
Efficient Clustering for Ultra-Scale Application Tracing I

Amir Bahmania, Frank Muellera,∗

a North Carolina State University Department of Computer Science Raleigh, NC 27695-7534

Abstract

Extreme-scale computing poses a number of challenges to application performance.
Developers need to study application behavior by collecting detailed information with
the help of tracing toolsets to determine shortcomings. But not only applications are
“scalability challenged”, current tracing toolsets also fall short of exascale require-
ments for low background overhead since trace collection for each execution entity
is becoming infeasible. One effective solution is to cluster processes with the same
behavior into groups. Instead of collecting performance information from each indi-
vidual node, this information can be collected from just a set of representative nodes.
This work contributes a fast, scalable, signature-based clustering algorithm that clusters
processes exhibiting similar execution behavior. Instead of prior work based on statis-
tical clustering, our approach produces precise results nearly without loss of events
or accuracy. The proposed algorithm combines low overhead at the clustering level
with log(P) time complexity, and it splits the merge process to make tracing suitable
for extreme-scale computing. Overall, this multi-level precise clustering based on sig-
natures further generalizes to a novel multi-metric clustering technique with unprece-
dented low overhead.

Keywords: Clustering Algorithms, Programming Techniques, Concurrent
Programming, Performance Measurement
PACS: 07.05.Bx

1. Introduction

Scientific computing applications continue to push the envelope on ever increasing
demand for computational power. This trend is driven by a need to increase model
resolution by orders of magnitude combined with multi-level simulation combining
models at different granularity. High-performance computing (HPC) hardware plat-
forms are struggling to keep pace with these demands as a number of challenges are

IAn earlier version of this paper appeared at ICS’14 [1]. This journal version extends the earlier paper by
proposing a new method at the trace creation level called Filtering Function. The paper also compares and
reports the performance of clustering under different trace creation approaches. This work was supported in
part by NSF grants CCF-1217748 and CNS-0958311.

∗Corresponding author
Email addresses: abahman@ncsu.edu (Amir Bahmani), mueller@cs.ncsu.edu (Frank

Mueller)

Preprint submitted to Journal of Parallel and Distributed Computing March 10, 2017

posed in terms of hardware and software advances for next-generation HPC at ex-
ascale Flops (Floating-point operations per second) rates. To effectively utilize such
extreme-scale HPC platforms, developers need to observe and tune application behav-
ior to ensure their algorithms still scale to a larger number of nodes and cores, a process
that is typically repeated for each order-of-magnitude increase in compute capability
(Flops). This process is generally aided by collecting detailed information with tracing
toolsets to determine algorithmic, software and hardware resource shortcomings. This
allows developers to study application behavior of such performance information uti-
lizing performance analysis tools. While applications may be considered “scalability
challenged” when exposed to yet another larger platform, current tracing toolsets also
fall short of exascale requirements: They can no longer ensure a low background over-
head of their tool workload since trace collection for each execution entity is becoming
infeasible at extreme scales for hundreds of thousands of cores and beyond. Most tools
either obtain lossless trace information at the price of limited scalability, such as Vam-
pir [2], or preserve only aggregated statistical trace information to conserve the size of
trace files, as in mpiP [3].

At extreme scale, tracing tools, linked with applications, could severely affect the
efficiency and scalability of the system. The tracing background workload may com-
pete with the application for resources, which can perturb the application’s behavior.
Moreover, due to the large I/O requirement of tracing data required for applications on
top-end HPC platforms, collecting detailed performance information comprehensively
may not be feasible from a scalability perspective. Therefore, tool designers need to
develop new strategies to address these problems.

One effective solution is to cluster processes with the same behavior into groups;
then, instead of collecting performance information from all individual nodes, such
information can be collected from just a single node (or a set of representative nodes)
per cluster group.

This paper proposes a fast, scalable, signature-based clustering algorithm that clus-
ters processes exhibiting similar execution behavior. We apply our clustering algorithm
on trace files created by the public release of ScalaTrace V2 [4], a state-of-the-art MPI
message passing tracing toolset. ScalaTrace V2 provides orders of magnitude smaller if
not near-constant sized communication traces regardless of the number of nodes while
preserving structural information.

ScalaTrace employs a two-stage trace compression technique, namely intra-node
and inter-node compression [5, 6]). It utilizes Regular Section Descriptors (RSDs) to
capture the loop structures of one or multiple communication events. Power-RSDs
(PRSDs) are utilized to recursively specify RSDs in nested loops (see Section 2). After
each node has created its own compressed trace file and the program is completing,
ScalaTrace performs an inter-node compression over a radix tree rooted in rank 0.
During this reduction, internal nodes combine their traces with other task-level traces
that they receive from child nodes. While intra-compression is fast and efficient, inter-
node compression is a costly operation with O(n2 logP) time complexity, where n
(typically a constant) is the number of MPI events in PRSD compressed notation and
P is the number of processes. Our clustering algorithm addresses the high overhead
due to scaling out to 100,000+ processor cores by significantly reducing P to a constant
for most cases (or a sub-linear term of P for the remaining ones), thereby effectively

eliminating this bottleneck.
The proposed clustering algorithm has two levels, the first of which employs Call-

path clustering based on the stack signature of MPI events. We use the stack sig-
nature to distinguish events originating from different call sequences with associated
call paths. The Call-path signature is the aggregated composition of stack signatures
of different events. The first level of clustering distinguishes processes with different
execution structures.

Parameter clustering is the second level of clustering. At this level, we use a dif-
ferent signature called the parameter signature. This signature composes parameters of
the MPI call event, such as count (number of data elements), type (data type), source,
destination, etc., excluding the message content itself. Once the algorithm has clustered
processes with different execution structures, with the help of Parameter clustering, we
distinguish processes with the same execution structure but different parameters.

The main objective of this work is to generate application traces without perturbing
application behavior and with low-overhead that accurately approximate the execution
time of the applications. To evaluate the accuracy and scalability of our algorithm, we
also designed a reference clustering approach based on a reference signature. The ref-
erence signature covers Call-path signatures by adding a sequence number to each MPI
event as well as Parameter clustering by keeping each MPI event’s parameters uncom-
pressed. Detailed implementation information about Call-path+Parameter clustering
and reference clustering algorithms are discussed in the following sections.
Contributions:

• We provide a novel multi-level clustering algorithm. By separating aspects in a
multi-level approach, the algorithmic complexity of clustering is reduced.

• We develop a unique signature-based clustering methodology. Signatures
address the shortcoming of past singular metric approaches to clustering. This
allows clustering to be extended to multi-dimensional domains of diverse
metrics and equally diverse application scenarios. Signatures again reduce
computational clustering overheads since signatures are of constant length.

• We design Call-path clustering of call sequence signatures suitable for program
tracing in general. We further compose domain-specific data via parameter
signatures and derive clusters capturing common behavior across different
execution instances in a highly parallel environment.

• We evaluate the composition of Call-path+Parameter clustering for a set of
HPC benchmarks showing that their effectiveness is capturing representative
application behavior for communication events. The number of clusters is a
constant for most benchmarks and scales sub-linearly in the number of processes
for the remaining ones, a significant improvement over linear increases without
clustering.

• We demonstrate that application performance is preserved when execution traces
composed of a set of just one task per cluster are replayed over the entire original
number of processors, where the behavior of other tasks in a cluster is derived
from just the singular one.

Overall, a novel technical approach for multi-dimensional clustering is shown to
deliver low algorithmic complexity enabling communication tracing at extreme scale
in an unprecedented manner.

