
DINO: Divergent Node Cloning for Sustained
Redundancy in HPC ?

Arash Rezaei a Frank Mueller a,∗ Paul Hargrove b Eric Roman b

a North Carolina State University, Raleigh, NC 27695-7534
b Lawrence Berkeley National Laboratory, Berkeley, CA

Abstract

Complexity and scale of next generation HPC systems pose significant challenges in fault
resilience methods such that contemporary checkpoint/restart (C/R) methods that address
fail-stop behavior may be insufficient. Redundant computing has been proposed as an al-
ternative at extreme scale. Triple redundancy has an advantage over C/R in that it can also
detect silent data corruption (SDC) and then correct results via voting. However, current
redundant computing approaches do not repair failed or corrupted replicas. Consequently,
SDCs can no longer be detected after a replica failure since the system has been degraded
to dual redundancy without voting capability. Hence, a job may have to be aborted if voting
uncovers mismatching results between the remaining two replicas. And while replicas are
logically equivalent, they may have divergent runtime states during job execution, which
presents a challenge to simply creating new replicas dynamically.

This problem is addressed by, DIvergent NOde cloning (DINO), a redundant execu-
tion environment that quickly recovers from hard failures. DINO consists of a novel node
cloning service integrated into the MPI runtime system that solves the problem of consol-
idating divergent states among replicas on-the-fly. With DINO, after degradation to dual
redundancy, a good replica can be quickly cloned so that triple redundancy is restored.
We present experimental results over 9 NAS Parallel Benchmarks (NPB), Sweep3D and
LULESH. Results confirm the applicability of the approach and the correctness of the
recovery process and indicate that DINO can recover from failures nearly instantly. The
cloning overhead depends on the process image size that needs to be transferred between
source and destination of the clone operation and varies between 5.60 to 90.48 seconds.
Simulation results with our model show that dual redundancy with DINO recovery always
outperforms 2x and surpasses 3x redundancy on up to 1 million nodes. To the best of our
knowledge, the design and implementation for repairing failed replicas in redundant MPI
computing is unprecedented.

Key words: Fault Tolerance, High Performance Computing, Node Cloning, Redundant
Computing
PACS: 07.05.Bx

Preprint submitted to Journal of Parallel and Distributed Computing 17 July 2017

1 Introduction

Several studies have emphasized the significance of challenges in reliability for
next generation supercomputers [2,5,7]. In projections, system reliability drasti-
cally decreases at exascale and system mean time to failure (MTTF) would be in
the order of few hours without major hardware and software advances. Node fail-
ures are commonly due to software or hardware faults. Software faults can be due
to bugs (some of which may only materialize at scale), complex software com-
ponent interactions and race conditions that surface only for rare parallel execution
interleavings of tasks [6]. Hardware faults may result from aging, loss of power, and
operation beyond temperature thresholds. One resilience method is redundant com-
puting [4,12,11,13]. In redundant computing, multiple components (2 ore more) are
allocated to perform the same task. A recent study [19] shows that the skepticism
toward redundancy with respect to its cost might not hold anymore. Their results on
the cloud platform show that redundancy could be a viable and even cost-effective
approach for HPC. They combine checkpointing with redundancy in variable-cost
spot market allocations on Amazon EC2. They achieve up to 7 times cheaper ex-
ecution compared to the on-demand default market. Redundancy provides toler-
ance not only against hard faults but also soft faults, such as silent data corrup-
tions (SDCs), which do not stop application execution as they are undetectable.
SDCs may manifest at application completion by producing wrong results or, prior
to that, wrong interim results. A study at CERN raised concerns over the signif-
icance of SDC in memory, disk and RAID [22]. Their results indicate that SDC
rates are orders of magnitude larger than manufacture specifications. Schroeder et
al.’s study [27] of the DRAM errors on a large scale over the course of 2.5 years
concludes that more than 8% of DIMMs are affected by errors per year. A study
by Microsoft over 1 million consumer PCs also confirms that CPU faults are fre-
quent [21].

State-of-the-art approaches for redundant computing do not provide a sustained re-
dundancy level during job execution when processes experience failures. After a
replica process fails, either the application deadlocks (RedMPI [13]) or other repli-
cas ensure that the application can progress in execution [4]. Note that after a replica

? An earlier version of this paper appeared at Cluster’15 [24]. This journal version ex-
tends the earlier paper by proposing a new model for job execution time under redundancy
and an extensive experimental evaluation. This work was supported in part by grants from
Lawrence Berkeley National Laboratory and NSF grants 1058779 and 0958311. This ma-
terial is based upon work supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Computer Science program under con-
tract number DE-AC02-05CH11231. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or any agency
thereof or the Regents of the University of California.
∗ Corresponding author.

Email address: mueller@cs.ncsu.edu (Frank Mueller).

failure, even if the job can continue its execution, the SDC detection module cannot
guarantee application correctness (e.g., an undetected SDC might occur). Check-
point/Restart (CR) is another popular method for tolerating hard errors, but cannot
handle soft errors. In CR, in every checkpoint interval, a snapshot of all processes
is created and saved to storage. The snapshot could be a light-weight application-
level approach or at the process-level. If a hard error occurs, all processes re-load
the last snapshot into memory and the application continues execution.

Using the same simulation parameters as Ferreira et al. [12], we plotted in Fig. 1
the elapsed times (left x-axis) of three jobs of 24/168/720 hours over different re-
dundancy levels (y-axis) ranging from no redundancy (0%) over half of the nodes
replicated (50%) to dual redundancy for all nodes (100%). The results (dashed
lines) show that for a 720-hour job applications runtime without replication is more
than six times higher than under dual redundancy. Due to this, job capacity (2nd
x-axis, dashed lines) increases up to a factor of 4.5 under dual redundancy, i.e.,
4.5 times more dual redundant jobs of the same size can finish execution using the
same resources in the time it would have taken to finish a non-redundant job due
to checkpoint and (mostly) restart overheads. This shows that replication has the
potential to outperform CR around the exascale range.

Elliott et al. [10] showed in a more refined model that CR will eventually take
longer than redundancy due to recomputation, restart and I/O cost. At scale, this
makes capacity computing (maximizing the throughput of smaller jobs) more effi-
cient than capability computing (using all nodes of an exascale machine). E.g., at
80,000 CPU sockets, dual redundancy will finish twice the number of jobs that can

E
la

ps
ed

 T
im

e

Jo
b

C
ap

ac
ity

Level of Redundancy

720-hour job
168-hour job

24-hour job

0

2000

4000

6000

8000

10000

0% 10%
20%

30%
40%

50%
60%

70%
80%

90%
100%

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

Fig. 1. Modeled application runtime and job capacity per redundancy level for 100,000
nodes

be handled without redundancy. This includes a redundancy overhead of 0-30%
longer time (due to additional messages) with hashing protocols [13], which has no
impact on bandwidth for Dragonfly networks since original and replica sphere ex-
change full messages independently. As hash messages are small, they add latency
but do not impact bandwidth. Since twice the jobs finished under dual redundancy,
this amounts to the same energy.

The objective of this work it to address process failures in parallel applications
that follow tightly-coupled programming model. Such applications are executed on
HPC platforms and use MPI-style communication [15]. Term rank is used to refer
to an MPI task/process. Each MPI process is associated with a unique integer value
identifying the rank. Assume that a job with n ranks requires t hours to complete in
the absence of failures (plain execution time). A system with r levels of redundancy
consist of r × n ranks, where n logical MPI tasks are seen by the user. Redundant
replicas remain transparent and are launched automatically by the runtime. Repli-
cas of the same task are identical in terms of functionality and they perform the
same operation at the application level. We assume that a small pool of spare nodes
exists in the cluster environment. Initially, these nodes are not executing any job but
remain in powered state to be ready for recovery cases. Our work focuses on the
recovery phase and assumes that orthogonal solutions in failure detection [34,18]
exist, i.e., we assume that a fault detector is provided by the system.

