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Abstract

Document clustering is a central method to mine massive aisaf data. Due to
the explosion of raw documents generated on the Internethendecessity to analyze
them efficiently in various intelligent information systentlustering techniques have
reached their limitations on single processors. Insteaslrgfle processors, general-
purpose multi-core chips are increasingly deployed inaasp to diminishing returns
in single processor speedup due to the frequency wall, blti-oare benefits only
provide linear speedups while the number of documents irirttegnet grows expo-
nentially. Accelerating hardware devices represent almmegnise for improving the
performance for data-intensive problems such as docurhestecng. They offer more
radical designs with a higher level of parallelism but ad#ipth to novel programming
environments.

In this paper, we assess the benefits of exploiting the caatipoal power of
Graphics Processing Units (GPUSs) to study two fundamemtdipms in document
mining, namely TF-IDF (Term Frequency-Inverse Documerggeiency) and docu-
ment clustering. We transform traditional algorithms iattcelerated parallel coun-
terparts that can be efficiently executed on many-core GRbitactures. We assess
our implementations on various platforms ranging from dtalone GPU desktops to
Beowulf-like clusters equipped with contemporary GPU salife observe at least one
order of magnitude speedups over CPU-only desktops antbcdud his demonstrates
the potential of exploiting GPU clusters to efficiently smimassive document mining
problems. Such speedups combined with the scalabilitynpiat&nd accelerator-based
parallelization are unique in the domain of document-based mining, to the best of
our knowledge.
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1. Introduction

Document clustering, or text clustering, is a sub-field diadeustering where a
collection of documents are categorized into differentsgib with respect to docu-
ment similarity. Such clustering occurs without superdiggormation,i.e., no prior
knowledge of the number of resulting subsets or the size cfi eabset is required.
Clustering analysis in general is motivated by the explosibinformation accumu-
lated in today’s Internet,e., accurate and efficient analysis of millions of documents is
required within a reasonable amount of time. A recent flogikiased algorithm [2] im-
plements the clustering process through the simulatiorixédaspecies birds in nature.
In this algorithm, each document is represented as a pomtwo-dimensional Carte-
sian space. Initially set at a random coordinate, each juietacts with its neighbors
according to a clustering criteriong., typically the similarity metric between docu-
ments. This algorithm is particularly suitable for dynaatistreaming data and is able
to achieve global optima, much in contrast to our algorithaalutions [3].

In this research, we first solve one of the fundamental problim document min-
ing, namely that of calculating TF-IDF vectors of documenthe TF-IDF vector
is subsequently utilized to quantify document similaritydocument clustering al-
gorithms. In this work, we show how to re-design the tradisibalgorithm into a
CPU-GPU co-processing framework and we demonstrate up Xosp@edup over a
single-node CPU desktop.

In a second step, we aim at clustering at least one milliorud@nts at a time
based on the TF-IDF-like similarity metric. In documentstkring, the size of each
document varies and can reach up to several kilo-bytes.eTdrey, document cluster-
ing imposes an even higher pressure on memory usage thatiotratidata mining,
where data set is of much smaller and constant size. Unfatelyy many accelerators,
including GPUs, do not share memory with their host systerns,do they provide
virtual memory addressing. Hence, there is no means to aiicaily transfer data
between GPU memory and host main memory. Instead, such mperansfers have to
be invoked explicitly. The overhead of these memory trassfeven when supported
by DMA, can nullify the performance benefits of execution aoelerators. Hence, a
thorough design to assure well-balanced computation cgl@@tors and communica-
tion / memory transfer to and from the host computer is reggljire., overlap of data
movement and computation is imperative for effective agreagbr utilization. More-
over, the inherently quadratic computational complexityhie number of documents
and the large memory footprints, however, make efficieniémgntation of flocking
for document clustering a challenging task. Yet, the paraature of such a model
bears the promise to exploit advances in data-paralleleraters for distributed sim-
ulation of flocking.

As a result, we investigate the potential to purse our goa oluster of computers
equipped with NVIDIA CUDA-enabled GPUs. We are able to adustne million doc-
uments over sixteen NVIDIA GeForce GTX 280 cards with 1GBbamard memory
each. Our implementation demonstrates its capability feakvscalingj.e., execu-
tion time remains constant as the amount of documents igased at the same rate



as GPUs are added to the processing cluster. We have alslopisda@ functionally
equivalent multi-threaded MPI application in C++ for perfance comparison. The
GPU cluster implementation shows dramatic speedups oeeC#+ implementation,
ranging from 30X to more than 50X speedups.

The contributions of this work are the following:

e We design highly parallelized methods to build hash table&BU as a premise
to calculate TF-IDF vectors for a given set of documents.

e We apply multiple-species flocking (MSF) simulation in thentext of large-
scale document clustering dBPU clusters. We show that the high I/O and
computational throughput in such a cluster meets the deimguedmputational
and I/O requirements.

e In contrast to previous work that targeted GPU clusters J4o8r work is one
of the first to utilize CUDA-enabled GPU clusters to accdkeraassive data
mining applications, to the best of our knowledge.

e The solid speedups observed in our experiments are repmmethe entire ap-
plication (and not just by comparing kernels without considering degtasfer
overhead to/from accelerator). They clearly demonstiaepbtential for this
application domain to benefit from acceleration by GPU eltsst

The rest of the paper is organized as follows. We begin wighbilickground de-
scription in Section 2. The design and implementation ofiDF-calculation and doc-
ument clustering are presented in Section 3 and 4, respctinm Section 5, we show
various speedups of GPU clusters against CPU clustersfaretit configurations. Re-
lated work is discussed in Section 6 and a summary is giverdti@& 7.