2. Background

Our work builds on ScalaTrace as an MPI tracing toolset. ScalaTrace captures
MPI events in the innermost loop as Regular Section Descriptors (RSD), while power-
RSDs capture RSDs (PRSDs) of higher-level loop nests represented as a constant sized
data structure [7]. ScalaTrace not only captures the communication time per each MPI
event, but also captures the execution time between MPI events and stores it in his-
tograms. Consider the example in the following code snippet:

for i = 0→ 1000 do
for k = 0→ 100 do
MPI Send(...);
MPI Recv(...);

end for
MPI Barrier(...)

end for
Trace compression with PRSDs results in the following tuples: RSD1:<100,

MPI Send1, MPI Recv1> denotes a loop with 100 iterations of alternating
send/receive calls with identical parameters (omitted here), and PRSD1:<1000, RSD1,
MPI Barrier1> denotes 1000 invocations of the former loop (RSD1) followed by a bar-
rier.

ScalaTrace has the following three main properties: (1) ScalaTrace provides
location-independent encodings: Communication end-points (task IDs) in SPMD pro-
grams often differ from one node to another. However, their position relative to the
MPI task ID often remains constant. Therefore, ScalaTrace leverages relative encod-
ings of communication end-points, i.e., an end-point is denoted as ±c for a constant c
relative to the current MPI task ID [5]. Consider Fig. 1 with relative encoding of nodes
5 and 9 in terms of communication end-points −4, −1, +1 and +4, i.e., these nodes
have identical relative communication end-points.

(2) ScalaTrace features calling sequence identification: MPI calls, such as a Send,
may be scattered over various locations in a program; to distinguish between events
from different locations, just recording the MPI event type itself is insufficient. Scala-
Trace captures the calling context by recording the calling sequence that leads to the
MPI event, which is obtained from the stack backtrace of an MPI event. Each location
is represented as a unique signature of the stack trace called the stack signature [5].

(3) ScalaTrace provides communication group encoding: ScalaTrace leverages a
special data structure called ranklist to represent a communication group. Using EBNF
notation, a rank list is represented as 〈dimension, start rank, iteration length, stride,

Figure 1: Communication End-point Encoding

iteration length, stride〉, which denotes the dimension of the group, the rank of the start-
ing node, and the iteration and stride of the corresponding dimension, respectively [8].
In Fig. 2(a), the shaded nodes are presented as ranklist 〈2 5 2 4 2 1〉, and in Fig. 2(b),
they are presented as ranklist 〈2 0 4 4 4 1〉. The former reads as a 2D ranklist starting
at task 5, two entries in the first dimension with a stride of 4 (implying tasks 5 and 9)
and two entries in the second dimension with stride 1 (implying tasks 6 and 10).

(a) (b)

Figure 2: Ranklists for Communication Group

3. A Novel Clustering Algorithm

This section details design and implementation of the Call-path+Parameter cluster-
ing and reference clustering algorithms. Call-path+parameter clustering has two main
phases. A first call-path clustering phase discovers processes with different numbers
or sequences of events, and a second phase distinguishes processes with the same call-
path cluster but different event parameters. As noted previously, the reference signature
is the uncompressed version of the Call-path+Parameter signatures.

3.1. Call-Path Clustering

Figure 3 illustrates that Call-path+Parameter clustering has different phases. Dur-
ing the first phase, the algorithm clusters processes with different sequences of MPI
calls, which creates so-called “main clusters”.

A stack signature consists of a number of backtrace addresses of the program coun-
ters (return addresses), one for each stack frame. Our Call-path signature is a 64-bit
signature. To represent large stack signatures as 64 bits, we computed the exclusive or
(XOR) of each part with the current 64-bit signature value.

Figure 3: Overview of Proposed Clustering Algorithm

Table 1: Components of Parameter Signature

Component Descriptions Bit Positions
Average COUNT sent or received for MPI events 0-15
DEST: Average of the relative address of destinations of MPI events 16-31
SOURCE: Average of the relative address of sources of MPI events 32-47
MPI Data Types: such as 48:MPI CHAR, 49:MPI INTEGER, etc. 48-54
MPI Operation Types: such as 55:MPI MAX, 56:MPI MIN, etc. 55-61
MPI Communicator Type: such as 55:MPI COMM SELF, etc. 62-63

After creating the 64-bit version of stack signatures, in order to create the all-
path signature, we compute the XOR of all 64-bit stack signatures. In most bench-
marks, capturing the calling context is sufficient for distinguishing MPI events from
each other. However, the Multi-Grid (MG) benchmark from the NAS Parallel Bench-
mark (NPB) suite features a case where two processes with same number of events
and similar calling contexts experience different orders among their events. Therefore,
to capture not only the calling context but also the order of events, we multiply the
modulo 10 plus 1 of the sequence number of each event by the 64-bit stack signature
and then use this value in the call-path signature.

Notice that any low-overhead hash function can result in conflicts, e.g., when re-
cursion or function pointers are used. However, this is not the case for conditionals
resulting in alternating call sequences like a()→b() and b()→a() since the initial calls
would originate from different caller program counters (of then/else branch). Most

HPC codes neither utilize function pointers nor recursion, in part due to caller over-
head and inferior compiler optimization that results from such codes (due to pointer
aliasing and data dependence analysis for parallelization, among other problems). Fur-
thermore, the number of different call paths for the set of HPC benchmarks codes that
we tested is limited to a small constant (< 10). We observe disjoint call paths for all
tested HPC codes with our hash technique in practice so that more expensive hashes
are not needed (but we could alert users to collisions or even automatically trigger more
complex hashes if needed).

Fig. 3 provides a simple illustration of Call-path clustering, where processes of dif-
ferent shapes are grouped into different clusters. This operation occurs on a radix tree,
i.e., each node receives the call-path signatures of its children. Then, it compares its
own call-path signature with those of its children. Finally, it sends different signatures
and corresponding ranklists to its parent. At the top of the tree, node 0 receives all of
the different signatures and their ranklists.

Node 0 broadcasts the overall clustering result, so all nodes are informed of their
respective cluster membership. In our implementation, we considered the start rank
of each cluster ranklist the head of the cluster. The computational cost of these two
operations is O(logP), where P denotes the number of processes.

During the second phase, our algorithm applies parameter clustering. We use a
different signature called the parameter signature, which, similar to the call-path sig-
nature, is 64 bits long. This signature is composed of the parameters of the MPI event,
such as its count, type, source, destination, etc., see Table 1. Note that we did not
include the TAG parameter in the parameter signature. While we could easily add the
TAG parameter to the signature, we found few differences in the call-path signatures
and observed that SRC/DEST parameters could capture the TAG differences in practice
for our benchmark set.

3.2. Parameter Clustering

Parameter clustering is the second phase of the proposed algorithm. Similar to the
first phase, this phase was implemented over a radix tree. The main difference was
that each cluster had similar operations on parameter signatures over a radix tree of its
own members. At the end of this phase, the head of the clusters identified in phase
one know all of the different parameter signatures in their own “territory” (cluster).
Therefore, with the help of parameter clustering, we were able to distinguish processes
with the same execution structure but different parameters. Fig. 3 illustrates parameter
clustering symbolically, where processes with the same shape but different colors are
grouped into different clusters. The computational cost of our clustering algorithm at
this phase was also O(logP).

By the end of this stage, the algorithm has clustered all processes with disjoint be-
havior. Then, the algorithm creates the complete trace based on the cluster information.

3.3. Creating a Complete Trace

The next phase consists of selecting a head of each cluster as the representative
rank. We choose the start rank from each different sub-cluster. The reason the algo-
rithms chooses the start rank is after clustering, nodes in each cluster are all identical in

terms of parameters (same Call-path and same parameter signatures). Therefore, con-
sidering the collected signatures, selecting the first one or any other process will pro-
vide the same results. Unlike traditional clustering, which is a top-down process, cre-
ating the full trace is a bottom-up process. All similar processes are grouped together
after Call-path+Parameter clustering, and each representative updates the ranklists ac-
cordingly to include the members of its own sub-cluster. For instance, if the cluster
contains nodes {0,1,2,3,4} and node 4 is selected as the cluster representative, all 1D
ranklists in trace 4 convert <1 4 1 0> to <1 0 5 1>. This change covers all other
members of the clusters.