We introduce node cloning as a means to sustain a given redundancy level. (We use
the terms node / MPI task cloning synonymously.) The core idea is to recover from
hard errors with the assistance of healthy replicas. A healthy replica is cloned onto
a spare node to take over the role of the failed process in “mid-flight”. To address
shortcomings in current redundant systems, we provide the following contributions:

• We devise a generic high performance node cloning service under divergent node
execution (DINO) for recovery. DINO clones a process onto a spare node in a
live fashion. We integrate DINO into the MPI runtime under redundancy as a
reactive method that is triggered by the MPI runtime to forward recover from
hard errors, e.g., node crash or hardware failure.
• We propose a novel Quiesce algorithm to overcome divergence in execution

without excessive message logging. Execution of replicas is not in a lock-
step fashion, i.e., can diverge. Our approach establishes consistency through a
novel, scalable multicast variant of the traditional (non-scalable) bookmark pro-
tocol [26] and resolves inconsistencies through exploiting the symmetry property
of redundant computing.
• We evaluate DINO’s performance for MPI benchmarks. The time to regain dual

redundancy after a hard error varies from 5.60 seconds to 90.48 seconds depend-
ing on process image size and cross-node transfer bandwidth, which is short
enough to make our approach practical.
• We provide a model with low error (at most 6%) for estimating job execu-

tion time under redundancy and validate our model on the Stampede supercom-

puter [30]. We extrapolate results under this model to extreme scale with a node
MTTF of 50 years [14] and show that dual redundancy+cloning outperforms
triple redundancy within the exascale node count range, yet at 33% lower power
requirement.
• We show that 25 spare nodes suffice for a 256K node system (when nodes can

be repaired) independent of communication overhead of the applications.

The paper is structured as follows: Challenges are discussed in Section 2. Section 3
presents a brief background on RedMPI. Section 4 introduces the design of DINO.
Our Quiesce algorithm is presented in Section 5. Section 6 details the implemen-
tation of DINO. Analysis of job completion times are presented in Section 7. The
experimental evaluation is provided in Section 8. Simulation results are presented
in Section 9. Section 10 compares our work to related work. Section 11 summarizes
the paper.

2 Challenges

High performance node cloning service. With increasing memory capacity and
the applications’ tendency to load larger data into memory, a cloning service that
limits the interference with the process execution is more preferable. A generic
service that clones a process (including the runtime/kernel state, memory content,
and CPU state) onto a spare node is the first challenge. Off-the-shelf checkpointing
libraries like BLCR [9] or MTCP [25] provide the needed functionality. However,
the downtime to take the snapshot, save it to storage and retrieve it from storage
on the other node followed by restoring the snapshot is quite high. We compare
“CR-based” process cloning with our “live” process cloning in Section 8.

Communication consistency and divergent states. The execution of replica
ranks does not occur in a lock-step fashion, i.e., they tend to diverge not within com-
putational regions but also by advancing or falling behind relative to one another
in terms of communication events. This provides a performance boost to redun-
dant computing as it allows the replicas to execute freely to some extent. However,
this divergence introduces complications for failure recovery. Lack of a proper ap-
proach that guarantees the consistency, results in deadlock. This would generally
require message logging over large periods of time. Instead, we devised a novel
algorithm to establish communication consistency that tolerates divergence due to
asymmetric message progression and region-constrained divergence in execution.

Extending a job to a spare node. The MPI runtime leverages helper daemons
on the compute nodes to facilitate job execution. The helper daemons launch the
MPI ranks, monitor their liveness and play a role in application termination. The
spare nodes are not part of a specific job, and consequently, no daemon is running
on them. A spare node might be assigned to any job that has a failed replica as a

part of the recovery phase in DINO. Thus, extending the job includes modifying
the internal data structures like routing information, task map and daemon map
information besides spawning a new daemon.

Integration into the runtime system. Cloning a process without carefully re-
suming its communication state results in inconsistency and job failure. After the
process is cloned onto a spare node, it should exchange its communication end-
point information with the rest of the processes in order to make normal application
progress.

3 Background (RedMPI)

We use RedMPI [13] for redundant and transparent MPI execution. RedMPI de-
tects SDCs through analyzing the content of messages. Data corruption may occur
in CPU, memory or cache, either due to multi-bit flits under ECC or even single-bit
flips without ECC. Such corruption either does not affect the output or eventually
materializes in the transmitted message (or in disk/std I/O, which is addressed else-
where [3]).

It supports linear collectives where all the collective operations are mapped to
point-to-point communication. These collectives do not provide high performance,
especially not at large scale. Another mode, named optimized, directly calls the
collective module of the MPI library and provides native performance (parallelized
collectives). RedMPI benefits from the interpositioning layer of MPI known as the
MPI profiling layer. 1 The current implementation of RedMPI is not capable of de-
tecting hard errors. As a result, an MPI process failure leads to a deadlock where
the processes wait indefinitely for progress in communication with the failed pro-
cess (or until the time-out from the communication layer terminates the application
with an error).

In the following, we describe how basic MPI functions are implemented in
RedMPI under dual redundancy. MPI_Send and MPI_Recv are blocking calls,
and MPI_Isend and MPI_Irecv are non-blocking. MPI_Send is implemented
with two non-blocking send calls to rank x and its corresponding replica x′ followed
by a call to MPI_Waitall (see Table 1). PMPI_Isend provides the actual send
functionality. Similarly, MPI_Recv is implemented with two PMPI_Irecv calls,
then a MPI_Waitall call. RedMPI extends the MPI_Request data structure
to contain the extra requests that it creates. For the sake of brevity, this is omit-
ted. MPI_Isend and MPI_Irecv are similar to MPI_Send and MPI_Recv

1 PMPI is the MPI standard profiling interface. Each MPI function can be called with a
MPI_ or PMPI_ prefix. This feature of MPI allows one to interpose functions with MPI_
prefix while using functions with PMPI_ prefix to implement the required functionality.

but there is no MPI_Waitall call. The MPI_Wait is implemented with a call
to the actual function (PMPI_Wait), it then verifies the integrity of the messages
in case of a receive request. The implementation of MPI_Waitall performs a
PMPI_Waitall over all requests followed by the integrity check for received
messages.

Table 1
Implementation of 6 basic MPI functions in RedMPI

MPI_Send(x,msg){ MPI_Recv(x,msg){

PMPI_Isend(x,msg); MSG msg′;

PMPI_Isend(x′,msg); PMPI_Irecv(x,msg);

MPI_Waitall(); PMPI_Irecv(x′,msg′);

} MPI_Waitall();

}

MPI_Isend(x,msg){ MPI_Irecv(x,msg){

PMPI_Isend(x,msg); MSG msg′;

PMPI_Isend(x′,msg); PMPI_Irecv(x,msg);

} PMPI_Irecv(x′,msg′);

}

MPI_Wait(req){ MPI_Waitall(req){

PMPI_Wait(req); PMPI_Waitall(req);

if(req.type=="Recv") if(req.type=="Recv")

verify_integrity(req); verify_integrity(req);

} }

There is no lock-step execution among the replicas and they only communicate di-
rectly to resolve certain calls to avoid non-determinism. Wildcard values in source
or tag (MPI_ANY_TAG, MPI_ANY_SOURCE) and MPI_Wtime are examples of
the latter case (not shown here), which are supported (see [13]). In redundant com-
puting, send (or receive) calls are always posted in pairs. In other words, the number
of posted send (or receive) requests to (or from) any two replicas are always equal.
We call this the symmetry property and exploit it in the Quiesce algorithm (Section
5).

4 Design of DINO

DINO has a generic process cloning service at its core. Node cloning creates a copy
of a given running process onto a spare node. The cloning mechanism itself is MPI
agnostic and is applied to processes encapsulating MPI tasks in this work. DINO
considers the effect of cloning on the MPI runtime system, as detailed later. Fig. 2
shows how the system retains dual redundancy in case of a failure. A and A′ are
logically equivalent and both perform the same computation. They run on nodes
0 and 1, respectively, and comprise sphere 1 of redundant nodes. Ranks B,B′ on
nodes 2, 3 are also replicas and shape sphere 2. If node 2 (B) fails, its replica (B′)
on node 3 (source node) is cloned onto node 4 (a spare node) on-the-fly. The newly
created rank B′′ takes over the role of failed rank B and the application recovers
from the loss of redundancy. At the end of node cloning, B′ and B′′ are in the
same state from the viewpoint of the application, but not necessarily from another
rank’s point of view due to staleB references. The Quiesce algorithm resolves such
inconsistencies.