2. Background Description

In this section, we describe the algorithmic steps of TF-HDE document cluster-
ing, and discuss details of the target programming envientm

2.1. TF-IDF

Term frequency (TF) is a measure of how important a term isdo@ment. The
ith term’st f in documenyj is defined as:

N5

tfij = m ()

wheren; ; is the number of occurrences of the term in docunagraind the denomina-
tor is the number of occurrences of all terms in docunagnt

The inverse document frequency (IDF) measures the gengpaltance of the term
in a corpus of documents. This is done by dividing the numbal @ocuments by the
number of documents containing the term and then takingoip@rithm.
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Figure 1: TF-IDF Workflow

where|D| is the total number of documents in the corpus &rlj : t; € d;}| is the
number of documents containing tetm
Then, the TF-IDF value of th&h term in documeni is:

tfidfi; = tfij*idf; )

The idea of TF-IDF can be extended to compare the similariiféwo documents
d; andd;. One of the simple way is to apply the similarity metric bedweny pair of
documents andj:

Sim; j = Z |t fidfy: — tfidfr;)? (4)
%

for k over all terms of both documentand;. Obviously, the smaller the value is, the
more similar these two documents are considered.

There are many ways to calculate the TF-IDF given a corpu®ofithents. The
most straightforward method, also used by us, is illustréne=igure 1. The first step,
which is part of the document preprocessing prior to the &é+éDF calculation, ex-
cerpts and tokenizes each word of a document. It is alsosrsthp that the stop words
are removed. Stop words, also known as the noise words, armon words that do
not contribute to the uniqueness of the document [6]. In doesd step, some cognate



words are transformed into one form by applying certain stérg patterns for each.
This is necessary to obtain results with higher precisignlfirstep three, the document
hash table is built for each document. Thkey, value- pairs in the token hash table
are the unique words that appear in the document and theirrerce frequencies,
respectively. In step four, all of these token hash tablesraduced into one global
occurrence table in which the keys remain the same, but yakmresent the number
of documents that contain the associated key. The TF-IDIedgh term can be eas-
ily calculated by looking up the corresponding values intiash tables according to
Equation 3 as seen in step five.

2.2. Flocking-based document clustering

The goal of document clustering is to form groups of indiatithat share certain
criteria. Document similarity derived from TF-IDF provisléhe foundation to deter-
mine such similarities. In flocking-based clustering, tbadvior of a boid (individual)
is based only on its neighbor flock mates within a certain eafgynolds [8] describes
this behavior in a set of three rules. Lgtandv; be the position and velocity of bojd
Given a boid noted as, suppose we have determin®&dof its neighbors within radius
r. The description and calculation of the force by each rutirmmarized as follows:

e Separation: steer to avoid crowding local flock mates

N —
- Pz — Di
fsep - - Z 7"72T (5)
wherer; .. is the distance between two boidandz.
o Alignment: steer towards the average heading of local flock mates
N o
~ ;Ui
fa,li - E}v — Uz (6)
e Cohesion: steer to move toward the average position of local flock mate
N -
fcoh, = Z};sz — Dz (7)

The three forces are combined to change the current velotttye boid. In case
of document clustering, we map each document as a boid thiétipates in flocking
formation. For similar neighbor documents, all three faraee combined. For non-
similar neighbor documents, only tseparation force is applied.

2.3. GPU and CUDA

Graphics programming units (GPUSs) differ from generalpmse microprocessors
in their design for the single instruction multiple dataN®l) paradigm. Due to the
inherent parallelism of vertex shading, GPUs have adoptelii-core architectures
long before regular microprocessors resort to such a dedighile this decision is



driven by increasing demands for faster and more realistiplyjcs effects in the former
case, it is dictated by power and asymptotic single-comguieacy limits for the latter.
As a result, today’s state-of-the-art GPUs consist of mangliscomputation cores
compared to few large cores in off-the-shelve CPUs, at ts¢ @bdevoting less die
area for flow control and data caching in each core. Sincehigafis a niche, albeit
a very influential one, that drives the progress in GPU agchitres, much attention
has been paid to fast and independent vertex rendering. dputational rendering
engines of GPUs can generally be utilized for other problemains as well, but their
effectiveness depends much on the suitability of numeailgadrithms within the target
domain for GPUs.

In recent years, GPUs have attracted more and more develperstrive to com-
bine high performance, lower cost and reduced power consomgs an inexpensive
means for solving complex problems. This trend is expeditedhe emergence of
increasingly user-friendly programming models, such adNXs CUDA, AMD’s
Stream SDK and OpenCL. Our focus lies on the former of thesdetso

CUDA is a C-like language that allows programmer to exectag@ams on NVIDIA
GPUs by utilizing their streaming processors. The corediffice between CUDA pro-
gramming and general-purpose programming is the capahilid necessity to spawn
massive number of threads. Threads are groupedhiaitps as basic thread scheduling
units [9]. The same code is executed by threads in the sergon a given stream-
ing processor. As these GPUs do not provide caches, memenclas are hidden
through several techniques: (a) Each streaming proceeatains a small but fast on-
chip shared memory that is exposed to programmers. (b) Lragjster files enable
instant hardware context switch betwewsarps. This facilitates the overlapping of
data manipulation and memory access. (c) Off-chip globahorg accesses issued si-
multaneously by multi-threads can be accelerated by coadememory access, which
requires aligned access pattern for consecutive threagks s.

In this work, the massive throughput offered by GPUs is thgomsource of
speedup over conventional desktops.

2.4. MPI

The document flocking algorithm is not an embarrassinglalperalgorithm as it
requires exchange of data between nodes. We utilize MPI asaasrto exchange data
between nodes. MPI is the dominant programming model in igk-performance
computation domain. It provides message passing utilitids a transparent interface
to communicate between distributed processes withouiderisg the underlying net-
work configurations. It is also thde factor industrial standard for message passing
that offers maximal portability. In this work, we incorpteaMPI as the basic means
to communicate data between distributed computation nodéesalso combine MPI
communication with data transfers between host memory atd @emory to provide
a unified distributed object interface that will be discukkger.

