ordering and structural information are generally lost in such an approach.
Tracing tools, on the other hand, provide complete, lossless traces, which, however,
grow significantly in size as the problem size or the number of processors increases.
This makes it harder, if not infeasible, to commit such traces to a global file system.

In this work we present a novel tracing framework that combines the advantages of
both approaches: we extract full communication traces, which are orders of magni-
tude smaller or even of near-constant size regardless of the number of nodes while
preserving all structural and temporal-order information. We employ representa-
tions of regular section descriptors, power-sets of them and a multitude of relative
encoding techniques to enable compact representations of MPI event sequences. A
first intra-node compression is followed by inter-node compression over a reduc-
tion tree to result in a single trace file that fits into a fraction of the core memory
of a node. Experimental results on BlueGene/L confirm our claim of concise, if
not near constant size, representation for benchmarks and full-sized applications.



We assessed the correctness of our approach by comparing the temporal orderings
and aggregate counts of MPI events during the original run with the replay. This
replay mechanism may further aid performance tuning of MPI communication and
facilitate projections of network requirements for future large-scale procurements.

To the best of our knowledge, our contributions of orders of magnitude smaller and
sometimes constant-size representation of MPI traces in a scalable manner com-
bined with deterministic replay are without precedent.
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