The process B′′ is created on node 4 as follows. While B′ performs its normal exe-
cution, its memory is “live copied” page by page toB′′. This happens in an iterative
manner (detailed in Section 6). When we reach a state where few changes in dirty
pages (detailed in the implementation) remain to be sent, the communication chan-
nels are drained, i.e., any buffered messages are removed. This is necessary to keep
the system of all communication processes in a consistent state. After this, the exe-

Fig. 2. Node cloning: Application w/ 2 ranks under dual redundancy

cution of rank B′ is briefly paused so that the last dirty pages, linkage information,
and credentials are sent to node 4. Rank B′′ receives and restores this information
and then is ready to take over the role of failed rankB. Then, communication chan-
nels are resumed and execution continues normally. Between channel draining and
channel resumption, no communication may proceed. This is also necessary for
system consistency with respect to message passing.

The time interval between error detection and the end of DINO recovery is a “vul-
nerability window” where undetected SDCs may occur. The vulnerability window
depends on the process image size and is evaluated experimentally in Section 8 and
projected for large scale in Section 9.

5 Quiesce Algorithm

The purpose of the Quiesce algorithm is to resolve the communication inconsisten-
cies inside DINO at the library level and provide transparent and consistent recov-
ery to the application layer. The inconsistencies are rooted in the state divergence of
replicas. In Section 3, we described basic MPI functions and their implementation
inside RedMPI. Blocking operations impose limited divergence. But non-blocking
operations can easily create scenarios where the state of replicas differs largely as
there is no enforced state synchronization among replicas. Only application bar-
riers are true synchronization points and RedMPI does not introduce additional
barriers. However, the application-specific inter process dependencies caused by
wait operations limit the divergence among replicas. Thus, divergence of replicas is
application-dependent. If an application only uses Send/Recv (blocking calls), the
divergence is bounded by 3 MPI calls (see Fig. 3-A). But if it has “n” Isend/Irecv
calls followed by a Waitall, then the divergence bound is 2n + 1 (see Fig. 3-B).
Note that the bound is an indirect result of communication dependencies.

MPI_Send
PMPI_Isend

PMPI_Isend

MPI_Waitall

MPI Call RedMPI Execution
MPI rank X

MPI rank X'

Divergence by
3 inst.

1. MPI_Isend

n. MPI_Isend

.

.

.

1. PMPI_Isend
2. PMPI_Isend

.

.

.

2n. PMPI_Isend

 MPI_Waitall PMPI_Waitall

MPI rank X

MPI rank X'

Divergence by
2n+1 inst.

(A) (B) RedMPI ExecutionMPI Call

Fig. 3. Divergence of replicas: (A) one MPI_Send (B) “n” MPI_Isends

Algorithm 1 shows the steps for Quiesce. Let us assume that rank B has failed and
rank B′ is cloned to create B′′, which takes over the work of B. Ranks B and B′′

are in the same state, but any other ranks may still assume B′′ to have the state of
B.

Algorithm 1 Quiesce Algorithm
1: /* 1. Exchange communication state with B′ */
2: if rank == B′ then
3: bookmarks ∗array;
4: for (i = 0; i < nprocs; i++) do
5: if i 6= B′&i 6= B then
6: /*send bookmark status, then receive into
7: appropriate location in bookmarks array */
8: send_bookmarks(i);
9: recv_bookmarks(i, array[i]);

10: end if
11: end for
12: else
13: bookmark bkmrk;
14: /*Receive remote bookmark into bkmrk then send*/
15: recv_bookmarks(B′, bkmrk);
16: send_bookmarks(B′);
17: end if
18: /* 2. Calculate in-flight msg(s) and drain them */
19: Cal_and_Drain();
20: if rank 6= B′ then
21: /* 3. Resolve possible Send inconsistencies */
22: if Sent[B] == Sent[B′] then
23: noop;
24: else if Sent[B] < Sent[B′] then
25: Skip the diff to B′′;
26: else if Sent[B] > Sent[B′] then
27: Repeat the diff to B′′;
28: end if
29: /* 4. Resolve possible Recv inconsistencies */
30: if Received[B] == Received[B′] then
31: noop;
32: else if Received[B] < Received[B′] then
33: Skip the diff from B′′;
34: else if Received[B] > Received[B′] then
35: Repeat the diff from B′′;
36: end if
37: end if

Stage 1 and 2 of the Algorithm 1 clear the outgoing channels of B′ and of any
other ranks that have initiated a send to B′. We modified the bookmark exchange
protocol [26] to equalize these differences. The original bookmark protocol creates
a consistent global snapshot of the MPI job, which requires an all-to-all commu-
nication and is not scalable due to its high overhead. In our modified bookmark
protocol, each process informs B′ of the number of messages it has sent to B′

and receives how many messages are sent by B′. Then, the following question can
be answered: Have I received all the messages that B′ put on the wire? If not,

some messages (buffered or in transit) remain in the MPI communication channel
and should be drained. Rank B′ performs a similar task to drain all messages that
other ranks put on the wire to reach B′. In stage 2, receive requests are posted to
drain the outstanding messages identified in stage 1. They are saved in temporary
buffers. When the application execution later (during normal execution) reaches a
Recv call, these drain lists are first consulted to service the request. At the end of
the drain phase, no more outstanding send requests to/from B′ exist in the system.

Due to the symmetry property of redundant computing, every rank receives the
same number of messages from members of a given sphere (e.g., B and B′). The
same rule applies to the number of messages sent to a given sphere. This property
is the basis for resolving the inconsistencies in stages 3 and 4. The goal of these
two stages is to prepare all ranks for communicating withB′′ by resolving any state
inconsistency between their view of B and B′′. Every rank keeps a vector of the
number of messages that are sent to other ranks (Sent[]) and received from other
ranks (Received[]) along with the message signatures. The sent/received messages
and their signatures are buffered inside the runtime of the off-the-shelf MPI library
until their receipt can be inferred and they are matched by the same signature on
other side of the communication (to also handle out-of-order messages). We use
this matching information along with the counters to drain in-flight messages by
removing them from the internal buffer. In-flight messages are those that are on the
wire but have not yet been fully transmitted during the quiesce phase.

In stage 3, each rank X (other than B′) resolves its possible communication incon-
sistency due to sends to B. Three cases are distinguished: (1) Bookmarks match
(Sent[B] == Sent[B′]): Then B, B′, and B′′ are in the same state from the point of
view ofX , and no action is needed. (2)B lagged behindB′ (Sent[B] < Sent[B′]):
Then sends from X to B are in transit/will be issued (Fig. 4 part 3.2). Since B has
been removed and B′′ is ahead (has already seen these messages), they are silently
suppressed (skipped). (3) B was ahead of B′ (Sent[B] > Sent[B′]): Then there
exist messages in transit/to be sent from X to B′ (Fig. 4 part 3.3). Since B′′ is in
the same state as B′, these messages need to be sent to B′′ as well.

In stage 4, the same procedure is performed on the Received counters. The 3
cases are symmetric to the prior stage: (1) Bookmarks match (Received[B] ==
Received[B′]): Then B, B′, and B′′ are in the same state from the point of view
of X , and no further action is needed. (2) B′ was ahead of B (Received[B] <
Received[B′]): Then X is expecting messages from B (Fig. 4 part 4.2). Since B
does not exist anymore and B′′ will not send them (as it is ahead), these receives
silently complete (skipped). Instead, X will provide the corresponding message
from B′ to the user level. (3) B′ lagged behind B (Received[B] > Received[B′]):
Then X is expecting messages from B′ (Fig. 4 part 4.3). Since B′′ and B′ are in the
same state, both will send those messages, even though X has already received a
copy from B. Thus, messages from B′′ are silently absorbed (up to the equalization
point).

X

B

B'

X

B

B'

X

B

B'
B''

4.1

Received[B] == Received[B']

4.2.

Received[B] < Received[B']

4.3.

Received[B] > Received[B']

X

B

B'

X

B

B'

X

B

B'

B''

3.1.

Sent[B] == Sent[B']

3.2.

Sent[B] < Sent[B']

3.3.

