
Scalable Communication Event Tracing via
Clustering ?

Amir Bahmani a Frank Mueller a,∗

a North Carolina State University Department of Computer Science Raleigh, NC
27695-7534

Abstract

Communication traces help developers of high-performance computing (HPC) applications
understand and improve their codes. When run on large-scale HPC facilities, the scalability
of tracing tools becomes a challenge. To address this problem, traces can be clustered into
groups of processes that exhibit similar behavior. Instead of collecting trace information
of each individual node, it then suffices to collect a trace of a small set of representative
nodes, namely one per cluster. However, clustering algorithms themselves need to have
low overhead, be scalable, and adapt to application characteristics. We devised an adaptive
clustering algorithm for large-scale applications called ACURDION that traces the MPI
communication of code with O(log P) time complexity. First, ACURDION identifies the
parameters that differ across processes by using a logarithmic algorithm called Adaptive
Signature Building. Second, it clusters the processes based on those parameters. Experi-
ments show that collecting traces of just nine nodes/clusters suffices to capture the com-
munication behavior of all nodes for a wide set of HPC benchmarks codes while retaining
sufficient accuracy of trace events and parameters. In summary, ACURDION improves
trace scalability and automation over prior approaches.

Key words: Clustering Algorithms, Programming Techniques, Concurrent Programming,
Performance Measurement
PACS: 07.05.Bx

? An earlier version of this paper appeared at IEEE BigData’15. This journal version ex-
tends the earlier paper by implementing K-Medoid during intra-clustering in addition to
K-Farthest and compares the performance of the two clustering approaches. Furthermore, a
new clustering method, dynamic clustering, has been contributed. Paper extensions further
include heatmap comparisons for 6 benchmarks, and execution overhead plus replay time
graphs for strong and weak scaling besides discussions of additional related work. This
work was supported in part by NSF grants CCF-1217748 and CNS-0958311.
∗ Corresponding author.

Email addresses: abahman@ncsu.edu (Amir Bahmani),
mueller@cs.ncsu.edu (Frank Mueller).

Preprint submitted to Journal of Parallel and Distributed Computing 16 December 2016

1 Introduction

The increasing size of HPC systems often requires applications to be carefully de-
signed for scalability. One of the key challenges is to utilize communication effi-
ciently. Programmers generally understand the semantics of MPI communication
routines, but they may not know trade-offs and limitations in a concrete implemen-
tation of MPI, particularly when a problem surfaces only at a larger scale but not
in constrained testing with small inputs. In such scenarios, communication traces
often provide the insight to detect inefficiencies and help in problem tuning [29,3].
Traces are also utilized to drive HPC simulations to determine the effect of inter-
connect changes for future procurements [24,33,20,26,34].

Today’s tracing tools either obtain lossless trace information at the price of lim-
ited scalability (e.g., Vampir [5], Tau [23], Intel’s toolsets [11], and Scalasca [8])
or preserve only aggregated statistical trace information to conserve the size of
trace files (e.g., mpiP [28]). As a result, trace file sizes can easily exceed multi-
ple gigabytes, even for regular single-program multiple-data (SPMD) codes, e.g.,
5TB for SMG2k for moderately small input sizes [36]. In response, a number of
communication compression techniques have been designed, including run-length
compression [38] and structural compression [14,21,31].

Any of these trace compression techniques, except for run-length compression, pro-
vide the means to analyze and replay traces without decompression. But the original
trace is still obtained across all nodes and cores of an HPC application. In general,
the scalability of tracing tools becomes a challenge when an application is run
on large-scale HPC facilities. For instance, ScalaTraceV2 [31] first performs intra-
node trace compression and later (at program termination) consolidates compressed
traces from each node into a single representation (during inter-node compression).
This latter step reportedly has limited scalability, a problem that has been addressed
in two ways. (1) CYPRESS [36] uses a hybrid static/dynamic compiler-aided com-
pression technique [36] with speedups of 10x for inter-node compression, but traces
are still obtained across all nodes, which constrains speedups to a constant factor.
(2) Traces can be clustered into groups of processes that exhibit similar behav-
ior [1]. Once clustered, traces no longer need to be collected per node but just for
a single node per cluster, which means clustering overhead is incurred for a small
number of nodes irrespective of the total number of nodes. In fact, this node number
is a small constant for all practical purposes [1]. The behavior of this single node
representing a cluster is later interpreted as the behavior of all nodes in the clusters,
but in a manner that preserves unique properties of each node. For example, mes-
sage endpoints are still interpreted relative to a subject node and not simply copied
from the representative node of a cluster. In practice, the number of clusters needed
tends to be small (up to nine in our experiments) without sacrificing accuracy.

Bahmani and Mueller [1] employed a hierarchical, signature-based clustering al-

gorithm using two 64-bit signatures. The first level of clustering is call-path cluster-
ing where processes with different numbers or sequences of events are discovered.
During the second phase, this algorithm applies parameter clustering using a 64-bit
signature. This signature is composed of the parameters of an MPI event, such as
its count, type, source, destination, etc.

Even though this previous work is suitable for large-scale applications, it has sev-
eral limitations. The size of the signature is the first problem. The algorithm is very
space efficient due to the 64-bit signature for all of the MPI parameters, but com-
pressing the parameters could result in loss of information. For instance, 16 bits for
message sizes (COUNT) is not enough. On the other hand, expanding signatures
blindly to a larger scale could increase space complexity significantly and cause
scalability problems.