After updating the ranklist, there are different approaches to create the global trace
file (also see Table 2):
1) Default version: the representatives are merged within each main cluster. Sub-
clusters with different parameters, such as A1 and A2, are merged pairwise linearly at
a node within a radix tree (facilitating relative encoding matches [5]) so that the over-
all reduction over the tree is logarithmic in complexity. For instance, at the reduction
phase in Fig. 3, two triangles with different colors are merged into a single trian-
gle. The cost of these two operations is O(n logP), where n denotes the size of the
PRSD-compressed intra-node event trace (typically a constant) and P is the number of
processes.

The inter-compression reduction of ScalaTrace [5] at each node in the radix tree is
a costly operation with O(n2) complexity, where n is the size of the PRSD-compressed
intra-node event trace. When using ScalaTrace without clustering, all processes par-
ticipate in this operation over a radix tree. The cost of operation is O(n2 logP). With
the clustering algorithm, on the other hand, only a set of representatives with different
call-path signatures have to participate in this operation. During the last phase of Fig.
3, three different shapes are merged.
2) Function version: Because some benchmarks have unique parameters per process,
the number of sub-clusters could increase linearly with the number of processes. This
could result in scalability limitations. To tackle this problem, we devised two strate-
gies: 1) User Plug-in Functions: At the level of building a signature, the system only
considers non-unique parameters and filters out certain MPI parameters indicated by
the user. It then continues clustering based on the created signatures. At replay time,
upon encountering MPI events with unique parameters, it leverages user plug-ins to
calculate and handle the unique value of MPI parameters correctly. 2) Filtering Func-
tion: During parameter clustering, the algorithm keeps track of changes of parameters.
At the end of clustering, it knows which parameters contributed significantly to the cre-
ation of new clusters. Instead of sending its entire trace file to the parent (in an effort
to linearly merge it), each representative sends only different parameters and filters out
value-identical parameters. Details of our implementation are provided in Section 5.

As previously mentioned, the cost of the clustering algorithm is O(logP), the cost
of the first level of merging is O(n logSC), where SC is the maximum number of sub-
clusters within a main cluster, and the cost of the second level is O(n2 logMC), where
MC is the number of different call-path signatures or main clusters.

Due to the nature of parallel programs, as we expected and observed in most of
the parallel benchmarks, the number of processes with different execution structures
is very small. Since the set of different call-path signatures is so small (mostly just a

Table 2: Trace Creation

Trace Creation Method Suitable Benchmarks
Default Version LU, MG, SP, BT, S3D, IS
User Plug-in Functions CG, FT
Filtering Function POP, CG, FT

constant), the clustering algorithm reduces the computation time significantly.
Given the space complexity, the best scenario would be to capture application be-

havior in only one cluster, meaning there is only one execution sequence / parameter
set. In this case, at the root node, there will be one signature and one ranklist containing
all the node ranks. The exact size will be eight bytes for the signature and ten bytes, or
five integer values, for the ranklist.

In the worst case scenario in which each program has its own unique behavior,
processes at different levels of the tree have different complexities. At the bottom of
the tree, each leaf node has one ranklist and one signature. On the other hand, the root
node has P ranklists and P signatures.

3.4. Reference Signature
A legitimate concern after introducing Call-path+Parameter clustering is to ensure

that the proposed clustering algorithm does not lose important information. As noted
previously, to evaluate the accuracy and scalability of the algorithm, we create a refer-
ence clustering approach that uses a reference signature. The reference signature is a
sequence of events, covers call-path signatures by adding a sequence number to each
MPI event, and features parameter clustering by keeping each MPI event’s parame-
ters uncompressed. The computational complexity of this clustering is O(n×m× s),
where n is the number of events (i.e., not just the size of the PRSD-compressed intra-
node event trace), m is the number of disjoint events’ parameters and s is the number
of disjoint reference signatures. The space complexity is a function of the total number
of events.

In Section 5, we provide the results of the experiments conducted on differ-
ent benchmarks to compare the results of space complexity for the multi-level call
path+parameter clustering approach and the reference signature.

4. Experimental Setup

We utilized a state-of-the-art cluster at our exposure to conduct experiments. All
machines were 2-way SMPs with AMD Opteron 6128 processors with 8 cores per
socket. Each node is connected by QDR InfiniBand. This is the largest platform we
were able to obtain access to at this time. We tested call-path+parameter clustering,
reference clustering and no clustering, which is the default version of ScalaTrace for
the NAS Parallel Benchmarks (NPB) and Sweep3D, the Parallel Ocean Program
(POP) Each experiment was run five times, and the average value and standard devia-
tion were reported. The aggregated wall-clock times across all nodes for the mentioned
benchmarks is calculated and reported. We conducted experiments with the NPB

suite (version 3.3 for MPI) with class C input size [9] and Sweep3D [10]. Sweep3D
is a solver for the 3-D, time-independent, particle transport equation on an orthogo-
nal mesh. It uses a multidimensional wavefront algorithm for “discrete ordinates” in
a deterministic particle transport simulation. In our experiments, the problem size is
100×100×1000. POP [11] is an ocean circulation model developed at Los Alamos Na-
tional Laboratory. Our experiments exercise a single degree grid resolution in which
the problem size is varied based on number of processes, and the individual block size
is 16×16.

5. Results and Analysis

As previously noted, ScalaTrace’s inter-node compression is a costly operation with
O(n2 logP) complexity, where n is the size of the PRSD-compressed intra-node event
trace and P is the number of processes. To remove this effective bottleneck, we applied
our logarithmic algorithm to find processes that exhibit different behavior. Also, we di-
vided the merge process into two steps: (1) merging sub-clusters into main clusters
over a local radix tree with O(n logSC) complexity, where SC is the maximum num-
ber of sub-clusters within a main cluster, and (2) merging main clusters over a radix
tree with O(n2 logMC) complexity, where MC is the number of main clusters. The
second level of merging is the most costly operation. Therefore, our first experiment
was to determine MC for different benchmarks.

Fig. 4 depicts the topologies of different benchmarks at size 16 (processes). In
this figure, main clusters are separated by solid lines, and sub-clusters are separated
by dotted lines (e.g., BT has one main cluster and three sub-clusters). Table 3 shows
the number of main clusters MC and sub-clusters SC for these benchmarks. Ac-
cording to our experiments, for both weak and strong scaling, the reported number of
clusters is constant. Also, the number of clusters is constant for the Sweep3D bench-
mark with different problem sizes. Notice that the total number of clusters is given
by max(MC,SC), which indicates how many different traces ultimately have to be
collected for communication characterization.

Table 3: Number of Main and Sub Clusters

Benchmarks Sweep3D BT CG IS LU SP FT MG POP
of Main Clusters MC 9 1 1 3 9 1 1 2 1
of Subclusters SC 1 3 4 1 1 3 1 8 16

Sweep3D: Problem size: 100×100×1000, # processes: any valid one
BT,IS,SP,FT: Class: any, # processes: any valid one
MG,CG: Class: any, # processes: 16
POP: Problem size: 512×512 blocks, Individual block size: 16×16, # processes: 16

Fig. 4 and Table 3 indicate the following:
(1) Integer Sort (IS) has three main clusters and no sub-clusters. These three

groups of processes display very similar execution behavior, except when each pro-

(a) IS (b) BT+SP (c) Sweep3D+LU

(d) MG (e) CG+FT+POP

Figure 4: Topology of Different Benchmarks for 16 Processes Through Call-
path+Parameter Clustering

cess sends its largest key value to the next process. In this phase of the code, process
zero does not receive any value, and process comm size− 1 does not send any value.