3. Design and Implementation of TF-IDF Calculation

One of the key challenges in algorithmic design for GPGP s keep all process-
ing elements busy. NVIDIA's philosophy to ensure high a#liion is to oversubscribe,
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i.e, more parallel work is dispatched than there are physicaast processors avail-
able. Using latency-hiding techniques, a processor stallea memory reference can
thus simply switch context to another dispatched work unit.

In order to fully utilize the large number of streaming presers in NVIDIAS
GPUs, we process files in batches with the batch size cho$h &everal kernels are
developedto implement the steps described in Section 2dh Batch process requires
extensive data movement between host and GPU memories by. Bi¥$4 to handle a
large amount of documents/files, especially when total dwsu size is larger than the
GPU global memory, the document hash tables needs to bedlosiiéo host memory
once they are completely constructed. Second, the raw flata@cument is pushed
from host memory to GPU global memory at the beginning of deatbh process. To
reduce the overhead of memory movement, we developed théGHRWcollaboration
framework shown in Figure 2.

In each batch iteration, the CPU thread first launches theteprocessing kernels
(Tokenizekernel and RemoveAffikernel) asynchronously. Before invoking the next
kernels (BuildDocHaslkernel and AddToOccTablkernel) that write to the document
and global occurrence hash table buffers in the GPU'’s glotzathory, it waits for the
completion signal of the previous batch’s DMA that transtiue old batch table to host
memory. When the GPU is busy generating the document halgs t@bd inserting to-
kens into the global occurrence table, the CPU can prefachédxt batch of files from
disk and copy them to an alternate file stream buffer. At trieadrihe batch iteration,
the CPU again asynchronously issues a memory copy of thentertthash table to the
host's memory. Only in the next batch’s iteration will thengaletion of this DMA be
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synchronized. In this manner, part of the DMA time is oveplegwith the GPU calcu-
lation by (a) double buffering the document raw data in GPU @) overlapping the
hash table memory copy in the current batch with the streaprpcessing (tokenize
and stem kernels) of the next batch [10].

To further reduce the DMA overhead, one may reduce the sizheoflocument
hash table. This table differs from the global occurrenbéetavhich resides in GPU
global memory but need not be copied to host until the end e€etton. Therefore,
the data structures of these tables differ slightly as shiowkigure 3. The document
hash table contains a header and an array of entries, wtacimtarnally linked as a
list if they belong to the same bucket. The header is usedteyme the bucket size
and to find the first entry in each bucket. In contrast, thealbbsh table consists of a
big array of entries evenly divided into buckets. Becaugentiiimber of unique terms
is considered limited no matter how large the corpus sizéésnumber of buckets and
the bucket size can be chosen sufficiently large to avoidilpledsucket overflows.

Another effort to reduce the size of the document hash talé&sa storing the
actual term/word in the table. Instead, every entry simpéyntains an index pointing
to the corresponding entry in the global occurrence tableraithe actual term is saved.
To reduce the number of hash key computations at hash imseatid during hash
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searches, the key is saved as an “unsigned long” in both kst To further reduce
the probability of hash collisions (two terms sharing thee&ey), another field called
identity is added as an “unsigned int” to help differentitgiens. The identity is then
constructed a&term length << 16)|(first char << 8)|(last char).

Upon investigation, we determined that atomic operatiargperted by certain
GPUs via CUDA are facilitating the construction of a conaigeument hash table
without adversely affecting the parallelism of the algamt We alternatively provide
another method to generate the same hash table for GPUswvithpport for atomic
operations. Even though the latter method is slower thafiriteit is required for GPU
devices that do not have atomic operation suppat gevices with CUDA compute
capability 1.0 or earlier).

3.1. Hash Table Updates using Atomic Operations

Access to hash table entrigs atomic operations is realized in two steps as de-
picted in Figure 4. In the first step, the document stream énlgwdistributed to a set
of CUDA threads. The number of threads,is chosen explicitly to maximize GPU'’s
utilization. A buffer storing the intermediate hash tablbijch is close to the structural
layout of the global occurrence table, but with a smaller hanof bucketds, is used
to sort terms by their bucket IDs. Every time a thread encensret new term in the
stream and obtains its bucket ID, it issues an atomic incnérfaomic-add-one) op-
eration to affect the bucket size. (Notice that the objectif/this algorithmic TF-IDF
variant is not to identify identical terms. Instead, itsefhbbjective is to compute a
similarity metric.) If we assume that terms are distributaddomly, then contention
during the atomic increment operation is the excepti@n,threads of the same warp
are likely atomically incrementing disjoint bucket sizdréss.
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In the next step, the intermediate hash table is reducecktdirtal, more concise
document hash table shown in Figure 3. Each CUDA threadrsageone bucket in
the intermediate hash table, detects duplicate terms,ifdfimtjs a new term, reserves
a place in the entry array by atomically incrementing thaltsize. It then pushes
the new entry into the header of the linked bucket list. Sidifferent threads operate
on disjoint buckets, each linked list per bucket is accesseautual exclusion, which
guarantees absence of write conflicts between threads.

3.2. Hash Table Updates without Atomic Operations

In GPUs without atomic instruction support, the documerrgsst is first split into
M packets, each of which is pushed into a different hash sble-awned by one
thread in a block, as shown in step 1 of Figure 5. By giving eéhcbad a separate
hash sub-table, we guarantee write protection (mutuattjusive writes of the values)
between threads. In step R, threads are re-assigned to different buckets of the sub-
table, identical terms are found in this step, and staigticeach bucket are generated.
Because terms have been grouped by their keys in step 1yilidre no write conflicts
between threads at this step either. The bucket size intoymis processed in step 3
to finally merge sub-tables to compose the final document tadodé.