The second limitation is observed for benchmarks such as CG [2]. The unique com-
munication behavior of the processes causes the number of parameter clusters to
increase linearly with the number of processes, which is not scalable. To tackle the
problem, user input plug-in functions were utilized to specify the communication
pattern. The problem with the user plug-in functions is that finding user plug-ins
for complex benchmarks is not easy.

The third problem is a scalability challenge due to hierarchical clustering, which al-
ready improves on ScalaTrace. ScalaTrace employs a two-stage trace compression
technique, namely intra-node (loop level) and inter-node compression. The latter is
consolidating traces in a reduction step over a radix tree. While intra-compression is
fast and efficient, inter-compression is costly as it depends on the number of tasks.
Hierarchical clustering lowered this overhead so that it depends on the number of
clusters, but some application codes still require a number of clusters linear to the
number of tasks in order to retain trace accuracy.

This paper describes ACURDION, a scalable clustering algorithm for large scale
applications. Figure 1 depicts the schematic of ACURDION with respect to Scala-
Trace.

Fig. 1. A Schematic of ScalaTrace with ACURDION

ACURDION first finds parameter differences between processes through Adaptive

Signature Building, a O(logP) algorithm. Then, ACURDION applies either the K-
Farthest or the K-Medoid algorithms on the selected signatures to group processes
into K clusters. This lowers the complexity of inter-node compression to just be
dependent on K, which is a constant in practice (K = 9 for the programs studied).
Consequently, user plug-ins are no longer needed for complex communication pat-
terns, i.e., ACURDION advances trace automation as well.

Contributions:
• We introduce ACURDION, a O(logP) clustering algorithm that supports both
K-Farthest and K-Medoid clustering with low time and space overheads.
•We describe novel signature finding algorithms that help prune unnecessary met-
rics and only consider parameters covering differences among the traces.
•We evaluate ACURDION for a set of HPC benchmarks showing its effectiveness
at capturing representative application behavior for communication events. The re-
sulting number of clusters is a constant for all benchmarks.
•We compare the accuracy of traces generated by ACURDION with prior work on
signature-based trace clustering.
•We introduce “dynamic clustering”, and we compare the clustering overhead and
accuracy of traces generated of ACURDION and dynamic clustering.

2 Background

In this section, we briefly introduce several of the key ideas and techniques rel-
evant to MPI tracing because our work builds on ScalaTrace as an MPI tracing
toolset [31].

ScalaTrace uses the following two main data structures: Regular Section De-
scriptors (RSD) that capture MPI events in the innermost loop, and Power-RSDs
(PRSDs) that capture RSDs from higher-level loop nests. Consider the example in
the following code segment:

for i = 0→ 1000 do
for k = 0→ 100 do

MPI Irecv(...);
MPI Send(...);
MPI Wait(...);

end for
MPI Barrier(...)

end for

RSDs and PRSD of the above code segment are RSD1:<100, MPI Irecv1,
MPI Send1, MPI Wait>, and PRSD1:<1000, RSD1, MPI Barrier1>, respectively.

The main three properties of ScalaTrace are as follows: (1) Location-independent
encodings: ScalaTrace leverages relative encodings of communication end-points,
i.e., an end-point is denoted as ±c for a constant c relative to the current MPI task
ID [21]. Fig. 2 depicts the relative encoding of nodes 7 and 10 in terms of commu-
nication end-points, namely −4, −1, +1 and +4, i.e., these nodes have identical
relative communication end-points.

(a) (b)
Fig. 2. Communication End-point Encoding

(2) Call sequence identification: To distinguish between MPI calls from different
locations, ScalaTrace captures the calling context by recording the calling sequence
that leads to the MPI event. The calling context is obtained from the stack backtrace
of an MPI event where each location is a unique signature of the stack trace called
the stack signature [21].

(3) Communication group encoding: To store communication groups in a scal-
able way in traces, ScalaTrace leverages a special data structure called ranklist.
A ranklist is represented as 〈dimension, start rank, iteration length, stride,
iteration length, stride〉, where dimension is the dimension of the group, start rank
is the rank of the starting node, and the iteration length stride pair is the iteration
and stride of the corresponding dimension [30].

A ranklist covers a group of processes with any number of dimensions. For in-
stance, in Fig. 3(a), the shaded nodes are presented as ranklist 〈2 0 4 4 4 1〉, and in
Fig. 3(b), they are presented as ranklist 〈2 0 4 4 2 1〉. The second ranklist reads as a
2D ranklist starting at task 0 with four entries in the first dimension and a stride of
4 (implying tasks 0, 4, 8 and 12) with two entries in the second dimension with a
stride of 1 (implying tasks 1, 5, 9 and 13). The ACURDION algorithm introduced
in the next section is working on top of the intra-node compression step.

(a) (b)
Fig. 3. Ranklist of a Communication Group

3 A Novel Clustering Algorithm

ACURDION has two main phases. First, the adaptive signature building phase dis-
covers signatures suitable for the clustering. Second, the clustering phase clusters
traces based on their suitable signatures. This phase involves a single-step (where
all signatures are considered in clustering), or a double-step where during the first
step it applies clustering on the Call-Path signature and then in the second step it
applies clustering on all other signatures within the Call-Path clusters. This sec-
tion details design and implementation of the single- and double-step algorithms of
ACURDION and the reference clustering algorithm.