(2) The Block Tri-diagonal solver (BT) and the Scalar Penta-diagonal solver (SP)
each have only one main cluster, meaning that all processes have the same sequence
of MPI events. However, parameter clustering captures three sub-clusters with differ-
ent communication patterns. Another issue is the COUNT value, which could differ
slightly for some events of processes with the same communication pattern (e.g., 9526
and 9500). To compensate for such negligible differences, we implemented a filter that
considers two COUNT values to be similar if they differ by only a small percentage
(threshold-based filtering), and we record their average. The difference threshold in
our experiments is 5%.

(3) The Sweep3D neutron-transport kernel and the Lower-Upper Gauss-Seidel
solver (LU) have nine main clusters and no sub-clusters, meaning that processes within
the same main cluster display the same communication pattern. Sweep3D is a sten-
cil code in which each process must wait for boundary information from neighboring
processes to the north and west before computing values within its subdomain [12].
Similar to Sweep3D, LU is also a stencil code [13] that creates nine different main
clusters.

(4) The number of main Multi-Grid (MG) clusters is not constant; as shown in
Fig. 4, for 16 processes, there are two clusters, and this number increases sublinearly
(e.g., (P=32, MC=4), (P=64, MC=8), (P=256, MC=16), (P=1024, MC=36), etc.) while
SC = 4 ×MC for this benchmark. MG is a simplified multigrid kernel that solves
3D Poisson equations. This code requires 2n processes, where n is an integer num-
ber. The partitioning of the grid into processes occurs such that the grid is repeatedly
halved along the Z, Y , and X dimensions, respectively [9]. This behavior is due to the

following two main reasons [14]: (i) The number of processes assigned to each grid
depends on the problem size and the total number of processes P . MG might reduce
the number of processors assigned to compute on a coarser grid in order to increase
the computation-to-communication ratio. Therefore, some processes may participate
in more MPI events; (ii) Two types of communication occur in MG: a boundary ex-
change and an inter-processor extrapolation/interpolation between two adjacent grid
levels. Because MG changes the grid resolution at each iteration of the algorithm, these
boundaries change. As the algorithm moves from coarser to finer, more boundaries are
created.

(5) Conjugate Gradient (CG), Fast Fourier Transform (FT) and Parallel Ocean
Program (POP) each only have one main cluster, meaning that there is only one exe-
cution structure. However, many sub-clusters exist within the main cluster. In CG and
POP , each process has its own unique communication pattern. FT have one main
cluster and several sub-clusters.

It is beneficial to our approach that these benchmarks only have one main cluster, as
this reduces the computational complexity from O(n2) to O(n). To further reduce the
cost of linear compression at the parameter clustering level, one solution is to forcibly
“merge” events with different parameters. For example, for CG, the parameter signa-
ture indicates that events differ in SOURCE and DEST ; therefore, all events with
SOURCE or DEST may be merged, while other parameters are preserved. This may
still result in a large numbers of clusters.

The alternative is for users to supply a plug-in function capturing unique parameters
that otherwise would increase the total number of clusters because they can (at best) be
merged forcibly. For instance, Fig. 6 shows a CG communication matrix as a heat map
for 64 processes, where the x- and y-axes denote mutual communication end-points,
and the communication intensity is depicted within a color range (cold/blue=low to
hot/red/yellow=high). The orange points (close to the diagonal) in this figure indicate
communication occurring with a high frequency. The clustering algorithm can cap-
ture the iterative behavior of the orange points easily. However, even though we are
using relative addresses for SOURCE and DEST , the blue points (further from the
diagonal) indicate infrequent communication unique to each process. To capture this
secondary communication pattern while simultaneously reducing the number of sub-
clusters, we can use the following formula (as a user-provided plug-in function for the
CG code):

if npcols.eq.nprows then
exch proc = mod(me, nprows) ∗ nprows+me/nprows

else
exch proc = 2 ∗ (mod(me/2, nprows) ∗ nprows+me/2/nprows) +mod(me, 2)

end if
Here, npcols denotes the number of processes per column, and nprows is the

number of processes per row. In CG, the total number of processes equals the number
of processes per row times the number of processes per column. If the total number
of processes is not a square, then the number of processes per column is twice that of
the number of processes per row. exch proc is the transpose exchange process, and
me is the process rank. The information in Table 4 indicates that once this function is
supplied, the number of sub-clusters decreases significantly.

 0.1

 1

 10

 100

 1000

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(a) BT

 0.1

 1

 10

 100

 1000

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(b) CG

 0.01

 0.1

 1

 10

 100

 1000

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(c) FT

 0.01

 0.1

 1

 10

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(d) IS

 1

 10

 100

 1000

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(e) LU

 0.1

 1

 10

 100

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(f) MG

 0.1

 1

 10

 100

 1000

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(g) SP

Figure 5: Execution Times for Inter-Node Compression Variants and Entire NAS
Benchmarks(Strong Scaling) — Nodes/Tasks=1/16

FT solves a three-dimensional partial differential equation (PDE) using fast
Fourier transform (FFT). Because all of the processes have the same sequence of
events, there is only one main cluster. However, two parameters, COLOR and KEY
used in two MPI Comm Split events, have different values for different processes.
Similar to CG, we can use the following formula (as a user-provided plug-in function
for the FT code):

if np.eq.1 then
np2 = 1

else if np.le.nz then
np2 = np

else
np2 = np/nz

end if
me1 = me/np2
me2 = (me%np2)

Here, me is the process rank, me1 and me2 are process coordinates, np is the
number of processes and nz is the size of the z dimension. Furthermore, me1 and
me2 are assigned to KEY and COLOR in one call and vice versa in another call
to MPI Comm Split. We also kept track of the global state to assign these values
correctly.

Figure 6: CG Communication Matrix

Table 4: Number of Clusters for CG

Num. of Processes 16 64 256 1024
Number of Main Clusters 1 1 1 1
Number of Subclusters 4 8 16 64

POP achieves parallelism through domain decomposition, similar to other climate
or fluid dynamics models. It divides the input domain into pieces that each node can
compute relatively independently. To increase this independence, ghost cells are de-
fined so that a node will have some information about the state variables of neighboring
nodes [15].

Even though Call-path+Parameter clustering performs well with user-provided
plug-in functions for benchmarks such as CG and FT, we found it difficult for users
to provide such functions for complex benchmarks such as POP. As previously noted,
for CG, FT and POP, the number of sub-clusters increases linearly with the number
of processes. However, we also observed that the number of call-path clusters is very
small. Basically, such traces mostly differ in terms of parameters, not call-path. In-
stead of sending the complete trace files, we therefore send only those events with
different parameters to create the global trace within each main cluster. We refer to this
as Call-path+Parameter Clustering with Filtering.

When the number of parameter clusters exceeds the threshold (where the threshold
is set to P/2 here), our implementation of Call-path+Parameter Clustering switches
dynamically to sending only different parameters within main clusters.

In Subsection 5.2, not only did we test this implementation on POP, but we also
tested Call-path+Parameter clustering both with user plug-ins and filtering functions
for CG and FT.

The next two subsections present the results of our algorithm under both strong and
weak scaling application execution scenarios.

5.1. Strong Scaling
Under strong scaling, the number of processes is increased under the same pro-

gram input. We tested our clustering algorithm on the NAS benchmarks under strong
scaling. Fig. 5 depicts four bars per configuration: (1) the execution cost for the NAS
benchmarks during the inter-node compression step for Call-path+Parameter cluster-
ing, (2) reference clustering, (3) without clustering and (4) application execution time
with instrumentation. The x-axis of the graph denotes the number of processes partici-
pating in inter-node compression. The y-axis is the execution time in seconds shown on
a logarithmic scale. The execution cost without clustering refers to regular inter-node
reduction/compression within ScalaTrace V2.