Sent(B) > Sent[B']

Stage 3. Resolving Possible Send

Inconsistencies

Stage 4. Resolving Possible Recv
Inconsistencies

Timeline of a Rank

Completed communication(Send or Recv)

Ongoing or future communication(Send or Recv)

Key:

Fig. 4. A view of Steps 3 and 4 of the Quiesce algorithm

 PMPI_Isend(A , msg1) PMPI_Isend(A', msg1) PMPI_Waitall() PMPI_Isend(A, msg2) PMPI_Isend(A', msg2) PMPI_Waitall()

 PMPI_Isend(A, msg1) PMPI_Isend(A', msg1) PMPI_Waitall() PMPI_Isend(A , msg2) PMPI_Isend(A', msg2) PMPI_Waitall()

Blocked

 PMPI_Irecv(B , msg1) PMPI_Irecv(B', msg1') PMPI_Waitall() PMPI_Irecv(B , msg2) PMPI_Irecv(B' , msg2') PMPI_Waitall()
? ✓ ? ✓ Blocked

✓ ✓ ✓ ✓

 ✓

✓✓

 Comp() MPI_Recv(B, msg1) MPI_Rrecv(B , msg2) Comp()App level

DINO level

A'

Comp() MPI_Send(A , msg1) MPI_Send(A, msg2) Comp()X
DINO level

App level
B

Comp() MPI_Send(A, msg1) MPI_Send(A , msg2) Comp()
B'

AMSG msg1,msg2;
Computation();
if (rank == A){
 MPI_Recv(B, msg1);
 MPI_Recv(B, msg2);
}
else if(rank == B)
 MPI_Send(A, msg1);
 MPI_Send(A, msg2);
}
Computation();

PMPI_Irecv(B , msg1) PMPI_Irecv(B', msg1') PMPI_Waitall() PMPI_Irecv(B , msg2) PMPI_Irecv(B' , msg2') PMPI_Waitall()
? ✓ ? ✓Blocked ✓

Comp() MPI_Recv(B, msg1) MPI_Rrecv(B , msg2) Comp()App level

DINO level

DINO level

App level

s

Fig. 5. Program fragment with ranks A and B (left); its application-/DINO-level execution
for dual redundancy under 1 failure (right)

Fig. 5 (left side) depicts a program fragment with two ranks, A and B. Two com-
putation sections are separated by two message exchanges from rank B to A (for
a predefined type MSG). A failure scenario and our recovery approach with dual
redundancy are as follows. Four ranks are created by the MPI runtime, namely A,
A′, B, B′. MPI_Recv and MPI_Send calls are redirected to the RedMPI library
and implemented as described in Section 3. Fig. 5 (right side) describes the exe-
cution per rank at the levels of the application and DINO. Suppose rank B fails
at mark “X” in Fig. 5. Then ranks A and A′ receive the first message from B′

and are blocked to receive a message from B. Rank B′, after sending all of its
messages, continues execution and reaches the waitall. At this point, only commu-
nications with single check-marks have finished, and all processes are blocked so
that recovery is required. During recovery,B′ is cloned to a spare node to createB′′

(equivalent to B). Process B′′ starts executing the application from where B′ was
blocked (the waitall). Therefore, neither B nor B′′ ever execute the PMPI_Isend
calls shown in the dotted area. Consequently, ranks A and A′ do not receive these
messages fromB (orB′′). In stage 1 of the Quiesce algorithm, all outstanding sends
to B′ are drained. Receive requests are posted by A and A′, and these messages are

logged in temporary buffers (indicated by double check-marks in Fig. 5). Receives
fromB, highlighted by question marks, remain a unanswered. Quiesce then cancels
the first receive (from B) in both A and A′ and skips the next receive from B. Sub-
sequently, ranks have consistent states and rank B′′ may join the communication of
the entire job.

This algorithm does not support wild-cards and assumes collective operations are
implemented over point-to-point messages. Other implementations of collectives
require a more advanced coordination among ranks during Quiesce. This includes
distinguishing the missing messages due to failure along with the topology to cor-
rectly determine the destination of messages and to issue cancel/skip operations.
Quiesce assumes that the applications issue MPI_{Wait/Waitall} calls at
least once after a sequence of n non-blocking operations.

6 Implementation

Architecture with Open MPI. Fig. 6 shows the system architecture where novel
DINO components are depicted with shaded boxes. RedMPI provides a transparent
interpositioning layer for MPI calls between the application and the MPI runtime
system (Open MPI). Open MPI has 3 layers: the Open MPI (OMPI) layer, the Open
Run-Time Environment (ORTE) and the Open Portability Access Layer (OPAL).
OMPI provides the top-level MPI API, ORTE is the interface to the runtime sys-
tem, and OPAL provides a utility layer and interfaces to the operating system. The
mpirun process interacts with the cloning APIs to launch tools on source/spare
nodes. The node cloning service provides generic process-level cloning functional-
ity via our extensions to BLCR [9]. This service includes three new tools and func-
tionalities named restore, pre-copy and clone. DINO recovery starts with
mpirun initiating the restore tool on the spare node (Step 1). Then mpirun
runs pre-copy on the source node where the healthy replica exists (Step 2). A
communication channel between these two processes is created to transfer the pro-
cess image. Then mpirun invokes the daemons on every node for the Quiesce
phase. The daemons send a Quiesce signal to the corresponding ranks, and all ranks
enter the Quiesce phase (Step 3). This phase includes the Quiesce algorithm that
is described in the previous section and ends by pausing the communication chan-
nels. The mpirun process runs the clone tool on the source node to copy the last
portion of process information (Step 4). As the last step (Step 5), mpirun commu-
nicates with the daemons again to update internal data structures of all processes
and resumes the communication among ranks.

We next discuss the steps taken during DINO recovery:

1. Launch restore tool. The procedure starts with executing restore on the
spare node. It listens on a predefined port for incoming information and memory

OMPI

BLCROperating System

RedMPI

Application

ORTE

OPAL

O
p

en
 M

PI

mpirun

Q
ui

es
ce

 S
ig

.

Re
su

m
e

Si
g.

12
4

3 5

restorepre-copyclone

Cloning APIUpdate DS.

Resume Comm.

Pause Comm.
Quiesce

Resume

Fig. 6. DINO Architecture

pages later sent by the pre-copy and clone tools and builds the process state,
both at kernel and application level, on the spare node.

2. Pre-copy. This phase transfers a snapshot of the memory pages in the process
address space communicated to the spare node while normal execution of the pro-
cess continues on the source node. We use TCP sockets to create a communication
channel between source and spare nodes. The pre-copy approach borrows concepts
from [33] (under Linux 2.4), but adapted to Linux to 2.6 (see related work for
a comparison). Vital meta data, including the number of threads, is transferred. 2

The spare node receives the memory map from the pre-copy thread. All non-zero
pages are transferred and respective page dirty bits are cleared in the first iteration.
In subsequent iterations, only dirty pages are transferred after consulting the dirty
bit. We apply a patch to the Linux kernel to shadow the dirty bit inside page table
entry (PTE) and keep track of the transferred memory pages. The pre-copy phase
terminates when the number of transferred pages reaches a threshold (1MB in our
current setting).

3. Channel Quiesce. The purpose of this phase is to create a settle point with the
shadow process. This includes draining all in-flight MPI messages. The runtime
system also needs to stop posting new send/receive requests. We build this phase
on top of the functionality for message draining provided by the CR module of
Open MPI [16]. The equalization stage described in Section 5 is implemented in
this step.

4. Clone. This phase stops the process for a short time to transfer a consistent image

2 We assume that applications maintain a constant sized thread pool after initialization,
e.g., OpenMP implementations. Cloning applies to the execution phase after such thread
pool creation.

of its recent changes to the restore tool. The memory map and updated memory
pages are transferred and stored at the corresponding location in the address space
in B′′. Then, credentials are transferred and permissions are set. Restoration of
CPU-specific registers is performed in the next phase. The signal stack is sent next
and the sets of blocked and pending signals are installed. Inside the kernel, we use
a barrier at this point to ensure that all threads have received their register values
before any file recovery commences. In short, different pieces of information are
transferred to fully create the state of the process.

5. Resume. In this phase, processes re-establish their communication channels
with the recovered sphere. All processes receive updated job mapping information,
reinitialize their Infiniband driver and publish their endpoint information.