3.1 Signature Building

In order to generate global traces with high accuracy, we found (based on our prior
work [1]) that the clustering algorithm needs to consider the calling context, and
several important MPI parameters. Therefore, the clustering algorithms by default
consider eleven signatures. The first one, the Call-Path signature, helps to cluster
processes with similar sequences of MPI calls.

As noted previously, to represent calling context, ScalaTrace uses the stack signa-
ture consisting of a number of backtrace addresses of the program counter (return
addresses), one for each stack frame. The Call-Path signature, a 64-bit signature, is
the XOR of all 64-bit stack signatures. In order to create the Call-Path signature,
capturing the calling context is sufficient for distinguishing MPI events from each
other in most benchmarks. Moreover, to order events, we multiply the modulo 10
plus 1 of the sequence number of each event by the 64-bit stack signature and then
use this value in the Call-Path signature. This ensures that signatures cannot cancel
out each other due to permutations on call sequences and recursion, which could
otherwise happen in rare cases (e.g., NAS MG code).

All other signatures are averaged parameter signatures composing parameters of
the MPI call event (COUNT, SRC, DEST, KEY, COLOR, TAG, Computation time,
Communication time, LOOP iteration and Data+Operation+Communicator type).
KEY and COLOR are arguments of MPI COMM SPLIT , which splits an ex-
isting communicator into multiple communicators using these arguments. For the
first eight above-mentioned signatures, aggregating their values and then taking the
average could result in an overflow. Thus, we calculate the average incrementally.

Here, input is a vector of data, and the algorithm is called when the size of the input
is larger than two. For the Loop signature, considering the importance of nested
loops, we know that multiplying the bounds of nested loops could cause overflow as
well. To avoid this, we divide 64 bits into four sections. The least significant 16 bits
are assigned to the average of the inner most loop sizes (or the least important loop),

then the second 16 bits are assigned to loop above the first section, etc. Anything
above three levels is considered part of the fourth section (most significant bits). As
a Data+Operation+Communicator Type signature, we assign a bit such as 0:MPI
CHAR, 32:MPI MAX, and 55:MPI COMM SELF, etc., per MPI data type, MPI
operation type, and MPI communicator types. After creating signatures at the node
level, the first step of ACURDION is to enter an adaptive signature building phase.
Algorithm 1 presents the pseudocode of this phase.

Algorithm 1: Adaptive Signature Building
1 Set your signature format to 0;
2 if a left/right child exists then
3 Receive its signatures;
4 if your signature 6= child signature then
5 update the signature format;

6 Receive the child’s signature format;
7 signature format = signature format OR child’s signature format;

8 if a parent exists then
9 Send your signatures to your parent;

10 Send your signature format to your parent;

11 Broadcast signature format by rank root;

The time complexity of the algorithm is log(P). Fig. 4 and Fig. 5 show an example
of signature building. First, each process creates its signatures. Then they send their
signatures and signature format to their parents in a bottom-up procedure over a
radix tree.

This procedure uses a set in which there is a bit (per signature) indicating whether
or not the signature should be stored. In this example, due to the space limitation,
we only consider 6 signatures. The signature format consists of 6 bits, where the
right-most bit represents the TAG signature, and the left-most bit represents the
COUNT signature. At the beginning, all bits are zero. When two different clusters
encounter each other (i.e., child’s and parent’s signatures differ), the bits corre-
sponding to the different signatures are set to 1. As shown, leaf nodes (such as 5
and 6) send their signatures to the parent node 2. Then, node 2 compares its own
signatures with the received ones. If it finds any difference, it flips the correspond-
ing bit in the signature format to 1. Here, nodes 6 and 2 differ (captured at node
2).

This process continues up to the root of the tree. The root then broadcasts the bitmap
to all nodes. At the end of this stage, all nodes know which signatures are sub-
jected to clustering. In this example, the format signature is 000111 (i.e., TAG,
Call−Path, and DEST signatures are different), so the clustering algorithm only
considers three signatures.

Fig. 4. A Sample of Creating Signatures
O(1)

Fig. 5. A Sample of Building Signature
Format O(log(P))

3.2 Single-Step and Double-Step Clustering

Fig. 6. Overview of Proposed Clustering Algorithm

Fig. 6 depicts a simplified illustration of how ACURDION works. In this figure, we
assumed there are only two hypothetical signatures, shape and color. ACURDION
first finds these two signatures using the adaptive signature building. It then either
follows single-step clustering (all signatures are considered in clustering) or the
double-step clustering (first, only Call-Path or shape in this figure, and second,
all other signatures are considered for the clusters created in the first step). In this

figure, color is the second dimension. After finding the top K clusters and selecting
the top K representatives (nodes) to create the global trace file, inter-compression
on the selected traces is applied.

In our design and implementation, we considered both Euclidean and Manhat-
tan distances. Before calculating the distances, ACURDION dynamically nor-
malizes them, i.e., it groups signatures based on their importance. The impor-
tance ordering is as follows: Group1={LOOP, COUNT, COMM Time and COMP
Time}, Group2={SRC, DEST, KEY, COLOR, TAG} and Group3={Call-Path,
Data+Operation+Communicator Type}. Compromising on group 1 does not per-
turb the application time significantly, as experiments show. Group 3 is the most
important group because we do not want to lose any events by compromising on
Call-Path. We further observed that Call-Path also covers the Data+Operation+
Communicator signature in practice.