As the figure shows, Call-path+Parameter clustering has orders of magnitude
smaller cost than without clustering. For all benchmarks, the cost of call-path clus-
tering is less than 50% of total program execution time — in contrast to the original
inter-node compression without clustering of ScalaTrace, which sometimes exceeds
the application runtime for larger number of processes. Notice that these benchmark
runtimes are relatively short (seconds) while large-scale applications generally run for
hours but experience similar inter-node compression costs as these benchmarks. Call-
path+Parameter clustering also has orders of magnitude smaller execution cost than
reference clustering for most benchmarks. This is due to the number of processes
involved in inter-node compression, as depicted in Table 5 for P=256. For MG, Call-
path+Parameter clustering and reference clustering have almost the same number of
parameters. Nonetheless, the cost is smaller than that of reference clustering because
most of the clusters in Call-path+Parameter clustering are sub-clusters. For some P s,
such as P=256 for BT and LU or P=1024 for SP, the call-path+Parameter clustering
cost is very close to the reference signature because, after clustering, the number of
processes involved in inter-node compression is in the same order of magnitude. How-
ever, at the end of this section, we show that Call-path+Parameter clustering performs
significantly better than reference clustering in terms of space complexity, including

 0

 100

 200

 300

 400

 500

 600

 700

 800

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(a) BT

 0

 20

 40

 60

 80

 100

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(b) CG

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(c) FT

 0

 1

 2

 3

 4

 5

 6

 7

 8

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(d) IS

 0

 100

 200

 300

 400

 500

 600

 700

 800

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(e) LU

 0

 10

 20

 30

 40

 50

 60

 70

 80

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(f) MG

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(g) SP

Figure 7: Replay Times (Strong Scaling) — Nodes/Tasks=1/16

but not limited to these configurations. Notice that that application time of IS is lower
at P=256 than at P=1024 indicating that there is not enough work per node left at the
latter, i.e., it has hit its limit under strong scaling.

Table 5: # Processes Involved in Inter-Node Compression for Clustering Approaches,
P=256

Pgm Call-path+Param Cl. Ref. Cl. w/o Clustering
BT 3 41 256
CG 16 256 256
FT 1 256 256
IS 3 21 256
LU 9 16 256
MG 64 72 256
SP 3 53 256

To assess the accuracy of the trace files created by the clustering algorithm, we
utilized ScalaReplay, a replay engine operating on the application traces generated by
ScalaTrace. It interprets the compressed application traces on-the-fly, issues MPI com-
munication calls accordingly, and simulates computation time as sleeps [16]. We en-
hanced this replay capability so that the trace of a single node representing a cluster is
also replayed by all other nodes in the same cluster. These other nodes re-interpret the
single node trace and transpose any parameters relative to their task ID automatically
because ScalaTrace utilizes relative encodings of end-points, while all other parameters
are taken verbatim from the lead node of the cluster. The accuracy of the replay time
for traces is defined as

ACC = 1− |t− t′|
t

,

where t is the replay time without clustering and t′ is the replay time for clustered
traces. Conversely, the error rate is 1−ACC.

Fig. 7 depicts the overall trace-file replay time, depicted in seconds on a linear y-
axis (1) without, (2) with Call-path+Parameter, (3) with reference clustering and (4)
of the non-instrumented original application. The x-axis of these graphs denotes the
number of processes participating in the inter-node compression phase for the three
different methodologies. Replay under Call-path+Parameter clustering is 88% accurate
relative to application runtime over all benchmarks and configurations, which is the
same accuracy we observe without clustering, where higher accuracy is observed for
longer-running experiments (more representative) than for shorter running ones (an
artifact of strong scaling). This equally applies to call-path+Parameter clustering with
user-provided functions (CG+FT) and without (all others) showing that replaying with
user-provided specification poses no problems.

5.2. Weak Scaling
Weak scaling typically involves scaling the problem size and the number of proces-

sors at the same rate such that the problem size per processor is fixed. (Weak scaling

Table 6: Number of Processes Involved in Inter-Node Compression — Weak Scaling

Processes 16 64 256 1024
BT Prob. Size 603 1013 1603 2553

BT # Clusters 3 3 3 3
FT Prob. Size 512× 2562 5123 10242 × 512 2048× 10242

FT Clusters 1 1 1 1
LU Prob. Size 643 1283 2563 5123

LU # Clusters 9 9 9 9
POP Prob. Size 5122 7682 8962 10242

POP # Clusters 1 3 2 2
Sweep 3D Problem Size Per Process 1002 × 1000

Sw3D # Clus. 9 9 9 9

may sometimes also refer to scaling the number of nodes at the same rate as the mem-
ory footprint or computational complexity of some algorithm, which we consider as
well in the following.) Due to input constraints / lack of weak scaling inputs, we only
report these results for the benchmarks for which weak scaling inputs are available
natively through the benchmark or when available from other work [8].

As Table 6 indicates, weak scaling and strong scaling produce an equal number
of clusters for NAS BT, LU, FT. The first row of each table indicates the number of
processes (MPI tasks); the second one the overall problem size for BT, FT and LU. This
table presents the number of main clusters for POP under weak scaling. The number of
main clusters, though very small, varied for different problem sizes, mainly because of
ghost cells. For Sweep3D, it indicates the per process size; and the last one the number
of clusters. We observe the number of clusters for both types of scaling have the same
cardinality and identical member sets.

The execution times in seconds on a logarithmic scale on the y-axis of BT, LU,
FT, Sweep3D and POP are reported in Fig. 8 for different numbers of processors (x-
axis). Just as seen for strong scaling, Call-path+Parameter clustering has orders of
magnitude shorter execution time than without clustering under weak scaling as well.
While Call-path+Parameter and reference result in similar cost for their cluster forma-
tion during tracing, we later show that the former outperforms the latter significantly
in terms of space complexity. For POP, the execution cost of reference clustering com-
pared to without clustering increases very fast, mainly because of the large number of
MPI events (approximately 1500), which creates a large reference signature for each
process.

Fig. 9 depicts the replay times in seconds on a linear scale (y-axis) for differ-
ent number of processors (x-axis). In analogy to strong scaling, it illustrates that the
overall trace-file replay time under Call-path+Parameter clustering is 93% relative to
application runtime over all benchmarks and configurations (except for POP), which
the same as without clustering. The standard deviation of replay traces is always less
than 2 except for Sweep3D, where it is 12, which is still small compared to its large
execution time of ≈ 1500 seconds.

The execution times of POP include a filtering function for Call-Path+Parameter
clustering. For POP, notice the difference between replay and application time. Yet,

replay times with and without clustering are very close. We analyzed this behavior
and found that it is due to ghost cell updates in each timestep (e.g., ghost cell updates
for forcing terms leading into the barotropic solver). These ghost cells update calls
originate from different locations in the program, which creates new stack signatures.
Even though they are similar sequences of calls, intra-node compression is ineffective
due to a stack signatures mismatch (even for the same MPI calls at the leaf of the
call chain). We modified the POP trace without clustering to compressed these MPI
calls. Consequently, the replay time becomes very close to the application time (over
80% accurate), i.e., replay inaccuracy is reduced significantly. This indicates that we
can further improve our intra-node clustering by allowing interim call stack frames to
differ as long as higher (close to the top) and lower (close to the leaf) frames match.
This is subject to future work. We only report weak scaling for POP since strong
scaling has similar results. The challenge lies in intra-node compression and is agnostic
of strong/weak scaling, so reporting one seems sufficient (as the other does not add
anything).

Fig. 10 depicts the execution times of CG and FT both with plug-in and filtering
functions of the proposed clustering algorithm. As shown, these two cases had similar
runtime costs.