MPI System Runtime. The off-the-shelf Open MPI runtime does not allow to
dynamically add nodes (e.g., patch in spare nodes to a running MPI job) and, sub-
sequently, to add daemons to a given job. We implemented this missing functional-
ity, including manipulation of job data structures, creation of a daemon, redirection
of I/O and exchange of contact information with the mpirun process. Finally,
there are communication calls issued by RedMPI that violate the symmetry prop-
erty. These control messages are required to ensure correct MPI semantics under
redundancy, e.g., for MPI calls like MPI_Comm_split and wildcard receives.
We distinguish them and only consider application-initiated calls when identifying
messages to skip and repeat in Algorithm 1.

OS Runtime and constraints. Many modern Linux distributions support prelink-
ing, which enables applications with large numbers of shared libraries to load faster.
Prelinking is a method of assigning fixed addresses to and wrapping shared libraries
around executables at load time. However, these addresses of shared libraries differ
across nodes due to randomization. We assume prelinking to be disabled on com-
pute nodes to facilitate cloning onto spare nodes. Files opened in write mode on
a globally shared directory (e.g., NFS) can cause problems (due to access by both
replicas), a problem considered in orthogonal work [3].

7 Job Completion Time Analysis

The objective of this section is to provide a qualitative job completion analysis
for redundant computing to assess the effect of our resilience technique. We make
the following assumptions in the mathematical analysis. (1) Node failures follow
a Poisson process. Subsequently, the time between two failures follows an expo-
nential distribution. (2) Failures occur independently. A failure does not affect or
increase the failure probability of other ranks. (4) Failures do not strike the two
nodes involved in a cloning operation (the source and the spare node) while DINO
recovery is in progress. The short time required for cloning (seconds) relative to

time between failures (hours) allows us to make this assumption. Let us denote:
• t: failure-free execution time of the application (without redundancy)
• r: level of Redundancy
• α: fraction of total application time spent on communication (without redun-
dancy)
• β: fraction of total application time spent on serial communication (with redun-
dancy)
• θ: MTTF of a node (λ = 1/θ: failure rate of a node)
• tclone: time spent on a DINO recovery

Estimating redundancy overhead requires measuring the application’s communi-
cation overhead. We use mpiP [20] to collect such information. The mpiP tool
computes “AppTime” and “MPITime”. “AppTime” is the wall-clock time from
the end of MPI_Init until the beginning of MPI_Finalize. “MPITime” is
the wall-clock time for all MPI calls within “AppTime”. It also reports the aggre-
gate time spent on every MPI call. “SendTime”, “IsendTime”, “RecvTime”, “Irecv-
Time” and “WaitTime” are the aggregate times spent on MPI_Send, MPI_Isend,
MPI_Recv, MPI_Irecv and MPI_{Wait,Waitall}, respectively.

We use mpiP with the 1x (no redundancy) execution of the application, collect
the information on communication overhead and then try to estimate the execution
time with rx (“r” level of redundancy). We define α as the fraction of time spent on
communication under 1x. The α ratio is application specific and also depends on
the input data size. α is defined as: α = MPITime/AppT ime.

Next we consider a redundant computing environment and reason about different
types of communication. Point-to-point MPI calls are always processed serially as
r messages are required to be transmitted. E.g., MPI_Send takes 2 times longer
under 2x. However, this depends on the message size and the transfer protocol de-
ployed dynamically by the MPI runtime (r times overhead may not be the best
estimate under some scenarios). Collective operations, in contrast, are performed
in parallel as we use RedMPI in its optimized collective mode. Under this mode,
collectives are called directly from RedMPI and are internally parallelized. As a re-
sult, only the point-to-point (P2P) segment of the application is performed serially.
We define FSend and FRecv fractions as follows:

FSend =
SendT ime+ IsendT ime+ C1 ·WaitT ime

MPIT ime
(1)

FRecv =
RecvT ime+ IrecvT ime+ C2 ·WaitT ime

MPIT ime
(2)

Without non-blocking receives, we fold “WaitTime” into the FSend fraction (C1 =
1, C2 = 0). Similarly, without non-blocking sends, we fold wait time in FRecv
fraction (C1 = 0, C2 = 1). With both MPI_Isend and MPI_Irecv, we divide
the wait time equally between the FSend and FRecv fractions. (C1 = 0.5, C2 = 0.5).
Finally, without non-blocking sends and receives, we assign C1 = 0, C2 = 0.

We define β as portion of the communication that is performed serially with redun-
dancy: β is estimating the message transfer overhead. The FSend and FRecv fractions
have an inherent wait (e.g., until the other side’s execution reaches the communica-
tion point). A good estimation is the minimum of the two values as it captures their
overlap:

β = min(FSend, FRecv) · α (3)

Under redundancy, the serial segment of the communication (β · t) is multiplied
by the redundancy factor (r) while the rest due to computation and parallel com-
munication ((1− β) · t) remains the same. In other words, the extra point-to-point
communication due to redundancy is performed serially, but the replicas are per-
forming their computation and collective segments in parallel. As a result, the exe-
cution time with redundancy is estimated as:

Tred = β · t · r + (1− β)t (4)

Table 2 shows the model validation experiment performed on the Stampede super-
computer. Stampede nodes are Dell C8220z running CentOS 6.3 with the 2.6.32
Linux kernel. Each node contains two Xeon Intel 8-Core 2.7GHz E5-processors
(16 total cores) with 32GB of memory (2GB/core). We choose 5 benchmarks each
in 4 configurations: 3 of NPB programs (CG, LU, MG), Sweep3D (S3D), and
LULESH. Sweep3D represents an ASC application that solves a neutron trans-
port problem. LULESH approximates the hydrodynamics equations discretely by
partitioning the spatial problem domain into a collection of volumetric elements
[17]. We used 1024 and 2048 ranks under dual redundancy for CG, LU, MG and
Sweep3D. As LULESH requires cubic values for the number of ranks, we used
1000 and 1728 ranks. We are interested in studying the overhead of redundancy in
large number of ranks, so we launch one rank per core (16 ranks per node). Each
benchmark is tested with two input sizes, Classes D and E, for NAS benchmarks.
Two configurations of 100×40×400 and 320×40×400 are used for Sweep3D and
size 25 and 27 are used for LULESH. Table 2 depicts execution times without re-
dundancy (1x), α, Send, and Recv fractions from mpiP profiling. Eq. 3 is used to
compute the β column. Experimental execution time under redundancy (2x Real),
and modeled execution time under redundancy using Eq. 4 (2x Model) are the next
two columns.

CG, LU and MG do not have any MPI_Isend call, so we assign C1 = 0, C2 = 1
in Equations 1 and 2. Sweep3D has no non-blocking calls (C1 = 0, C2 = 0) and
LULESH has both non-blocking send and receive calls (C1 = 0.5, C2 = 0.5). The
benchmarks cover 3 of 4 possible cases. The fourth case (C1 = 1, C2 = 0) is rather
uncommon due to penalties associated with it.

Fig. 7 compares the real overhead and modeled overhead for the experiments in Ta-
ble 2. The overhead percentage of redundancy is derived from the experiment via
2xReal−1x

1x
(Real Overhead) and by modeling using 2xModeled−1x

1x
(Modeled Over-

head). The x axis shows 4 configurations of each benchmark numbered from 1 to

CG LU MG S3D LULESH

+
4.

49

+
6.

01

+
1.

56

+
4.

45

−
4.

47

−
6.

18

−
2.

4 −
4.

64

−
3.

24

−
5.

75

+
2.

61 +
2.

51

+
0.

57

+
2.

1

+
0.

99 +
1.

82

−
4.

7

−
4.

79

−
4.

35

−
2.

78

0

10

20

30

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Configuarion from Table 2

O
ve

rh
ea

d
(%

)

Real OV % Modeled OV %

Fig. 7. Experimental vs. modeled overhead for redundancy — The model error is depicted
on top of the each bar of modeled overhead

4 in the same order shown in Table 2. The model error is also shown on the top of
the modeled overhead. The results show overestimation in CG between 1.56% and
6.01%. Our model underestimates the LU benchmark in all 4 cases between 2.4% to
6.18%. Configurations 1 and 2 of MG are underestimated (3.24% and 5.75% error)
while the other two (3, 4) are overestimated (2.61% and 2.51% error). Sweep3D,
which has no non-blocking calls, has been estimated more accurately (with error
between 0.57% to 2.1%). Finally, overhead for LULESH has been underestimated
(between 2.78% and 4.79%).