Since COUNT is a 32-bit integer, its average is also 32-bits. In our implementa-
tion, we assumed there is a boundary on the maximum value of group 2 which is
also 32. With these assumptions, we can shift group 2 based on group 1, and then
group 3 based on the smaller groups in such a way that the value of the larger group
becomes larger than the smaller ones.

We tested ACURDION on all benchmarks with both the Manhattan and Euclidean
distance functions. We then calculated the distance between the output of clustering
to the non-clustering version. According to our experiments, both metrics are giving
close distances, so we chose the Manhattan distance for our experiments.

Algorithm 2: ACURDION K-Farthest clustering algorithm
1 if a left/right child exists then
2 Receive list of left K / right K clusters;
3 Receive signature of head of top left K / right K clusters;
4 Merge left K / right K clusters + yourself into AllNode list;
5 if left K + right K + 1 > K then
6 Calculate the distance matrix for Top K list;
7 TopK list = { } ;
8 while Size of TopK list < K do
9 Find the farthest cluster to the TopK list;

10 foreach cluster ∈ AllNode list - TopK list do
11 Find the closest cluster;
12 Assign the cluster to the closest one;

13 if a parent exists then
14 Send your list of K clusters to your parent;
15 Send signature of head of top K clusters to your parent;

16 Broadcast Top K by root;

Algorithm 2 depicts ACURDION’s K-Farthest clustering algorithm. Fig. 7 shows
how the proposed ACURDION K-Farthest algorithm operates over a radix tree.
At each node, if it has a child, it first receives the K selected clusters and their
signatures. Each node at most receives 2K clusters. After receiving K clusters
from right child and K clusters from the left child, it then adds itself (i.e., its own
cluster) to the list of all nodes 2K + 1, and determines the top K clusters.

First, it calculates the distance matrix between all potential clusters based on the
signature format. Second, it selects the top K clusters farthest from all 2K + 1
clusters. Third, it distributes the rest of the clusters (which have not been selected)
to their nearest cluster. At the end, after finding the top K clusters, if the current
node has a parent, it will send the top K clusters and their signatures to its parent.
This procedure is similar for K-Medoid clustering. The only difference is instead
of finding the top K farthest clusters, we implemented the Partitioning Around
Medoids (PAM) algorithm that randomly selects K medoids and iterates as long
as the cost decreases until a fixed point is reached [22].

In single-step ACURDION, clustering happens over the entire signature format. For
example, if COLOR and Call-Path are parts of a signature format then the algo-
rithm calculates the normalized distances from the signatures. The double-step ver-
sion, in contrast, first clusters over Call-Path and then (at the second level) within
the clusters created at the first level over other dimensions such as COLOR.

Note that the computational cost of our clustering algorithm is O(logP), where P is
the number of processes. K can be any constant value. In our experiments, K = 9
was shown to preserve sufficient accuracy (discussed in Section 5).

By the end of this stage, the algorithm has clustered all processes with disjoint
behavior. Then, the algorithm creates the complete trace based on the cluster infor-
mation.

3.3 Aggregating the Traces

As mentioned in the introduction, ScalaTraceV2 first performs intra-node trace
compression and later (at program termination) consolidates compressed traces
from each node into a single representation (during inter-node compression). The
time complexity of inter-node compression of ScalaTrace is O(n2) , where n is the
size of the PRSD-compressed intra-node event trace. Since for ScalaTrace with-
out clustering, all processes are participating in this operation over a radix tree, the
time complexity is O(n2logP). On the other hand, for ScalaTrace with the clus-
tering algorithm, only a set of representative K nodes with different signatures are
participating in this operation. During the last phase of Fig. 6, K different nodes
are merged.

The cost of inter-compression with clustering is O(n2logK), where K = 9 in our
experiments and the cost of the clustering algorithm is O(logP).

Before merging, the full trace is created from the clustered trace by updating the the
trace files of the K selected representatives considering all members of the cluster.
As an example, consider Fig. 7. P13 represents a group of processes: { P1, P2, P8,
P9, P10, P13 }. Therefore, P13 reflects the participation of all members of the cluster
in its own trace file. This operation is linear, i.e., representatives linearly traverse
their trace and replace a cluster ranklist (representing all members’ IDs) with an
event ranklist (compatible with the original ScalaTraceV2 format).

P0

P1 P2

P3 P4 P5 P6

P7 P8 P9
P10 P12P11 P13 P14

• P4 P10• P3 P8
• P6 P13• P11 P5

• P5 P13• P3 P8

• P3 P13

{P3 , P4 , P7 }{P3 , P4 , P7 }

{P3 , P7 }{P3 , P7 }

{P0 , P3 , P4 , P5 , P6 , P7 , P11 , P12 , P14 }{P0 , P3 , P4 , P5 , P6 , P7 , P11 , P12 , P14 }

{P13 }{P13 }

{P2 , P13 }{P2 , P13 }

{P1, P2, P8, P9, P10 , P13 }{P1, P2, P8, P9, P10 , P13 }

Fig. 7. An illustration of K-Farthest or K-Medoid Clusterings (K = 2)

3.4 Reference Signature

We use a reference clustering approach to evaluate the accuracy and scalability of
our algorithm. The reference signature utilized by the reference clustering is a se-
quence of events. It concatenates the Call-Path signatures by adding a sequence
number to each MPI event, and features parameter clustering by keeping the pa-
rameters of each MPI event uncompressed.