5.3. Cost of Clustering
To separately show the small cost of clustering and its high accuracy, we conducted

experiments with Sweep3D (Input size: 100*100*1000) for the following three differ-
ent cases:
1) inter-node compression for only the nodes representing clusters (after clustering in
a separate second run);
2) inter-node compression with Call-path+Parameter clustering; and
3) Inter-Node Compression w/o Clustering, i.e., ScalaTrace Original version (# of clus-
ters = P). Fig. 11(a) shows the clustering cost during inter-node compression in the first
and second column. The difference in costs is small (< 11%). Also, inter-node com-
pression without clustering has a much higher cost.

Fig. 11(b) illustrates that replays are nearly identical irrespective of which method
is used, i.e., there is no noticeable perturbation/imbalance effect. Relative accuracy of
replay is high.

To assess the cost of clustering vs. that of inter-node compression (i.e., merging
representatives), we conducted another experiment. Fig. 12 presents the cost of call-
path clustering vs. inter-node compression step. For S3D, LU, MG, and POP bench-
marks that they have a larger number of clusters, we observe that inter-node com-
pression cost increases. This is because more clusters are involved in the inter-node
compression step, and the sizes of traces slightly increases. As expect, by increasing
the number of processes, the cost for clustering also increases. For BT, SP, CG, FT and
IS, the inter-node compression cost is significantly less than that of other benchmarks.
This is because the number of clusters is constant for these benchmarks. The cluster-
ing cost still differs between benchmarks since each of them have a unique number of
events and number of parameters subject to parameter signatures creation. Note, the
inter-node compression cost of POP was around 90 seconds, but we cut the y-axis at
14 seconds for readability.

Table 7: Average Space Complexity Per Process — P=256

Call-Path+Param Cluster. Ref. Clustering W/o Clustering
pgm avg trace sizeMC SC avg Space # clusters avg space # clusters avg space
BT 72KB 1 3 0.08 KB 41 108.49 KB 256 71.71 KB
CG 44KB 1 16 0.36 KB 256 376.32 KB 256 43.82 KB
FT 8KB 1 1 0.06 KB 256 70.46 KB 256 7.96 KB
IS 8KB 3 1 0.15 KB 21 3.62 KB 256 7.96 KB
LU 72KB 9 1 2.43 KB 16 25.05 KB 256 71.71 KB
MG 216KB 16 64 14.23 KB 72 733.83 KB 256 215.15 KB
SP 68KB 1 3 0.10 KB 53 133.06 KB 256 67.73 KB

Sweep3D 28KB 9 1 1.06 KB 9 4.86 KB 256 27.89 KB
POP 1.1MB 1 256 16 KB 256 1.1 MB 256 1.09 MB

5.4. Space Complexity

The objective of the last experiment is to assess the space complexity. We calcu-
lated the number of bytes required for the different clustering methods. Table 7 shows
the space complexity of all benchmarks for P=256.

Average space per process for without clustering is calculated as follows:

AvgSpaceperProcessno cluster =
AvgTraceSize ∗ (P − 1)

P

Here, all processes send their trace files to their parents over a radix tree, except for the
root process itself. For reference clustering, the average space is as follows:

P1 = AvgTraceSize× (C − 1)

P2 = P ×AvgSignatureSize

P3 = AvgSignatureSize× C × (P − 1)

AvgSpaceperProcessref cluster =
P1 + P2 + P3

P

where C is the number of clusters, P2 and P3 denote the space of clustering, and P1
is the space of inter-node compression. Finally, for Call-path+Parameter clustering, we
have

P4 = AvgTraceSize× (MC − 1)

P5 = AvgSignatureSize× (MC + SC)× (P − 1)

AvgSpaceperProcesscall−path+param =
P2 + P4 + P5

P

where MC is the number of main clusters, SC is the number of sub-clusters, P2 and
P5 denote the space of clustering, and P4 denotes the space of inter-node compression.

Table 7 depicts trace sizes and space metrics for the three clustering types with
256 processes. We observe that reference clustering generally increases the average

space per process over no clustering by a factor of 1.4-10 depending on the bench-
mark — except for Sweep3D, IS and LU, which is due to the small number of clusters
involved in inter-node compression for those three benchmarks. Call-path+Parameter
reduces average space per process by 2-3 orders of magnitudes to 0.1-6% of that with-
out clustering depending on the benchmark. The small size of the signatures and the
small number of processes involved in inter-node compression account for this dif-
ference. Reference clustering generally significantly increases the average space per
process over call-path+Parameter clustering by up to three orders of magnitude, i.e.,
more specifically a factor of 4.5-1356 depending on the benchmark. The execution
cost for both is comparable because it is a function of the number of clusters, and
both clustering methods have a similar number of clusters. However, the cost of Call-
path+Parameter is often lower than for reference clustering since MC + SC tends to
be lower than C in P3 and P5, respectively, as well as due to more effective multi-level
clustering optimizations, including plugins.

Figure 13 shows the space complexity for Call-path clustering for different numbers
of processes (16-1024). The x-axis indicates the benchmarks and the y-axis depicts the
average memory space in bytes on a logarithmic scale. BT, CG (plug-in version),
FT (plug-in version) and SP benchmarks have almost the same space complexity (on
average per node) for equivalent number of processes. This is because they only have
one call-path cluster. For IS, LU, and S3D the number of call-path clusters is larger
than one, but still constant. Therefore, the average space per each node drops when
increasing the number of processes. The number pf clusters changes for both POP (see
Table 6) and MG (see discussion around Fig. 4), the number of call-path clusters varies,
which explains why we observe different space complexities.

Overall, the small footprints of traces and space requirements illustrate the benefits
of multi-level clustering, which facilitates analysis without incurring extra cost during
tracing or sacrificing accuracy, as results demonstrate.

6. Related Literature

A commonly utilized tracing tool for MPI communication is Vampir [2], a com-
mercial post-mortem trace visualization tool. It uses profiling extensions to MPI and
facilitates the analysis of message events of parallel execution, helping to identify bot-
tlenecks and inconsistent run-time behavior. While the trace generation supports filter-
ing on trace files, which are stored locally, trace complexity increases with the number
of MPI events in a non-scalable fashion. HPCTOOLKIT [17] uses statistical sampling
to measure performance; it provides and visualizes per process traces of sampled call
paths. In HPCTOOLKIT, all of the call paths are presented for all samples (in a thread)
as a calling context tree (CCT). A CCT is a weighted tree whose root is the program
entry point and whose leaves represent sample points. As noted previously, sampling
cannot produce accurate data but rather represents a statistical and lossy method. For
instance, if the sampling frequency is too low, results may not be representative. Con-
versely, if it is too high, measurement overhead can significantly perturb the applica-
tion. In HPCTOOLKIT, finding an appropriate rate of sampling is complicated, and the
cost of having a dense CCT is high. In contrast, clustering with ScalaTrace provides a

full trace file without resorting to sampling and it does so at very low cost by leveraging
a 64-bit stack signature.

Another approach, utilized in [18] and [19], features k-means clustering to select
representative data for migration of objects in CHARM + +. A density-based clus-
tering analysis was proposed in [20], [21] and [22] that can use an arbitrary number of
performance metrics to characterize the application (e.g., instructions combined with
cache misses to reflect the impact of memory access patterns on performance). The pro-
posed clustering algorithms are expensive in terms of time complexity, especially for
extreme-scale sizes. Clustering with ScalaTrace is suitable for exascale computing be-
cause it not only utilizes a low overhead clustering algorithm with a logP complexity,
but it also divides clustering and merge processes into two different phases. Separating
the clustering algorithm reduces the complexity of the merge process significantly.

Phantom [23], a performance prediction framework, uses deterministic replay tech-
niques to execute any process of a parallel application on a single node of the target
system. To reduce the measurement time, Phantom leverages a hierarchical clustering
algorithm to cluster processes based on the degree of computational similarity. First,
the computational complexity for most hierarchical clustering algorithms is at least
quadratic in time, and this high cost limits their application in large-scale data sets [24].
Second, because the paper focuses on performance prediction, it emphasizes compu-
tational similarity and does not sufficiently cover communication behavior. Reporting
one or two clusters for SP and BT and one cluster for CG shows how their orthogonal
objectives result in different clustering decisions.