Discussion. Overall, the presented results show a low model error of at most
6.18%. It also shows that capturing the overhead of non-blocking calls is more
challenging as Sweep3D has no non-blocking calls and results in the least model
error. In the current model, we give equal weight to wait time in Equations 1 and 2
when both non-blocking sends and receives exist. A more advanced profiling tech-
nique could separate the wait time spent on Send from Recv and might provide a
more accurate Send and Recv fraction. One could extract such information from the
MPI_Request data structure and extend mpiP to retrieve fine-grained wait infor-
mation. One other model enhancement is to extract the overhead of each P2P call
individually (Oi). Then, the overall P2P overhead can be computed as β =

∑n
i=1 Oi.

Job Completion time with DINO failure recovery. The tclone parameter depends
on the application as it is directly related to the process image size. Moreover,
increasing the input size of the application leads to larger data in memory and
eventually larger tclone. The total job completion time is the sum of the time to
perform actual computation (t) and the time to recover from failures.

Ttotal = Tred + Trecovery (5)

Let nf be the number of failures that occur till the application completes. On aver-

Table 2
Experiment vs. modeled execution time under redundancy

of ranks (problem
size)

1x (sec) α FSend FRecv β 2x Real
(sec)

2x Model
(sec)

C
G 1024 (Class D) 22.75 .5351 .6755 .3092 .1654 25.5 26.52

2048 (Class D) 13.85 .6507 .6027 .3725 .2423 16.38 17.21

1024 (Class E) 232.62 .2985 .8012 .196 .0585 242.62 246.23

2048 (Class E) 109.04 .4657 .6967 .2987 .1391 119.36 124.21

L
U

1024 (Class D) 30.28 .3298 .2159 .7553 .0712 33.79 32.43

2048 (Class D) 26.55 .4621 .1857 .7702 .0858 30.42 28.83

1024 (Class E) 376.80 .1131 .1979 .7942 .0223 394.28 385.24

2048 (Class E) 206.08 .1738 .1887 .7992 .0327 222.39 212.84

M
G

1024 (Class D) 2.28 .3357 .4332 .317 .1064 2.59 2.52

2048 (Class D) 1.45 .5116 .3055 .3594 .1562 1.76 1.67

1024 (Class E) 17.18 .1458 .4903 .4162 .0606 17.77 18.22

2048 (Class E) 9.06 .2342 .3884 .462 .0909 9.65 9.88

S3
D

1024 (100× 40× 400) 28.06 .286 .1139 .7345 .0325 28.81 28.97

2048 (100× 40× 400) 35.39 .3592 .1054 .6893 .0378 35.99 36.73

1024 (320× 40× 400) 88.04 .2821 .1036 .7217 .0292 89.74 90.61

2048 (320× 40× 400) 117.81 .3742 .1289 .6804 .0482 121.39 123.49

L
U

L
E

SH

1000 (Size=25) 270.82 .2855 .679 .599 .171 288.20 275.45

1728 (Size=25) 328.34 .2885 .72 .631 .182 350.07 334.32

1000 (Size=27) 351.39 .244 .669 .576 .140 371.63 356.33

1728 (Size=27) 448.60 .2533 .719 .689 .174 468.89 456.43

age, a node failure occurs every θ
n·r . Therefore, nf is calculated as nf = Ttotal · n·rθ

or nf = Ttotal · λ · n · r. Then, Trecovery = nf · tclone. In summary,

Trecovery = Ttotal · λ · n · r · tclone (6)

Plugging Eq. 6 into Eq. 5, the job completion time under redundancy and DINO
failure recovery is estimated as:

Ttotal =
Tred

1− λ · n · r · tclone
(7)

We use Eq. 7 in Section 9 for large scale simulations.

8 Experimental Results

The node cloning experiments require insertion of our kernel module into the Linux
kernel. This permission is not granted on large-scale supercomputers maintained
by NSF or DOE. Thus, we conducted the experiments on a 108-node cluster with
QDR Infiniband. Each node is equipped with two AMD Opteron 6128 processors
(16 cores total) and 32GB RAM running CentOS 5.5, Linux kernel 2.6.32 and Open
MPI 1.6.1. The experiments are demonstrating failure recovery rather than explor-
ing compute capability for extreme scale due to the limitations of our hardware
platform. Hence, we exploit one process per node in all experiments. Experiments
were repeated five times and average values of metrics are reported.

Live Node Cloning Service. In this section, we evaluate the node cloning perfor-
mance at process-level. We compare “CR-based” node cloning (checkpoint, trans-
fer, restart) with our live cloning approach. We created a microbenchmark consist-
ing of malloc calls (sbrk system calls) to control the size of the process image.
It has an OpenMP loop with 16 threads long enough to compare the performance of
our node cloning mechanism with Checkpoint/Restart(CR). In CR, we checkpoint
the process locally, transfer the image to another node and then restart the snap-
shot (using off-the-shelf BLCR). We omit the file transfer overhead and consider
the best case for CR (checkpoint and restart locally). Table 3 shows the results for
different image sizes ranging from 1GB to 8GB. Our cloning approach takes less
time than just checkpointing only without restart. It is more than two times faster
than CR in all cases (2.24x for 1GB and 2.17x for 8GB). Cloning is performed via
TCP over QDR Infiniband with an effective bandwidth of 300 MB/s. The speedup
of our approach is due to creating the process while copying the process image. As
a result, we parallelize the two steps that are serial in CR. Furthermore, we do not
use the disk but instead transfer memory pages over the network.

Table 3
Microbenchmark performance (in sec.) of process cloning vs CR (Process with 16 threads)

Process Image Size Cloning Checkpoint Restart Total CR Speedup (CR
Cloning)

1GB 12.42 14.98 12.85 27.83 2.24

2GB 26.11 29.79 25.63 55.42 2.12

4GB 49.58 59.79 50.39 110.36 2.22

8GB 100.94 119.10 100.20 219.3 2.17

Overhead of Failure Recovery. In this section, we analyze the performance of
DINO. We consider 9 MPI benchmarks: (BT, CG, FT, IS, LU, MG, SP) from the
NAS Parallel Benchmarks (NPB) plus Sweep3D (S3D) and LULESH. We use input

class D for NPB, size 320×100×500 for Sweep3D and size 250 for LULESH. We
present results for 4, 8, 16 and 32 processes under dual redundancy (CG, IS, LU,
MG). We use 4, 9, 16, 25 processes for BT and SP (square numbers are required by
the benchmark). FT with 4 and 8 processes could not be executed due to memory
limitations. LULESH only runs with cubic numbers of processes, so we run it with
9 and 27 processes. Due to lack of support from the Infiniband driver to cancel
outstanding requests without invalidating the whole work queue and lack of safe
re-initialization, current experiments are performed with marker messages. Every
process receives a message indicating the fault injection and acts accordingly. One
rank mimics the failure by performing a SIGSTOP. Then the Cloning APIs are
used to start the clone procedure and the discussed steps in Section 4 are performed:
Pre-copy, Quiesce, Clone, Resume.

Fig. 8(a) and 8(b) depict the overhead and transferred memory size, respectively.
NPB are strong scaling applications and the problem size is constant in a given
class. Therefore, the transferred memory size and consequently time decreases
when the number of processes increases. In contrast, Sweep3D and LULESH are
weak scaling and the problem size remains constant for each process, solving a
larger overall problem when the number of processes increases. Thus, weak scaling
benchmarks show negligible difference in overhead and transferred process image
size over different number of processes.

FT has the largest process image. The size of memory for FT with 16 processes
is 7GB and takes 90.48 sec to transfer, while it takes 46.75 sec with 32 processes
to recover from a failure when transferring 3.52GB of memory. LU has the small-
est process image among NPB, its memory size ranges from 2.64GB to 0.36GB
with transfer times of 32.51 sec to 5.60 sec for 4 to 32 processes, respectively. For
Sweep3D, the overhead is almost constant at 23.5 sec over different numbers of
processes when transferring a 1.8GB image. The same applies to LULESH with a
constant process image size of 2.75GB and an overhead of 38.51 sec. 3 The relative
standard deviation in these experiments is less 7% in all cases.