In Section 5, we provide the results of the experiments conducted with different
benchmarks to compare the space complexity of the ACURDION and the reference
signature algorithms.

4 Experimental Setup

TACC’s Stampede [25], a state-of-the-art HPC cluster, is utilized to conduct exper-
iments. It consists of a total of 6400 nodes, each with two Intel Xeon E5 processors
and one Intel Xeon Phi coprocessor. The compute nodes are interconnected with
Mellanox FDR InfiniBand technology (56 Gb/s) in a two-level fat-tree topology.

Each experiment was run five times, and their averages are reported. The aggregate
wall-clock times across all nodes for these benchmarks are reported. We conducted
experiments with a variety of codes: (1) the NPB suite (version 3.3 for MPI) with
class D input size [2]; (2) Sweep3D [15], a solver for the 3-D, time-independent,
particle transport equation on an orthogonal mesh, which uses a multidimensional
wavefront algorithm for discrete ordinates deterministic particle transport simula-
tion with a problem size of 100×100×1000; (3) LULESH, which approximates
the hydrodynamics equations discretely by partitioning the spatial problem domain
into a collection of volumetric elements [12]. Results of ACURDION are compared
to reference clustering and related work on signature-based clustering [1] of which
we obtained a copy.

5 Results and Analysis

To assess the accuracy of the proposed clustering algorithm, we conducted two
types of experiments. First, we tested the accuracy of point-to-point communica-
tion through heatmaps to make sure ACURDION captures communication pat-
terns. Second, to verify the accuracy of collective and point-to-point operations,
we replayed the traces and compared the wall-clock time of the clustered and non-
clustered versions.

Our first experiment assesses the effect of ACURDION on point-to-point commu-
nication. Fig. 8 and Fig. 9 depict heatmaps of different benchmarks for 64 processes
each. Original versions and ACURDION versions of the benchmarks are shown as
pairs (original first, e.g., BT, ACURDION next marked as “starred”, e.g., BT*). The
x- and z-axes denote mutual communication end-points, and the number of sends
is depicted on the y-axis. The average time in seconds is depicted as heatmaps
(dark=low to white=high). The ACURDION heatmaps are a perfect match to the
non-clustering ones for BT, Sweep3D, LU and SP. The heatmaps for Lulesh differ
slightly before (Fig. 9(e)) and after (Fig. 9(f)) clustering (same for CG and MG).

Table 1 indicates varying parameters selected during the signature building phase
for these benchmarks. On average, the size of the signature was reduced by 43%
across all 11 possible signatures. There were no differences for DATA+OP, KEY,
and COLOR for the tested benchmarks. However, benchmarks, such as NAS Fast

(a) BT (b) BT*

(c) CG (d) CG*

(e) LU (f) LU*

Fig. 8. Heatmaps of Point-To-Point Communication for 64 Processes Through ACUR-
DION (K=9)

Fourier Transform (FT) tested in our prior work [1], could benefit from KEY and
COLOR signatures.

We next define an accuracy metric of trace replay as

ACC = 1− |t− t′|
t

where t and t′ are the replay times without and with clustering, respectively.

Table 2 covers the percentage of matching clustered parameters relative to non-
clustered ones. The similarity of point-to-point events was already depicted in
Fig. 8 and Fig. 9. Some codes may experience different endpoints in sends/receives
after clustering, but the overall patterns are preserved. In other words, if concrete
endpoints differ then only by a slight shift so that the overall behavior remains close
to the original program, which is also confirmed in terms of wallclock time later.

(a) MG (b) MG*

(c) SP (d) SP*

(e) Lulesh (f) Lulesh*

(g) S3D (h) S3D*

Fig. 9. Heatmaps of Point-To-Point Communication for 64 Processes Through ACUR-
DION (K=9)

We chose a maximum number of nine clusters (K = 9) for ACURDION, which we
experimentally determined based on captured communication patterns of related
work [1]. This suffices to represent average communication time, send count, and
source and destination ranks for point-to-point communication. Table 3 also shows
that for CG increasing the number of clusters does not improve the accuracy of

Table 1
Signature Format

Code Call-Path COUNT SRC DEST COMP COMM TAG LOOP

BT X X X X X X

CG X X X X

LU X X X X X X

MG X X X X X X X

SP X X X X X

Sweep3D X X X X X X X X

Lulesh X X X X X X

Table 2
Matching Percentage

Benchmark COUNT LOOP # EVENTS SRC DEST TAG

BT 99.9% 100% 100% 100% 100% 100%

CG 100% 100% 100% 80.90% 80.90% 100%

LU 97.12% 98.16% 100% 100% 100% 100%

MG 99.7% 100% 100% 96.80% 96.80% 99.03%

SP 100% 100% 100% 100% 100% 100%

Sweep3D 96.86% 87.37% 100% 100% 100% 100%

Lulesh 82.35% 75% 100% 70.37% 70.37% 100%

trace. In fact, we observed that the key element with respect to trace accuracy is the
number of Call-Path clusters. Covering all distinct events over all traces results in
acceptable accuracy. Due to the iterative nature of parallel programs, the number of
different Call-Path patterns is limited to a small number. For our tested benchmarks,
this value was nine, which is sufficient to cover stencil codes. Nonetheless, we
can change the value of K dynamically should the number of Call-Path patterns
increase during adaptive signature building.