Another scalable clustering algorithm for tracing toolsets is CAPEK [25], a parallel
clustering algorithm based on CLARA [26] that enables in-situ analysis of performance
data at run time. Even though the algorithm is logarithmic, the process of clustering and
creating the global trace file is based on trace sampling. The merging overhead and the
process by which the sample traces are expanded to present the overall behavior of the
cluster apply to the duality of “effort and progress” metrics, but this does not generalize
to n-dimensional clustering of metrics while our signature-based parameter clustering
does.

For instance, a single parameter, such as the count, could produce a significant
difference between two processes with the same execution structure. In contrast, our
algorithm is not only logarithmic and has low overhead, but it also captures different
parameters within the main clusters by means of parameter signatures. It then merges
them in a linear manner and captures the different execution structures by means of
call-path signatures.

Since CAPEK is a variant of k-medoids, finding a proper k is a challenge solved via
the Bayesian Information Criterion (BIC) [27]. In Call-path+Parameter clustering, by
dividing the merge process, the number of clusters is a function of the number of main
clusters. As noted previously, the most costly operation in clustering with ScalaTrace
is a function of events, not a function of clusters. Sub-clusters merge in a linear fashion
within each main cluster.

TotalView [28] and DDT [29] are debugging tools with demonstrated scalability
for large numbers of processes but are prone to extended response time during simple
operations (e.g., timeline scroll) due to large amounts of data being processed. The
Stack Trace Analysis Tool [30] supports petascale debugging with lightweight tools on

an entire parallel application to reduce the problem search space to a manageable subset
of tasks. These tools process the entire trace data set of all tasks while we operate on a
trace of a small subset of nodes (of just one per cluster).

Jumpshot [31] is a trace visualization tool capable of displaying traces of programs
running on a large number of processors for along time. ScalaTrace manages highly
compressed traces, which would either need to be decompressed before being visu-
alized in Jumpshot, or, even better, Jumpshot would need to be enhanced to interpret
relative encodings and provide timeline progressing using delta-times, which would be
much more efficient that handling its current uncompressed traces.

Aguilera et al. [32] propose hierarchical clustering to select a representative trace
for each cluster of processes. This work first extracts communication data from a trace
file, summarizes extracted communication information, creates a distance matrix, per-
forms hierarchical clustering, and eventually identifies process pairs of interest. To
reduce the trace file size, Lee et al. [33] use k-Means clustering to select representative
data. The main difference between Call-path clustering and the aforementioned clus-
terings is that they focus on clustering of communication performance data to discover
potential communication bottlenecks in distributed applications. ScalaTrace not only
provides detailed performance information (e.g., COUNT, SRC, DEST, TAG, com-
munication time, etc.), but also captures computation times between consecutive MPI
calls, and it preserves the structure of the program in its traces.

Nickolayev et al. [34] propose another clustering algorithm using the Pablo perfor-
mance instrumentation library [35] with a real-time statistical clustering infrastructure.
The standard Pablo instrumentation software captures dynamic performance data via
instrumented source code. Yan et al. [36] propose a dynamic instrumentation strategy.
It reconstructs a parse tree from the source code, annotates the parse tree, generates
control flow via parse-tree traversal, generates interval durations for each processing
node, checks for consistency of event times across nodes, and eventually generates
timed events.

All of these methods need access to the source code of the program, but the source
code may not always be available. ScalaTrace generates traces without instrumenting
source code. Even though these methods reduce trace data across processes, they do
not reduce trace data within a process. In contrast, ScalaTrace has two phases: intra-
and inter-node compression.

Knüpfer et al. [37] propose a data compression technique. The main focus of the
work is on the intra-node compression step. The algorithm declares two sections of a
trace as similar if the call graph context and measurements of the events match. Scala-
Trace captures MPI events in the innermost loop as Regular Section Descriptors (RSD),
while power-RSDs capture RSDs (PRSDs) of higher-level loop nests represented as a
constant sized data structure during intra-node compression. Traces remain readable
after compression in ScalaTrace, while traces created by Knupfer et al. require de-
compression before they can be processed. Moreover, creating call-graphs is a costly
operation. Our clustering algorithm uses call-path signatures, which are only 64-bits in
length.

7. Conclusion and Future Work

Scalability is one of the main challenges of scientific applications in HPC. This
paper contributes a novel multi-level clustering algorithm with logP time complexity
and low overhead. The approach relies on signatures to support n-dimensional metrics
for cluster selection, much in contrast to a single metric of traditional cluster algo-
rithms. The results of our experiments indicate that our clustering algorithm provides
significant reductions in performance overheads making it suitable for extreme-scale
computing. Unlike other clustering algorithms designed for large-scale problems, our
approach is based on predominantly exact matching rather than on random processes or
statistical approaches for sampling with compromised, lower accuracy. Our clustering
algorithm is applicable to both strong and weak scaling applications.

We currently apply the clustering algorithm at the end of program execution. How-
ever, if we were to group processes with the same execution behavior at interim exe-
cution points, e.g., at timestep boundaries of scientific codes, inter-node compression
could be performed online. This would reduce the execution time by overlapping the
I/O and computation time. Such online clustering is the focus of our ongoing work
beyond the scope of this paper. Moreover, in this work, we only considered perfectly
matched signatures; basically, Call-path+Parameter clustering creates complete traces
with all parameters and events so that there is no problem at the reply level. Ongoing
work attempts to approximate matching and to support probabilistic replay.

References

[1] A. Bahmani, F. Mueller, Scalable performance analysis of exascale mpi programs
through signature-based clustering algorithms, in: ICS, 2014.

[2] H. Brunst, M. Winkler, W. E. Nagel, H.-C. Hoppe, Performance optimization
for large scale computing: The scalable vampir approach, in: Computational
Science-ICCS 2001, Springer, 2001, pp. 751–760.

[3] J. S. Vetter, M. O. McCracken, Statistical scalability analysis of communica-
tion operations in distributed applications, in: ACM SIGPLAN Notices, Vol. 36,
ACM, 2001, pp. 123–132.

[4] X. Wu, F. Mueller, Elastic and scalable tracing and accurate replay of non-
deterministic events, in: International Conference on Supercomputing, 2013.

[5] M. Noeth, P. Ratn, F. Mueller, M. Schulz, B. R. de Supinski, Scalatrace: Scalable
compression and replay of communication traces for high-performance comput-
ing, Journal of Parallel and Distributed Computing 69 (8) (2009) 696–710.

[6] X. Wu, F. Mueller, S. Pakin, Automatic generation of executable communica-
tion specifications from parallel applications, in: Proceedings of the international
conference on Supercomputing, ACM, 2011, pp. 12–21.

[7] J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. McKee, A. Yoo, MET-
RIC: Tracking down inefficiencies in the memory hierarchy via binary rewriting,
in: International Symposium on Code Generation and Optimization, 2003, pp.
289–300.

[8] X. Wu, F. Mueller, Scalaextrap: Trace-based communication extrapolation for
spmd programs, in: Proceedings of the 16th ACM symposium on Principles and
practice of parallel programming, ACM, 2011, pp. 113–122.

[9] D. H. Bailey, E. Barszcz, L. Dagum, H. D. Simon, Nas parallel benchmark results,
Parallel & Distributed Technology: Systems & Applications, IEEE 1 (1) (1993)
43–51.

[10] K. R. Koch, R. S. Baker, R. E. Alcouffe, Solution of the first-order form of the
3-d discrete ordinates equation on a massively parallel processor, Transactions of
the American Nuclear Society 65 (108) (1992) 198–199.