3.3. Discussions

The two procedures detailed above to handle hash tokens aTw@ntent do not
require information from any other documents. Thus, eadudent can be processed
simultaneously and independently in different GPU blockéth a sufficiently large
number of documents, we can fully utilize the GPU cores apto@NVIDIAS latency
hiding on memory references through oversubscription. &l@w in the first step of
the second method, the number of packétper documentis delimited due to memory
constraint and the efficiency of the following steps. We dd®a value of\/ = 16 in
our implementation. To compensate for this constraint, aespawn more threads
in the first methode.g., by choosingl. = 512. This constraint on parallelism results in
a non-atomic approach that is slower than its atomic variant

From the memory usage’s perspective, the non-atomic approansumes more
global memory simply because the intermediate hash taibtes inon-atomic approach
are larger than that in the atomic approach. Both of the abwthods cannot handle
very large single documents that exceed the size of the ghobaenory. Since our
problem domain is that of Internet news articles, whichagply do not exceed more
than 10K words, documents fits in memory for our implemeatatihis framework is
even suitable for arbitrarily large corpus sizes as we creuded without changes both
intermediate hash tables and the document hash table tttedéwhich is flushed to
host memory for each batch of files.

4. Design and Implementation of Document Clustering

4.1. Programming Model for Data-parallel Clusters

We have developed a programming model targeted at messsgiagpéor CUDA-
enabled nodes. The environment is motivated by two probtbatssurface when ex-
plicitly programming with MPl and CUDA abstraction in comiaition:

e Hierarchical memory allocation and management have to denpeed manu-
ally, which often burdens programmers.

e Sharing one GPU card among multiple CPU threads can imphev&PU uti-
lization rate. However, explicit multi-threaded programginot only compli-
cates the code, but may also result in inflexible designseased complexity
and potentially more programming pitfalls in terms of catreess and efficiency.

To address these problems, we have devised a programmingl thatl abstracts
from CPU/GPU co-processing and mitigates the burden ofthgrpmmer to explicitly
program data movement across nodes, host memories ane aesioories. We next
provide a brief summary of the key contributions of our pgogming model (see [11]
for a more detailed assessment):

e We have designed distributed object interface to unify CUDA memory man-
agement and explicit message passing routines. The iotegfeforces program-
mers to view the application from a data-centric perspedtistead of a task-
centric view. To fully exploit the performance potential@PUs, the underlying
run-time system can detect data sharing within the same GRerefore, the
network pressure can be reduced.



e Our model provides the means to spawn a flexible number ofthosads for
parallelization that mayxceed the number of GPUs in the system. Multiple
host threads can be automatically assigned to the same M&¢gs. They sub-
sequently share one GPU device, which may result in highieration rate than
single-threaded host control of a GPU. In applications whePUs and GPUs
co-process a task and a CPU cannot continuously feed enoaigttava GPU,
this sharing mechanism utilizes GPU resources more efflgien

e An interface for advanced users to control thread scheglutirclusters is pro-
vided. This interface is motivated by the fact that the magf multiple threads
to physical nodes affects performance depending on thecagiph’s commu-
nication patterns. Predefined communication patterns caplys be selected
so that communication endpoints are automatically geadraMore complex
patterns can be supported through reusable plug-ins astanséxe means for
communication.

We have designed and implemented the flocking-based dodwhustering algo-
rithm in GPU clusters based on this GPU cluster programmiogeh In the following,
we discuss several application-specific issues that arieari design and implementa-
tion.

4.2. Preprocessing

The prerequisite of document clustering is to have a stahdezans to measure
similarities between any two documents. While the TF-IDRaapt exactly matches
this need, there are two practical issues when targetirgjests:

e There is a reduce step (step 4 in Figure 1) to generate a gjlajlal occurrence
hash table. This is a high payload all-to-all communicatioolusters and thus
is not scalable.

e The TF-IDF calculation cannot start until all documentsén@een processed
and inserted in the global occurrence table. Thereforg nbt suited for stream
processing.

A new term weighting scheme called term frequency-inveosgies frequency (TF-
ICF) has been proposed to solve the above problems at treecfaabssive amounts of
documents [12]. It does not require term frequency inforomefirom other documents
within the processed document collections. Instead, ithpiils the ICF table by
sampling a large amount of existing literature off-lineleé8&on of corpus documents
for this training set is critical as similarities betweercdments of a later test set are
only reliable if both training and test sets share a commae lehictionary of terms
(words) with a similar frequency distribution of terms owlercuments. Once the ICF
table is constructed, ICF values can be looked up very dffiyidor each term in
documents while TF-IDF would require dynamic calculatidth@se values. The TF-
ICF approach enables us thus to generate document vectorsantime.



4.3. Flocking Space Partition

The core of the flocking simulation is the task of neighbordhdetection. A se-
quential implementation of the detection algorithm BHgV?) complexity due to pair-
wise checking ofV documents. This simplistic design can be improved thropgices
filtering, which prunes the search space for pairs of poiriiesg distances exceed a
threshold.

One way to split the work into different computational reszauis to assign a fixed
number of documents to each available node. Suppose ther¥ documents and
P nodes. In every iteration of the neighborhood detectiomritlgm, the positions
of local documents are broadcast to all other nodes. Suditigaing results in a
lower communication overhead proportional to the numberoafes, and the detection
complexity is reduced linearly b¥ per node for a resulting overhead@f{ N2/ P).

Instead of partitioning the documents in this manner, waktbe virtual simula-
tion space into row-wise slices. Each node handles jusetdosuments located in the
current slice. Broadcast messages that are previouslyreeare replaced by point-to-
point messages in this case. This partitioning is illustlah Figure 6. After document
positions are updated in each iteration, additional stepsparformed to divide all
documents into three categoriedligrating documents are those that have moved to
a neighbor sliceNeighbor documents are those that are on the margin of the current
slice. In other words, they are within the range of the radio$ neighbor slices. All
other ara@nternal documentsin the sense that they do not have any effects on the docu-
ments in other nodes. Since the velocity of documents isexpp a maximal value, it
is impossible for the migrating documents to cross an eslice in one timestep. Both
the migrating documents and neighbor documents are traedfes neighbor slices at
the beginning of the next iteration. Since the neighborhealilisr is much smaller
than the virtual space’s dimension, the number of migratioguments and neighbor
documents are expected to be much smaller than that of #maitdocuments.