Table 3
Accuracy and Number of Clusters: CG Class D and P=256

Clusters 9 27 81 243

Overhead (s) 1.09 3.22 9.54 27.91

Accuracy 98.92% 99.05% 96.88 97.75%

All benchmarks result in the same number of main clusters and sub-clusters under
ACURDION, which often reflects the shape of communication patterns in these
codes.

But we also observed minor differences. For example, BT and SP have the same
communication pattern but slightly different message payloads (COUNT param-
eter) after clustering, a difference of around 0.1% reported in Table 2, which is not
visible in Fig. 8(a). Communication patterns are always retained after clustering,
e.g., the stencil pattern of Sweep3D and LU . Here, S3D* retains pattern and send
volumes while LU* reflects the communication pattern but diverges slightly in send
volume (COUNT) under ACURDION.

The Lulesh (Livermore Unstructured Lagrange Explicit Shock Hydrodynamics)
proxy application (proxy app) [12] is a shock hydrodynamics code developed at
Lawrence Livermore National Laboratory (LLNL). Lulesh is large enough to be
more complex than traditional benchmarks, yet compact enough to support a large
number of implementations [12]. We observe a slight diffusion in the communica-
tion pattern in Fig. 9(f). However, clustering covered all events and retained param-
eters such as COUNT and LOOP as Table 2 showed.

MG has different clusters as data partitioning (sub-grid creation) depends on
input size, number of processes, and two different communication patterns
(halo/boundary exchange and cross-grid interpolation). Due to changes in grid res-
olution per iteration, boundary geometry also changes. As the algorithm moves
from coarser to finer, more boundaries are created. Nonetheless, heatmaps show
that ACURDION clustering captures this pattern relatively accurately as it closely
resembles that without clustering (albeit with some shifts of individual points). Ta-
ble 2 also indicates that clustering accurately covers the parameters.

CG shows similar shifts that diffuse the regularity of the pattern without clustering,
but the overall number of communication exchanges and the send volume are re-
tained. Table 2 indicates that ACURDION clustering captures the parameters accu-
rately. In related work [1], CG’s pattern could only be captured via a user-supplied
plugin function, which captured unique parameters that otherwise would signifi-
cantly increase the total number of clusters. It would be preferable to avoid such
user plugins where possible as it is difficult for users to provide such functions for
complex benchmarks. ACURDION provides the means to retain a concise trace
representation without user plugins, but the price is a more diffuse communication
matrix. We will later see that this has little effects on replay accuracy, which shows
the benefits of using clustering.

5.1 Strong Scaling

The second set of experiments focuses on the accuracy of wall-clock time com-
paring replayed traces with ACURDION and without clustering, first under strong
and then under weak scaling. Some of the benchmarks only support strong scaling
(most NAS codes) while others support weak scaling (Sweep3D, Lulesh) so that

different sets of benchmarks are reported in these experiments.

Strong scaling features a set of experiments where the number of tasks is changed
while the program input remains the same. This effectively reduces the amount of
work per task as the input problem is partitioned into smaller pieces while poten-
tially inflicting more (but smaller) messages as the number of tasks increases. In
these experiments, 16 MPI tasks were mapped onto one node (with 16 cores).

Fig. 10 depicts the wall-clock time on a logarithmic scale (y-axis) for different num-
ber of MPI tasks (x-axis) of the respective benchmarks. Per task size, the average
execution time over five runs is reported for (a) reference clustering, (b) no clus-
tering (vanilla ScalaTrace V2 with intra- and inter-node reduction), (c) double-step
and (d) single-step ACURDION clustering, and (e) base application time without
instrumentation. For ACURDION results, bars are stacked to distinguish the base
instrumentation overhead (blue/bottom) from the clustering overhead (red/top).
This distinction is omitted for reference clustering. The last bar (e) is shown as
a reference to get an idea how much time would be spent on tracing compared to
base application runtime.

For instance, BT for 256 tasks has about an order of magnitude lower trace overhead
with ACURDION clustering than without (or with reference clustering), which is
nearly two orders of magnitude smaller than application runtime. Within ACUR-
DION, half the time is spent in clustering. For 4096 tasks, ACURDION incurs an
order of magnitude lower overhead than reference/no clustering but results in appli-
cation overhead of about 20%. The clustering time, however, within ACURDION
is negligible. Similar observations were made for CG and SP. LU has low instru-
mentation overhead under clustering (even reference clustering) while the overhead
without clustering is significant and outstrips application runtime at 4096 tasks.
ACURDION cuts down overheads to about half or even a quarter of that for refer-
ence clustering, which is nearly two orders of magnitude smaller than application
runtime regardless of the number of tasks (up to 4096 tasks). Most of the tracing
overhead is due to clustering under ACURDION. MG’s overhead for ACURDION
clustering changes from being two orders of magnitude smaller than application
runtime at 256 tasks to match application runtime at 4096 tasks, yet remains about
an order of magnitude smaller than reference and no clustering. Overall, single- and
double-step clustering perform equally well, and ACURDION outpaces the other
techniques due to the lower number of processes involved in inter-node compres-
sion after clustering.