We also measure the time spent in each phase: pre-copy, quiesce, clone and resume
for 32 processes except for LULESH, where 27 processes are used (see Fig. 8(c)).
The pre-copy phase is shown on the left axis, and the rest of phases are shown on
the right axis which is an order of magnitude smaller. The majority of time is spent
in the pre-copy phase and the remaining three phases take about 1 second com-
bined. These three phases take almost similar time across all the benchmarks with
only small variations. In our experiments, we observed that shortly after the fault
injection, a deadlock occurs. Other processes wait for the completion of a commu-
nication with the failed process and this will eventually create a chain of dependen-

3 In the current implementation, the memory is copied one page at a time. This lowers the
performance of the cloning operation. A larger buffer size might increase the performance
as the effective bandwidth could be increased.

BT CG FT IS LU MG SP S3D LULESH

0
20

40
60

80
10

0
0

20
40

60
80

10
0

T
im

e
in

 s
ec

on
ds

2 x 4
2 x 8
2 x 16
2 x 32

NA NA NA NA

(a) Overhead (vulnerability window)

BT CG FT IS LU MG SP S3D LULESH

0
2

4
6

8
0

2
4

6
8

Tr
an

sf
er

re
d

pr
oc

es
s

im
ag

e
in

 G
B

2 x 4
2 x 8
2 x 16
2 x 32

NA NA NA NA

(b) Transferred process image

0
10

20
30

40
50

60

BT CG FT IS LU MG SP S3D LULESH
0

0.
5

1
1.

5

Pre−copy Quiesce Clone Resume

T
im

e
in

 s
ec

. (
pr

e−
co

py
)

T
im

e
in

 s
ec

. (
qu

ie
sc

e,
 c

lo
ne

, r
es

um
e)

(c) Overhead: Step-wise with 2 × 32 ranks
Fig. 8. DINO recovery from 1 fault injection for different MPI benchmarks (1 rank per
physical compute node)

cies among all processes. The Quiesce phase of the DINO recovery resolved this
problem successfully. Due to early deadlock occurrence, the overlap of the normal
operation with the pre-copy phase was negligible for the chosen benchmarks.

9 Simulation Results

Size of Spare Node Pool. This section analyzes the effect of cloning on the average
number of required spare nodes to still complete a job. Assume each node has a
MTTF of 50 years. On average, every MTTF/(r×n), a node fails in the system.
Further, assume r = 2 and T = 200 hours. The time to complete the job with

β = 0.2, 0.4 and 0.6 can be calculated using Eq. 7. We consider large values for
β to study the node pool size in more extreme cases where redundancy has larger
overhead. Table 4 indicates the number of spare nodes required for successful job
completion for different values of n ranging from 18 (n = 16K, β = 0.2) to 465
nodes (n = 256K, β = 0.6). In this case, we did not consider any repair for the
system (MTTR =∞).

If we consider a Mean Time to Repair (MTTR) of 20 hours, the required num-
ber of spare nodes is shown in the last column of Table 4. We observe that the
average number of spare nodes is ranging from 2 to 25, which is only a small
fraction of total number of nodes. Assuming that nodes are repairable, the aver-
age number of required spare nodes turns out to be independent of the β value.
For example, consider n = 64K. When β = 0.2, the job takes 252.28 hours,
and we have b252.28/20c = 12 repair intervals. Similarly, for β = 0.4, there are
b283.45/20c = 14 repair intervals, and for β = 0.6, there are b336.38/20c = 16
repair intervals. If we divide the number of required spare nodes by the number of
repair intervals, we obtain a bound on the number of required spare nodes. This
value is d74/12e, d86/14e and d99/16e for β = 0.2, 0.4 and 0.6, respectively. In
all three cases, 7 spare nodes are required. Similar conditions hold for the rest,
meaning that results are independent of β.

Table 4
Avg. number of required spare nodes

MTTR =∞ MTTR = 20h

Size (n) β = 0.2 β = 0.4 β = 0.6 β = 0.2, 0.4, 0.6

16000 18 21 24 2

32000 36 42 48 3

64000 74 86 99 7

128000 156 182 208 13

256000 349 407 465 25

Job Completion Time. Next, we study the behavior of different methods at ex-
treme scale. Plain job execution time (t) is 256 hours and β varies from 0.1 to
0.4. We use Eq. 7 to extrapolate the job completion time with DINO recovery. Un-
der redundancy, we only re-execute the job upon job failure (when both replicas
fail) and use the following equation [8]: Ttotal = (D + 1

Λ
)(eΛTred − 1) where D is

time to re-launch the job (assumed to be 2 minutes), and Λ is the system MTTF
(Λ = − ln(Rsys)/Tred). Rsys is the overall system reliability and can be computed
as: Rsys = (1− (Tred/θ)

r)n×r [10].

Three solutions are studied: dual redundancy (2x), 2x with DINO recovery (2xD),
and triple redundancy (3x). The cloning overhead is 2 minutes since only a single
node pair is involved in cloning. We choose a node MTTF of θ = 50 years. Fig. 9

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 20 40 60 80 100 120 140 160 180 200

C
om

pl
et

io
n

tim
e

in
 h

ou
rs

A) beta = 0.1 Number of nodes (x10000)

2x
2x+DINO (2xD)

3x

 260

 280

 300

 320

 340

 360

 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 20 40 60 80 100 120 140 160 180 200

C
om

pl
et

io
n

tim
e

in
 h

ou
rs

B) beta = 0.2 Number of nodes (x10000)

2x
2x+DINO (2xD)

3x

 250

 300

 350

 400

 450

 500

 550

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

Fig. 9. Modeled job completion time

shows the job completion time for systems with different numbers of nodes ranging
from 10K to 2M. 2x is the dashed line, 2xD is the solid line, and 3x is the dotted line.
Based on the results from Table 2, we choose β = 0.1 and 0.2 in this experiment.
Fig. 9(A+B) depict the results for β = 0.1 and 0.2. A zoomed view of the area of
interest is shown on the top of each plot. This area is 10K to 500K in Fig. 9(A) and

10K to 1M in Fig. 9(B). 2xD outperforms 3x for up to 540K and 940K nodes for
a β of 0.1 and 0.2, respectively. After this point, 3x provides shorter job execution
times due to DINO recovery overhead for every failure, but this range is likely
beyond the size of exascale systems. For β = 0.1, 2x is between 282 to 719 hours.
This changes to 308.72 to 960.99 hours for β = 0.2.

Vulnerability Window. Our experimental evaluation in Section 8 showed that for
typical HPC application, the DINO recovery time is in order of seconds to less than
2 minutes (depending of the application footprint per process). In this section, we
reason about the probability of experiencing a soft error during the vulnerability
window under dual redundancy. Suppose the vulnerability window is w, and the
execution time per rank is Tp (total: 2×N×Tp). Assume that at some point of time,
a process fails and there are currently 2×N − 1 active process. The probability of
a soft error hitting the application during w is w/2 × N × Tp. Assuming w = 2
minutes, Tp = 100 hours and N = 1 million nodes, this probability is very small
(1.65e−10). As a result, the effect of the vulnerability window on the correctness of
application result is negligible.

10 Related Work

Our earlier work [23] provides stochastic modeling and simulation results for a sys-
tem based on redundancy and process cloning. This paper presents the design and
implementation of a node cloning service, the Quiesce algorithm, an experimental
evaluation with fault injection and a model for job completion time under redun-
dancy. rMPI [4] and MR-MPI [11] provide transparent redundant MPI computing.
Elliott et al. [10] determine the best configuration of a combined approach including
redundancy and CR. They propose a model to capture the effect of redundancy on
the execution time and checkpoint interval. Ferreira et al. [12] investigate the fea-
sibility of process replication for exascale computing. A combination of modeling,
empirical and simulation experiments is presented in this work. PLR [28] provides
transparent process redundancy and is capable of detecting soft errors. None of the
above works deal with replica failures and only focus on providing replication capa-
bility. Our work addresses hard replica failures and solves the consistency problem
in the MPI environment during failure recovery. Data parallel engines like Hadoop
YARN [31] and Spark [35] find failed or slow (straggler) tasks and re-launch them
on healthy compute nodes. This is fundamentally different from our approach in
the sense that we clone processes on-the-fly without rolling back to prior states.
In fact, Hadoop requires idem potency to start a redundant task based on HDFS
for input/output consolidation while our clone mechanism avoids reexecution and
does not reply on prior checkpoints. Instead, it just performs forward execution for
the remaining portion of a task, albeit likely at a faster pace than the straggler. As
an optimization in Spark Streaming, the work of a failed task is divided between
multiple healthy nodes to allow for faster recovery [29], often with a delay to avoid

I/O contention [1]. Thus, failed tasks can be relaunched in parallel on all the other
nodes in the cluster. This evenly distributes all the recomputations across many
nodes and speeds up recovery from failures since one does not need to wait for
stragglers but is subject to the same full reexecution as before, much in contrast to
our work.