Sliced space partitioning not only splits the work nearlgry among computing
nodes but also reduces the algorithmic complexity in setiplggrograms. Neighbor-
hood checks across different nodes are only required faghber documents within
the boundaries, not for internal documents. Therefore venage, the detection com-
plexity on each node reduces®{N?/ P?) for slides partitioning, which is superior to
traditional partitioning withO(N?2/P).

4.4. Document Vectors

An additional benefit of MSF simulation is the similarity calation between two
neighbor documents. Similarities could be pre-calculétetveen all pairs and stored
in a triangular matrix. However, this is infeasible for véayge NV because of a space
complexity ofO(N?2/2), which dauntingly exceeds the address space of any natle as
approaches a million. Furthermore, devising an efficientifpzn scheme to store the
matrix among nodes is difficult due to the randomness of anityl look-ups between
any pair of nearby documents. Therefore, we devote one kiermetion to calculating
similarities in each iteration. This results in some dugitid computations, but this
method tends to minimize the memory pressure per node.

The data required to calculate similarities is a documentoreconsisting of an
index of each unique word in the TF-ICF table and its assediat~-ICF values. To



r o e
GPY - 1 - ,
f‘?’,qHﬂék .
o O,,?\Y,,\,,J ,,,,,,,,,,, o= Migrating Doc
GPY e 7 NEN
r[TTTT TR QLT ””” o % ””””” Internal Doc
A S
- o
Neighbor Doc
7
GPY,; g o
rf . e
e >

Figure 6:Simulation Space Partition

compute the similarity between two documents, as shown umakon (4), we need
a fast method to determine if a document contains a word dgiverword'’s TF-ICF
index. Moreover, the fact that we need to move the documenidveetween neighbor
nodes also requires that the size of the vector should beskegult.

The approach we take is to store document vectors in an aosrésdsby the index
of each unique word in the TF-ICF table. This data structwmlzines the minimal
memory usage with a fast parallel searching algorithm. R[@8] describes an effi-
cient algorithm to calculate the cosine similarities beswany two sorted arrays. But
this algorithm is iterative in nature and not suitable forghial processing.

We develop an efficient CUDA kernel to calculate the simijeoff two documents
given their sorted document vectors as shown in Algorithiitle parallel granularity
is set so that each block takes one pair of documents. Dodweetors are split evenly
by threads in the block. For each assigned TF-ICF value, #mehd determines if the
other document vector contains the entry with the same in@éxce the vectors are
sorted, a binary search is conducted to lower the algorittooimplexity logarithmic
time. A reduction is performed at the end to accumulate wiffees.

4.5. Message Data Structure

In sliced space partitioning, each slice is responsiblectoegate two sets of mes-
sages for the slices above and below. The correspondingayesata structures are
illustrated in Figure 7. The document array contains a hethdé enumerates the num-
ber of neighbors and migrating documents in the curreng slicheir global indexes,
positions and velocities are stored in the following arm@yrfeighborhood detection in
a different slice. Due to the various sizes of each docuredi#-ICF vector and the
necessity to minimize the message size, we concatenateatirg in a vector array
without any padding. The offset of each vector array is stonea metadata offset
array for fast access. This design offers efficient paraleless to each document'’s
information.

4.6. Optimizations

The algorithmic complexity of sliced partitioning decreagjuadratically with the
number of partitions (see Section 4.3). For a system withedfixumber of nodes, a



Algo 1: Document Vector Similarity (CUDA Kernel)

/I calculate the similarities between two DocVecs
__device_ void docVecSimilarity(DocVee lhs, DocVecxrhs,float xoutput){
float sim(0.0f);
float commonSim(0.0f);
for (int i = 0; i < Ihs—NumEntries; i += blockldx.x)
float tficf = biSearch(entry, rhsvectors);
sum += pow(entry-tficf — tficf, 2);
commonSim += pow(tficf, 2);
}
/I ... reduce to threadl dx.x(0), store in sum
__syncthreads();
if (threadldx.x == 0)
sum—= commonsSim;
sum = sqrtf(sum);
I/ write to global memory
xoutput = sum;
¥
¥

__device._ float biSearch(VecEntryentry, DocVectorvector){
int idx = entry—index;
int leftindex = 0;
int rightindex = vector~NumEntries;
int midindex = vector~NumEntries/2;
while(true) {
int docldx;
docldx = vector~vectors[midindex].index;
if (docldx< idx)
leftindex = midindex + 1;
else if(docldx> idx)
rightindex = midindex- 1,
else
break;

if (leftindex> rightindex)
return 0.0f;
midindex = (leftindex + rightindex)/2;

}

return vector—vectors[midindex].tficf;

}
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reduction in complexity could be achieved by exploiting tiatireading within each
node. However, in practice, overhead increases as the nurhipartitions become
larger. This is particularly this case for communicatioridhead. As we will see in
Section 5, the effectiveness of such performance improngiffers from one system
to another.

At the beginning of each iteration, each thread issues tweliocking messages to
its neighbors to obtain the neighboring and migrating doeuntsi statuses (positions)
and their vectors. This is followed by a neighbor detectiomction that searches its
neighbor documents within a certain range for each intesloalment and migrated
document. The search space includes every internal, n@iglmiol migrating document.
We can split this function into three sub-functions: (ammal-to-internal document
detection; (b) internal-to-neighbor/migrating documestection and (c) migrating-
to-all document detection. Sub-function (a) does not nexjuiformation from other
nodes. We can issue this kernel in parallel with commurocatSince the number of
internal documents is much larger than neighbor and migrddeuments, we expect
the execution time for sub-function (a) to be much largenttiet of (b) or (c). From
the system’s point of view, either the communication or hbiyy detection functions
affects the overall performance.