The next set of experiments assess the accuracy of the trace information obtained
in the techniques featured so far. To this end, a trace replay tool, ScalaReplay [31],
is utilized to issue MPI events in the same order and over the same number of
nodes that they were originally recorded during application execution. Yet, instead
of computing, the recorded time spent for computation is “replayed” as sleep time
to resemble the same distance between communication calls. The communication

0.1

1

10

100

1000

256 1024 4096

E
x
e

cu
ti

o
n

 O
v

e
rh

e
a

d
 (

se
c)

(b) BT

0.1

1

10

100

1000

256 1024 2048 4096

E
x
e

cu
ti

o
n

 O
v

e
rh

e
a

d
 (

se
c)

(c) CG

0.1

1

10

100

1000

256 1024 2048 4096

E
x
e

cu
ti

o
n

 O
v

e
rh

e
a

d
 (

se
c)

(d) LU (e) MG

0.1

1

10

100

1000

256 1024 4096

E
x
e

cu
ti

o
n

 O
v

e
rh

e
a

d
 (

se
c)

(f) SP
Fig. 10. Execution Overhead for NAS benchmarks: Strong Scaling, Nodes/Tasks=1/16

calls themselves are issued with the same parameters as recorded, except for slight
differences in send volume and end-points due to clustering (see previous discus-
sion about communication patterns). The message payload is a buffer of the indi-
cated size (but with some random content as content is not recorded during tracing,
nor is it required for correct replay as computation has been replaced by sleep).
Nodes interpret the same trace file during replay but transpose MPI communica-
tion endpoints relative to their task ID (due to the relative encoding of end-points in
ScalaTrace). For clustering, a different event is generated per cluster, which results
in up to K = 9 different events for subsets of tasks (compared to a single event
without clustering). All other parameters are replayed directly from the trace.

Fig. 11 depicts the replay time in seconds on a linear y-axis for traces resulting
from clustering as opposed to not using reference clustering, no clustering, single-
/double-step ACURDION clustering and also the corresponding application time
without instrumentation for comparison. A match to the latter means that traces
retain application behavior. We observe that the replay times over all methods, task
sizes and applications matches the original application very closely. We observe

0

100

200

300

400

500

600

256 1024 4096

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

(b) BT

0

20

40

60

80

100

256 1024 2048 4096

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

(c) CG

0

100

200

300

400

500

600

700

800

256 1024 2048 4096

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

(d) LU

0

10

20

30

40

50

60

70

256 1024 2048 4096

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

(e) MG

0

100

200

300

400

500

256 1024 4096

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

(f) SP
Fig. 11. Replay Time of Traces: Strong Scaling, Nodes/Tasks=1/16

an accuracy level of more than 95% across the set of benchmarks and experimental
parameters. This illustrates that ACURDION is competitive with any other scheme,
even though it retains only a subset of the trace information of other methods and
requires lower overhead.

5.2 Weak Scaling

The next experiments cover weak scaling, which features a sequence of experi-
ments where the input size and the number of tasks are increased at about the same
rate. The objective is to ensure that the input size per task (after input partitioning)
remains constant so that execution times (in the ideal case) also remain constant
as we scale up. Of course, changes in communication overhead may influence this
behavior. Input constraints on several benchmarks limit the set of experiments that
we could conduct for weak scaling to Sweep3D and Lulesh. The input size for
Sweep3D is chosen to be 100×100×1000 per node. For Lulesh, weak scalability

tests were run at a problem size of 323 per node.

Fig. 12 depicts the overheads in seconds on a logarithmic scale (y-axis) for differ-
ent number of processors (x-axis) for Lulesh and Sweep3D. Lulesh results in about
one order of magnitude lower overhead for any clustering approach than without
clustering. Single/double-step ACURDION takes about the same time as reference
clustering, even though it has to perform the K-Farthest algorithm. And clustering
techniques incur instrumentation overhead 1-2 orders of magnitude smaller than
application runtime. Sweep3D results in even lower overheads of 1-2 orders of
magnitude for clustering over no clustering. Its instrumentation cost is 3-5 orders
of magnitude smaller than the corresponding application runtime. Here, single-step
outperforms double-step slightly whereas in all previous experiments no clear win-
ner could be declared between the two. Reference clustering outperforms ACUR-
DION here for the first time. However, we will later show that ACURDION out-
performs reference clustering in terms of space complexity, which can have a sig-
nificant impact for large-scale tracing.

Fig. 13 features the overhead per replay method and in comparison to original ap-
plication runtime in seconds on a linear scale (y-axis) for a different number of
tasks (x-axis). We observe that replay times are uniformly resembling the origi-
nal application runtime irrespective of which tracing method was used. The overall
accuracy of ACURDION is 95%-97%.