A process-level proactive live migration approach is presented in [33] with an in-
tegration within LAM/MPI. VMware Workstation [32] provides virtual machine
migration and cloning. In cloning, a snapshot of the VM is created. The cloned
VM is independent from the main VM. Clones are useful when one must deploy
many identical virtual machines in a group. Cloning in VMs is mainly to avoid the
time-consuming installation of operating systems and application software. Unlike
DINO, prior work does not handle (a) new process/thread creation with the same
progress but a different identity, (b) compensation for divergence in progress, and
(c) techniques to limit divergent scopes.

11 Conclusion

We introduced DINO, a quick forward recovery method from failures in redundant
computing. DINO contributes a novel live node cloning service with a scalable
multicast variant of the bookmark algorithm and a corresponding Quiesce algo-
rithm for consistency among diverging communicating tasks. With its integration
into the MPI runtime system, DINO allows a redundant job to retain its redundancy
level via cloning throughout job execution. Experimental results with multiple MPI
benchmarks indicate low overhead for failure recovery. A model for job for redun-
dant computing indicates that dual redundancy with cloning (DINO-style) outper-
forms triple redundancy up to 0.5-1M nodes depending on the communication to
computation ratio, which is the range relevant to exascale computing. This means
node failures can be tolerated by forward recovery with DINO with sustained re-
silience levels due to live cloning. In future work, SDC could also be detected
(without correction) by DINO at 33% lower power and fewer nodes than triple
redundancy. This is because dual redundancy requires twice the number of nodes
(and power) over a non-redundant execution, and triple redundancy three times as
much. With cloning, we can sustain dual redundancy after a node failure and ensure
SDC detection capabilities with just a small number of spare nodes, which reduces
power and number of nodes by 33% over triple redundancy.

References

[1] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Effective
straggler mitigation: Attack of the clones. In USENIX Conference on Networked

Systems Design and Implementation, pages 185–198, 2013.

[2] Keren Bergman et al. Exascale computing study: Technology challenges in achieving
exascale systems, September 2008.

[3] Swen Böhm and Christian Engelmann. File I/O for MPI Applications in Redundant
Execution Scenarios. In Euromicro International Conference on Parallel, Distributed,
and network-based Processing, February 2012.

[4] Ron Brightwell, Kurt Kurt Ferreira, and Rolf Riesen. Transparent redundant
computing with MPI. In Euro-Par, pages 208–218, 2010.

[5] Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and Marc Snir.
Toward exascale resilience. Int. J. High Perform. Comput. Appl., 23(4):374–388, Nov
2009.

[6] Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono, and Stefano Russo.
Software Aging Analysis of the Linux Operating System. In ISSRE, pages 71–80,
2010.

[7] Jack Dongarra et al. The international exascale software project roadmap. Int. J. High
Perform. Comput. Appl., 25(1):3–60, February 2011.

[8] Andrzej Duda. The effects of checkpointing on program execution time . Information
Processing Letters, 16(5):221 – 229, 1983.

[9] Jason Duell. The design and implementation of Berkeley Labs Linux
Checkpoint/Restart. Technical report, LBL, 2003.

[10] James Elliott, Kishor Kharbas, David Fiala, Frank Mueller, Kurt Ferreira, and
Christian Engelmann. Combining Partial Redundancy and Checkpointing for HPC. In
International Conference on Distributed Computing Systems, Macau, China, June 18-
21 2012.

[11] Christian Engelmann and Swen Böhm. Redundant Execution of HPC Applications
with MR-MPI. In International Conference on Parallel and Distributed Computing
and Networks, pages 31–38, February 15-17, 2011.

[12] Kurt Ferreira, Jon Stearley, James H. Laros, III, Ron Oldfield, Kevin Pedretti, Ron
Brightwell, Rolf Riesen, Patrick G. Bridges, and Dorian Arnold. Evaluating the
viability of process replication reliability for exascale systems. In Supercomputing,
pages 44:1–44:12, 2011.

[13] D. Fiala, F. Mueller, C. Engelmann, K. Ferreira, and R. Brightwell. Detection and
Correction of Silent Data Corruption for Large-Scale High-Performance Computing.
In Supercomputing, 2012.

[14] A. Geist. What is the monster in the closet? Invited Talk at Workshop on Architectures
I: Exascale and Beyond: Gaps in Research, Gaps in our Thinking, August 2011.

[15] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel Computing,
22(6):789–828, September 1996.

[16] Joshua Hursey, Jeffrey M. Squyres, Timothy I. Mattox, and Andrew Lumsdaine. The
design and implementation of checkpoint/restart process fault tolerance for Open MPI.
In IPDPS, March 2007.

[17] Ian Karlin et al. LULESH Programming Model and Performance Ports Overview.
Technical Report LLNL-TR-608824, LLNL, 2012.

[18] A. Mahmood and E.J. McCluskey. Concurrent error detection using watchdog
processors-a survey. Computers, IEEE Transactions on, 37(2):160–174, Feb 1988.

[19] Aniruddha Marathe, Rachel Harris, David Lowenthal, Bronis R. de Supinski, Barry
Rountree, and Martin Schulz. Exploiting redundancy for cost-effective, time-
constrained execution of hpc applications on amazon ec2. In Proceedings of the 23rd
International Symposium on High-performance Parallel and Distributed Computing,
HPDC ’14, pages 279–290, New York, NY, USA, 2014. ACM.

[20] mpip.sourceforge.net.

[21] Edmund B. Nightingale, John R. Douceur, and Vince Orgovan. Cycles, cells and
platters: An empirical analysisof hardware failures on a million consumer pcs. In
Proceedings of the Sixth Conference on Computer Systems, EuroSys ’11, pages 343–
356, New York, NY, USA, 2011. ACM.

[22] Bernd Panzer-Steindel. Data Integrity. Technical Report 1.3, CERN, 2007.

[23] A. Rezaei and F. Mueller. Sustained resilience via live process cloning. In Workshop
on Dependable Parallel, Distributed and Network-Centric Systems, pages 1498–1507,
May 2013.

[24] A. Rezaei and F. Mueller. Tbd. In IEEE Cluster, September 2015.

[25] Michael Rieker and Jason Ansel. Transparent user-level checkpointing for the native
posix thread library for linux. In In Proc. of PDPTA-06, pages 492–498, 2006.

[26] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. The
LAM/MPI Checkpoint/Restart framework: System-initiated checkpointing. In LACSI
Symposium, Sante Fe, pages 479–493, 2003.

[27] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. Dram errors in the
wild: A large-scale field study. SIGMETRICS Perform. Eval. Rev., 37(1):193–204,
June 2009.

[28] Alex Shye, Joseph Blomstedt, Tipp Moseley, Vijay Janapa Reddi, and Daniel A.
Connors. Plr: A software approach to transient fault tolerance for multicore
architectures. IEEE Trans. Dependable Secur. Comput., 6(2):135–148, April 2009.

[29] http://spark.apache.org/streaming/.

[30] tacc.utexas.edu/stampede.

[31] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev
Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth,
Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric

Baldeschwieler. Apache hadoop yarn: Yet another resource negotiator. In Proceedings
of the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages 5:1–5:16, New
York, NY, USA, 2013. ACM.

[32] VMware. Getting Started with VMware Workstation 10. Technical Report EN-
001199-00, VMware Inc, 2013.

[33] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott. Proactive
process-level live migration in HPC environments. In Supercomputing, pages 1–12,
2008.

[34] Keun Soo Yim, Z. Kalbarczyk, and R.K. Iyer. Pluggable Watchdog: Transparent
Failure Detection for MPI Programs. In International Parallel and Distributed
Processing Symposium, pages 489–500, May 2013.

[35] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10,
Berkeley, CA, USA, 2010. USENIX Association.