One of the problems in simulating massive documents via takifig-based al-
gorithm is that as the virtual space size increases, theapitily of flock formation
diminishes as similar groups are less likely to meet eacmatare-inspired flocking,
no explicit effort is made within simulations to combine gan species into a unique
group. However, in document clustering, we need to makeesagk cluster has formed
only one group in the virtual space in the end without flock intersection. fdéend that
an increase in the number of iterations helps in achievirgyahjective. We also dy-
namically reduce the size of the virtual space throughaustimulation. This increases
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the likelihood of similar groups to merge when they beconighi®ors.

4.7. Work Flow

The work flow for each space partition at an iteration is shawhRigure 8. Each
thread starts by issuing asynchronous messages to fetmtmiation from neighbor-
ing threads. Messages include data such as positions obthereents that have mi-
grated to the current thread and documents at the margireafdighbor slices. Those
documents’ TF-ICF vectors are encapsulated in the messagéniilarity calculation
purposes, as discussed later.

Internal-to-internal document detection can be perforingzhrallel with message
passing (see Section 4.6). The other two detection roytineontrast, are serialized
with respect to message exchanges. Once all neighborhoedietected, we calcu-
late the similarities between the documents belonging éoctirrent thread and their
detected neighbors. These similarity metrics are utiltvedgpdate the document posi-
tions in the next step where the flocking rules are applied.

Once the positions of all documents have been updated, socoeeents may have
moved out the boundary of the current partition. These darusnare removed from
the current document array and form the messages for neiigigltbreads for the next
iteration. Similarly, migrated documents received thtougessages from neighbors



| | 16 GPUs (NCSUD16 CPUs (NCSUDS GPUs (ORNLj 3 CPUs (ORNL)|

Nodes 16 16 4 4
CPU Cores |AMD Athlon DualAMD Athlon Dual|intel Quad Q6700ntel Quad Q670D
CPU Frequency 2.0 GHz 2.0 GHz 2.67 GHz 2.67 GHz
System Memory 1GB 1GB 4 GB 4 GB
GPU 16 GTX 280s Disabled 3 Tesla C1060 Disabled
GPU Memory 1GB N/A 4GB N/A
Network 1 Gbps 1 Gbps 1 Gbps 1 Gbps

Table 1:Experiment Platforms

are appended to the current document array. This postgsimgeis performed in the
last three steps in Figure 8.

5. Experimental Results

5.1. Experiment Setups

We conduct two independent sets of experiments to show ttierpgance of our
TF-IDF and document clustering results.

TF-IDF experiments are conducted on a stand-alone desktemiconfigurations:
with GPU enabled and disabled. When the GPU is disabled, sesashe performance
of a functionally equivalent CPU baseline version (singleeaded in C/C++). The test
platform utilizes Fedora 8 Core Linux with a dual-core AMDdn 2 GHz CPU with
2 GB of memory. The installation includes the CUDA 2.0 betaase and NVIDIAS
Geforce GTX 280 as GPU devices. The test input data is seléuwm Internet news
documents with variable sizes ranging from around 50 to I0@lish words (after
stop-word removal). The average number of unique word it @aticle is about 400
words.

Similarly, the document clustering experiments are cotethion GPU-accelerated
clusters with GPUs enabled and disabled. In the absence d§ GRe performance of
a multi-threaded CPU version of the clustering algorithragsessed. In this version,
internal document vectors are stored in STL hash containgtesad of sorted document
vectors used in GPU clusters. This combines benefits of éastl similarity checking
with ease of programming. The message structure is the salpodti implementations.
Hence, functions are provided to convert STL hashes to vectays and vice versa.
In document clustering experiments, both GPU and CPU imeigations incorporate
the same MPI library (MPICH 1.2.7p1 release) for messagsipgsnd the C++ boost
library (1.38.0 release) for multi-threading in a single IMPocess. The GPU version
uses the CUDA 2.1 release.

5.2. TF-IDF Experiments

In TF-IDF experiments, we first compare the execution tinrecive batch of 96
files. The individual module speedup and their percentagtesal are shown in Figure
9 and Figure 10.
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Figure 9:Per-Module Performance: CPU baseline vs. CUDA

Notice that the speedup on the y-axis of Figure 9 is depicteallogarithmic scale.
Compared to the CPU baseline implementation, we achieve significant speedups
for those modules engaged in the preprocessing phaser(fafc80 times faster in
tokenize and 20 times faster in strip affixes kernels) thartfose at the hash table
construction phase (around 3 times faster in both docunssit table and occurrence
table insertion kernels). The limits in speedup during #teel are due to the multi-step
hash table construction algorithms described in Sectiomt#& algorithm has certain
overheads that the CPU benchmark does not contain. Thesgeawds include (a) the
construction of intermediate or hash sub-tables; (b) brismgcpenalties suffered from
the SIMD nature of GPU cores due to the imbalance in the Higion of tokens for a
hash table’s buckets; and (c) non-coalesced global menualgsa patterns as a result
of the randomness of the hash key generation. Furtherme@&gernel for occurrence
table insertion does not fully exploit all GPU cores becainsertion is inherently
serialized over files to avoid write conflicts within the sahaesh table bucket.

We also observe a reduction in the calculation time to therexthat the DMA
overhead has become the largest contributor to overallitinaesingle batch scenario
accounting for almost half of the total execution time. Tloenbined time with disk
I/0 exceeds the total kernel execution time on GPU.

The observation above gives us the motivation to mitigagertemory overhead by
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double buffering the stream and hash tables when the coiprigats larger. While we
cannot hide the DMA overhead of a first batch, the DMA time diseguent batches
can be completely overlapped with the computational kerimedmulti-batch scenario.
Figure 11 shows the execution time of CPU and CUDA with défercorpus sizes.