[11] P. W. Jones, P. H. Worley, Y. Yoshida, J. White, J. Levesque, Practical perfor-
mance portability in the parallel ocean program (pop), Concurrency and Compu-
tation: Practice and Experience 17 (10) (2005) 1317–1327.

[12] A. Hoisie, O. Lubeck, H. Wasserman, Performance analysis of wavefront algo-
rithms on very-large scale distributed systems, in: Workshop on wide area net-
works and high performance computing, Springer, 1999, pp. 171–187.

[13] T. Schneider, R. Gerstenberger, T. Hoefler, Application-oriented ping-pong
benchmarking: how to assess the real communication overheads.

[14] Y. Dotsenko, Expressiveness, programmability and portable high performance of
global address space languages, ProQuest, 2007.

[15] R. Smith, P. Jones, B. Briegleb, F. Bryan, G. Danabasoglu, J. Dennis, J. Dukow-
icz, C. Eden, B. Fox-Kemper, P. Gent, et al., The parallel ocean program (pop)
reference manual: ocean component of the community climate system model
(ccsm), Los Alamos National Laboratory, LAUR-10-01853.

[16] X. Wu, F. Mueller, Scalaextrap: Trace-based communication extrapolation for
spmd programs, ACM Transactions on Programming Languages and Systems
(TOPLAS) 34 (1) (2012) 5.

[17] N. R. Tallent, J. Mellor-Crummey, M. Franco, R. Landrum, L. Adhianto, Scalable
fine-grained call path tracing, in: International Conference on Supercomputing,
ACM, 2011, pp. 63–74.

[18] C. W. Lee, L. V. Kalé, Scalable techniques for performance analysis, Parallel Pro-
gramming Laboratory, Department of Computer Science, University of Illinois,
Urbana-Champaign, Tech. Rep (2007) 07–06.

[19] C. W. Lee, C. Mendes, L. V. Kalé, Towards scalable performance analysis and
visualization through data reduction, in: International Parallel and Distributed
Processing Symposium, pp. 1–8.

[20] G. Llort, J. Gonzalez, H. Servat, J. Gimenez, J. Labarta, On-line detection of
large-scale parallel application’s structure, in: International Parallel and Dis-
tributed Processing Symposium, 2010, pp. 1–10.

[21] J. Gonzalez, K. Huck, J. Gimenez, J. Labarta, Automatic refinement of parallel
applications structure detection, in: Workshop on Large-Scale Parallel Process-
ing, 2012, pp. 1680–1687.

[22] J. Gonzalez, J. Gimenez, J. Labarta, Automatic detection of parallel applications
computation phases, in: International Parallel and Distributed Processing Sym-
posium, pp. 1–11.

[23] J. Zhai, W. Chen, W. Zheng, Phantom: predicting performance of parallel ap-
plications on large-scale parallel machines using a single node, ACM Sigplan
Notices (2010) 305–314.

[24] R. Xu, D. Wunsch, et al., Survey of clustering algorithms, IEEE Transactions on
Neural Networks 16 (3) (2005) 645–678.

[25] T. Gamblin, B. R. De Supinski, M. Schulz, R. Fowler, D. A. Reed, Clustering
performance data efficiently at massive scales, in: International Conference on
Supercomputing, ACM, 2010, pp. 243–252.

[26] L. Kaufman, P. J. Rousseeuw, Finding groups in data: an introduction to cluster
analysis, Vol. 344, Wiley.com, 2009.

[27] D. Pelleg, A. W. Moore, et al., X-means: Extending k-means with efficient esti-
mation of the number of clusters., in: ICML, 2000, pp. 727–734.

[28] R. Software, Totalview debugger, http://www.roguewave.com/products/totalview.aspx.

[29] Allinea, The distributed debugging tool (DDT), http://www.allinea.com.

[30] G. L. Lee, D. H. Ahn, D. C. Arnold, B. R. De Supinski, M. Legendre, B. P.
Miller, M. Schulz, B. Liblit, Lessons learned at 208k: towards debugging millions
of cores, in: High Performance Computing, Networking, Storage and Analysis,
2008. SC 2008. International Conference for, 2008, pp. 1–9.

[31] O. Zaki, E. Lusk, W. Gropp, D. Swider, Toward scalable performance visualiza-
tion with jumpshot, International Journal of High Performance Computing Ap-
plications 13 (3) (1999) 277–288.

[32] G. Aguilera, P. J. Teller, M. Taufer, F. Wolf, A systematic multi-step methodol-
ogy for performance analysis of communication traces of distributed applications
based on hierarchical clustering, in: Parallel and Distributed Processing Sympo-
sium, 2006. IPDPS 2006. 20th International, IEEE, 2006, pp. 8–pp.

[33] C. W. Lee, C. Mendes, L. V. Kalé, Towards scalable performance analysis and vi-
sualization through data reduction, in: Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on, IEEE, 2008, pp. 1–8.

[34] O. Y. Nickolayev, P. C. Roth, D. A. Reed, Real-time statistical clustering for event
trace reduction, International Journal of High Performance Computing Applica-
tions 11 (2) (1997) 144–159.

[35] D. A. Reed, P. C. Roth, R. A. Aydt, K. A. Shields, L. F. Tavera, R. J. Noe, B. W.
Schwartz, Scalable performance analysis: The pablo performance analysis envi-
ronment, in: Scalable Parallel Libraries Conference, 1993., Proceedings of the,
IEEE, 1993, pp. 104–113.

[36] J. C. Yan, M. A. Schmidt, Constructing space-time views from fixed size trace
filesgetting the best of both worlds, Advances in Parallel Computing 12 (1998)
633–640.

[37] A. Knüpfer, A new data compression technique for event based program traces,
in: Computational ScienceICCS 2003, Springer, 2003, pp. 956–965.

 0.1

 1

 10

 100

 1000

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(a) BT

 0.01

 0.1

 1

 10

 100

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(b) FT

 0.01

 0.1

 1

 10

 100

 1000

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(c) LU

 0.1

 1

 10

 100

 1000

 10000

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(d) Sweep3D

 0.01

 0.1

 1

 10

 100

 1000

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(e) POP

Figure 8: Execution Times for Inter-Node Compression Variants and Entire Applica-
tion (Weak Scaling) — Nodes/Tasks=1/16

 0

 10

 20

 30

 40

 50

 60

 70

 80

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(a) BT

 0

 5

 10

 15

 20

 25

 30

 35

 40

16 64 256 1024
A

v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(b) FT

 0

 100

 200

 300

 400

 500

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(c) LU

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(d) Sweep3D

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(e) POP

Figure 9: Replay Times (Weak Scaling) — Nodes/Tasks=1/16

 0.01

 0.1

 1

 10

 100

 1000

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(a) FT (Strong Scaling)

 0.01

 0.1

 1

 10

 100

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(b) FT (Weak Scaling)

 0.1

 1

 10

 100

 1000

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(c) CG (Strong Scaling)

Figure 10: Execution Times for Inter-Node Compression Variants and Entire Applica-
tion (Weak Scaling) — Nodes/Tasks=1/16

 0.01

 0.1

 1

 10

 100

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(a) Execution Times for Inter-Node Com-
pression Variants and Entire Application

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

16 64 256 1024

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
)

Number of Processes

(b) Replay Times

Figure 11: Sweep3D Execution and Replay Times (Weak Scaling) —
Nodes/Tasks=1/16

(b) Cost of Clustering vs. Inter-Node Compression

(c) Cost of Clustering vs. Inter-Node Compression

Figure 12: Clustering Cost vs. Inter-Node Compression Cost (Strong Scaling for all
except LU and Sweep3D) — Nodes/Tasks=1/16

Figure 13: Space Complexity — Strong Scaling, except for Sweep3D and POP (Weak
Scaling)