The execution time of the two methods (both with and with tee af atomic in-
structions) are measured. With almost perfect parallitindetween GPU calculation
and data migration, we can hide almost all the kernel exectitne in the DMA trans-
fer and disk 1/0 time, which indicates a lower bound of thecetion time. As a result
the the asymptotic average batch processing time is alnatfstdmparing to the single
batch execution time, in which case the calculation and DNMAN©t be overlapped.
We also observe that the overall acceleration rates areghd5.20 times faster than
the CPU baseline.
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Figure 12: Clustering 20K Documents in 4 GPUs

5.3. Flocking Behavior Visualization

We have implemented support to visualize the flocking beadrasfi our algorithm
off-line once the positions of documents are saved aftetesation. The evolution of
flocks can be seen in the three snapshots of the virtual ptefRigiire 12, which shows
a total of 20,000 documents clustered on four GPUs. Injtidibcuments are assigned
at random coordinates in the virtual plane. After only 50at®ns, we observe an
initial aggregation tendency. We also observe that the murabnon-attached docu-
ments tends to decrease as the number of iterations insrdaseur experiments, we
observe that 500 iterations suffice to reach a stable statefev as many as a million
documents. Therefore, we use 500 iterations throughouestef our experiments.

As Figure 12 shows, the final number of clusters in this exargyjuite large. This
is because our input documents from the Internet cover widigergent news topics.
The resulting number is also a factor of the similarity thied used throughout the
simulation. The smaller the threshold is / the more strietshmilarity check is, the
more groups we will be formed through flocking.

5.4. Document Clustering Performance

We first compare the performance of individual kernels on &NA GTX 280
GPU hosted on a AMD Athlon 2 GHz Dual Core PC. We focus on twhefhost time-
consuming kernels: detecting neighbor documents (deteétir short) and neighbor
document similarity calculation (similarity for short). ¥ the GPU kernel is mea-
sured in this step. The execution time is averaged over l€pimigdent runs. Each run
measures the first clustering step (first iteration in terffSgure 12) to determine the
speedup over the CPU version starting from the initial statee speedup at different
document sizes is shown in Figure 13. We can see that theasitpikernel on the GPU
is about 45 times faster than on a CPU at almost all documeesd.sFor the detection
kernel, the GPU is fully utilized once the document size exise20,000, which gives
a raw speedup of over 300X.

We next conducted experiments on two clusters located at N&®l ORNL. On
both clusters, we conducted test with and without GPUs edslske hardware config-
urations in Table 1). The NCSU cluster consists of sixteatesavith CPUs and GPUs
of lower RAM capacity for both CPU and GPU, while the ORNL ¢é&rsconsists of
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fewer nodes with larger RAM capacity. As mentioned in Set#idl, our programming
model supports a flexible number of CPU threads that may exbeenumber of GPUs
on our platform. Thus, multiple CPU threads may share one.GfPbur experiments,
we assessed the performance for both one and two CPU threa@GstJ.

Figure 14 depicts the results for wall-clock time on the NCSukter. The curve
is averaged over the execution for both one and two CPU terpad GPU. The er-
ror bar shows the actual execution time: the maximum/mininmapresent one/two
CPU threads per GPU, respectively. With increasing of nunob@odes, execution
time decreases and the maximal number of documents thatcprobessed at a time
increases. With 16 GTX 280s, we are able to cluster one miliocuments within
twelve minutes. The relative speedup of the GPU cluster thee€CPU cluster ranges
from 30X to 50X. As mentioned in Section 4.6, changing the hanof threads sharing
one GPU may cause a number of conflicts in resource. The beheiitlti-threading
in this cluster is only moderate with only up td 8% performance gain.

Though the ORNL cluster contains fewer nodes, its singl&@kemory size is
four times larger than that of the NCSU GPUs. This enables etuster one million
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documents with only three high-end GPUs. The execution iis@own in Figure 15.
The performance improvement resulting for two CPU thread€3?U is more obvious
in this case: at one million documents, three nodes with tRt) @hreads per GPU run
20% faster than the equivalent with just one CPU thread per GRlis llows the
intuition that faster CPUs can feed more work via DMA to GPUs.

Speedups on the GPU cluster for different number of nodesdacdments are
shown in the 3D surface graph Figure 16 for the NCSU clustdrsmall document
scale (up to 200k documents), 4 GPUs achieve the best spéedepd0X). Due to
the memory constraints in these GPUs, only 200k documemtdealustered on 4
GPUs. Therefore, speedups at 500k documents are not deditailst GPUs. For 8
GPUs, clustering with 500k documents shows an increasddrpgance. This surface
graph illustrates the overall trends: For fewer nodes (aRt€), speedups increase
rapidly over for smaller number of documents. As the numibdosuments increases,
speedups are initially on a plane with a lower gradient kefocreasing rapidlye.g.,
between 200k and 500k documents for 16 nodes (GPUs).

We next study the effect of utilizing point-to-point messador our simulation al-
gorithm. Because messages are exchanged in parallel witteighborhood detection
kernel for internal documents, the effect of communicatsodetermined by the ratio
between message passing time and kernel execution tinte 1#btmer is less than the
latter, then communication is completely hidden (over&hdy computation. In an
experiment, we set the number of documents to 200k and varpdimber of nodes
from 4 to 16. We assess the execution time per iteration bsagimgy the communica-
tion time and kernel time among all nodes. The result is shiowfigure 17. For the
GPU cluster, kernel execution time is always less than thesage passing time. For
the CPU cluster, the opposite is the case.

Notice that the communication time for the GPU cluster is piaph includes the
DMA duration for data transfers between GPU memory and heshary. The DMA
time is almost two orders of magnitude less than that of ngespassing. Thus, the
GPU communication/DMA curve almost coincides with that l€Ccluster's commu-
nication time, even though the latter only covers pure netwine as no host/device



Figure 16:Speedups on NCSU cluster

Docs(k)| 5 10 | 20 | 50 | 100 | 200 | 500 | 800 | 1000
4nodes| 74/9 | 67/8 | 64/5 | 58/3 | 52/1.5]49/09| NA | NA | NA
8nodes| 67/12 | 71/11 | 65/8 | 68/6 | 62/3.5| 56/2 |52/1.2| NA | NA
12 nodeq 67/17 | 69/12 | 68/10 | 71/8 | 68/6 | 63/3 |57/1.4 |54/1.2| NA
16 nodes 63/18 | 63/13 | 71/12 | 69/9 | 65/7 |66/4.2 | 59/1.9 | 60/1.5 | 55/1.1

Table 2:Fraction of Communication in GPU and CPU clusters (GPU/Crio|

DMA is required. This implies that internal PCI-E memory bsigsiot a bottleneck for
GPU clusters in our experiments, which is important for perfance tuning efforts.
The causes for this finding are: (a) Network bandwidth is miagter than PCI-E
memory bus bandwidth; and (b) messages are exchanges atydlig same time on
every node at each iteration, which may cause network ctinges

We further aggregate the time spent on message passingwiael thie overall sum
by the total execution time to yield the percentage of timensn communication.
For CPUs, the communication time consists of only the mespagsing time over the
network. For GPUs, the communication time also includesithe to DMA messages
to/from GPU global memory over the PCI-E memory bus. Tabla@s the results
for both GPU and CPU clusters. Generally speaking, in bosesahe ratio of com-
munication to computation decreases as the number of dousiper thread increases.
The raw kernel speedup provided by GPU has dramaticallgasad the communica-
tion percentage. This analysis, indicating communicati®a new key component for
GPU clusters while CPUs are dominated by computation, espdiisjoint optimiza-
tion paths: faster network interconnects would signifitalnénefit GPU clusters while
optimizing kernels even further would more significantlynbét CPU clusters.
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6. Related Work

Our acceleration approach over CUDA to calculate docurtexat TF-IDF val-
ues uncovers yet another area of potential for GPUs wheyeahgerform general-
purpose CPUs. While it has been demonstrated that CUDA gaifisantly speedup
many computationally intensive applications from domauash as scientific compu-
tation, physics and molecular dynamics simulation, imggand the finance sector
[14, 15, 16, 17, 18, 19], acceleration is less commonly useather domains, espe-
cially those with integer-centric workloads, with few eptiens[20, 21]. This is partly
due to the perception that fast (vector) floating-pointgltion are the major contribu-
tor to performance benefits of GPUs. However, careful paralgorithmic design may
results in significant benefits as well. This is the premisewfwork for text search
workload deployment on GPUs.

Related research to document clustering can be dividedvirtaategories: (1) fast
simulation of group behavior and (2) GPU-accelerated imgletations of document
clustering. (1) The first basic flocking model was devised lymdlds [22]. Here,
each individual is referred as a “boid”. Three rules are gjtiad to aid the simula-
tion of flocks: separation, alignment and cohesion. Sinaaid@nt clustering groups
documents in different subsets, a multiple-species flackidSF) model is developed
by Cuiet al. [2]. This model adds a similarity check to apply only the sagian
rule to non-similar boids. A similar algorithm is found by khenet al. [23] with
many parameter tuning options. Computation time becomesaetn as the need
to simulate large numbers of individuals prevails. Ztebwal. [24] describe a way
to parallelize the simulation of group behavior. The siniolaspace is dynamically
partitioned intoP divisions, whereP is the number of available computing nodes. A
mapping of the flocking behavioral model onto streamingebdaGPUs is presented
by Erraet al. [25] with the objective of obstacle avoidance. This studgdates the
most recent language/run-time support for general-p@@RU programming, such
as CUDA, which allows simulations at much larger scale.

(2) Recently, data-parallel co-processors have beerredilto accelerate many
computing problems, including some in the domain of masdat@ clustering. One
successful acceleration platform is that of Graphic PreiogsUnits (GPUs). Parallel



data mining on a GPU was assessed early on by éha. [26], Fanget al. [27]
and Wuet al. [28]. These approaches rely on k-means to cluster a largeespla
data points. Since the size of a single point is sm&d).( a constant-sized vector of
floating point numbers to represent criteria such as siitylam our case), memory
requirements are linear to the size of individuals (datan{s®j which is constrained
by the local memory of a single GPU in practice. Previousaesehas demonstrated
more than five times speedups using a single GPU card oveglgsiode desktop for
several thousands documents [29]. This testifies to thefieoné GPU architectures
for highly parallel, distributed simulation of individubehavioral models. Nonethe-
less, such accelerator-based parallelization is constilaby the size of the physical
memory of the accelerating hardware platfoex,, the GPU card.

7. Conclusion

In this paper, we present a complete application-levelystfdising GPUs to ac-
celerate data-intensive document clustering algorithms.

We first propose a hardware-accelerated variant of the TH¥Hhk search algo-
rithm exploiting GPU devices through NVIDIA's CUDA. We thelevelop two highly
parallelized methods to build hash tables, one with and dtiewut support of atomic
instructions. Even though floating-point calculations@oedominating this text min-
ing domain and its text processing characteristics limatéffectiveness of GPUs due
to non-synchronized branching and diverging, data-degetridop bounds, we achieve
a significant speedup over the baseline algorithm on a gkeperpose CPU. More
specifically, we achieve up to a 30-fold speedup over CPldbadgorithms for se-
lected phases of the problem solution on GPUs with overdltelack speedups rang-
ing from six-fold to eight-fold depending on algorithmicrpaneters.

We further extend our work to a broader scope by implemenérge-scale docu-
ment clustering on GPU clusters. Our experiments show tR&t Busters outperform
CPU clusters by a factor of 30X to 50X, reducing the executiime of massive doc-
ument clustering from half a day to around ten minutes. Osulte show that perfor-
mance gains stem from three factors: (1) acceleration gir@PU calculations, (2)
parallelization over multiple nodes with GPUs in a clusted &3) a well thought-out
data-centric design that promotes data parallelism. Spebdips combined with the
scalability potential and accelerator-based parallgtimaare unique in the domain of
document-based data mining, to the best of our knowledge.
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