0.01

0.1

1

10

100

1000

10000

256 1024 2048 4096

E
x
e

cu
ti

o
n

 O
v

e
rh

e
a

d
 (

se
c)

(b) Sweep3D

0.01

0.1

1

10

100

512 2197 4096

E
x
e

cu
ti

o
n

 O
v

e
rh

e
a

d
 (

se
c)

(c) Lulesh
Fig. 12. Execution Overhead: Nodes/Tasks=1/16

0

200

400

600

800

1000

1200

1400

1600

256 1024 2048 4096

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

(b) Sweep3D

0

5

10

15

20

512 2197 4096

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

(c) Lulesh
Fig. 13. Replay Time of Traces: Weak Scaling, Nodes/Tasks=1/16

5.3 Signature-based vs. ACURDION

To compare the accuracy of trace files generated by ACURDION to signature-
based clustering [1], we conducted two experiments covering both strong and weak
scaling on the same platform, where all machines were 2-way SMPs with AMD
Opteron 6128 processors with 8 cores per socket. Each node is connected by QDR
InfiniBand. In the first experiment, we compared ACURDION and signature-based
clustering for CG class C. Figure 14 shows that the accuracy of traces for signature-
based and ACURDION are 98.73% and 98.93% compared to non-clustering. Note
that for CG class C, the performance deteriorates for P=1024, because there is
not enough workload for each process. This results in a high communication to
computation ratio. The second experiment covers weak scaling for Sweep3D in
Fig. 14. The average accuracy of traces is 97.96% and 97.91% for ACURDION
and signature-based, respectively. While ACURDION has a high level of accuracy,
it does not have the limitations of the signature-based approach, i.e., no user plug-in
is required and it has lower space complexity.

0

500

1000

1500

2000

16 64 256 1024

E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

(b) Sweep3D

0

20

40

60

80

100

120

16 64 256 1024

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

(c) CG
Fig. 14. Replay Time of Traces: Nodes/Tasks=1/16

5.4 K-Farthest vs. K-Medoid

In our implementation, we used K-Farthest clustering at the node level. Overall,
ACURDION uses signature-based, hierarchical clustering as the main clustering
across the nodes, and K-Farthest or K-Medoid at the node level. We compared the
accuracy of intra-clustering for K-Medoids and K-Farthest clusterings. Similar to
the previous experiment, we conducted two experiments covering both strong and
weak scaling on the same platform. Figure 15 shows that the accuracy of traces are
very close to each other. Since the execution overheads depicted in 4 and 6, and
standard deviation depicted in 5 and 7 are also very close, we conclude that intra
clustering does not play a major role in trace accuracy. The signature-based nature
of the clustering is the main factor by which ACURDION covers all MPI events.

Table 4
Execution Overhead: CG Class C - Strong Scaling

Processes 16 64 256 1024

K-Medoid Overhead (s) 0.41 0.58 0.86 1.94

K-Farthest Overhead (s) 0.42 0.6 0.91 1.99

Table 5
Standard Deviation: CG Class C - Strong Scaling

Processes 16 64 256 1024

K-Medoid Overhead (s) 0.68 0.42 0.45 0.12

K-Farthest Overhead (s) 0.45 0.22 0.34 0.43

Table 6
Execution Overhead: Sweep3D - Weak Scaling

Processes 16 64 256 1024

K-Medoid Overhead (s) 0.34 0.4 0.36 0.75

K-Farthest Overhead (s) 0.23 0.27 0.29 0.92

Table 7
Standard Deviation: Sweep3D - Weak Scaling

Processes 16 64 256 1024

K-Medoid Overhead (s) 4.84 2.49 7.01 17.15

K-Farthest Overhead (s) 3.59 3.42 8.85 16.16

0

500

1000

1500

2000

16 64 256 1024

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

(b) Sweep3D

0

20

40

60

80

100

120

16 64 256 1024

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

(c) CG
Fig. 15. Replay Time of Traces: Nodes/Tasks=1/16

5.5 Space Complexity

Let us consider the space complexity of tracing with and without clustering. The
memory space allocated during trace compression with optional clustering differs
from method to method. Table 8 depicts the number of clusters and the required
memory space in KB per method and per benchmark for 256 tasks. We observe that
ACURDION (single/double-step do not differ) requires about an order of magni-

tude (and up to two orders of magnitude) less space than reference clustering or no
clustering. The number of clusters for ACURDION is always nine due to the K-
Farthest or K-Medoid methods, which is often significantly smaller than any other
technique. (Notice that without clustering, each task is considered a cluster of its
own).

Table 8
Average Space Complexity Per Process for P=256 (P=216 for Lulesh)

ACURDION Reference Clustering Without Clustering

Code # clusters avg space # clusters avg space # clusters avg space

BT 9 2.73KB 41 108.49KB 256 71.71KB

CG 9 1.70KB 256 376.32KB 256 43.82KB

LU 9 2.73KB 16 25.05KB 256 71.71KB

MG 9 11.8KB 72 733.83KB 256 215.15KB

SP 9 2.50KB 53 133.06KB 256 67.73KB

Sweep3D 9 1.50KB 9 4.86KB 256 27.89KB

Lulesh 9 1.51KB 26 17.56KB 216 27.87KB

The required space of ACURDION is on average one order of magnitude larger
compared to signature-based clustering [1], i.e., it ranges from slightly smaller
(MG) to two orders of magnitude larger (LU). And the number of clusters of
ACURDION is sometimes smaller and sometimes larger compared to signature-
based clustering. But more significantly, the case (MG) where the number of clus-
ters grows linearly with the number of tasks for signature-based clustering presents
a non-scalable behavior. In contrast, ACURDION always requires only K = 9 clus-
ters and still retains similar overheads at a constant trace size. This is a significant
advance in terms of scaling behavior.

This scalability result is corroborated by a complexity analysis of the algorithms.
Without clustering, all processes contribute to the inter-compression step, so the
space complexity is linear to number of processes. But for clustering, only a con-
stant number of representative nodes are involved in this operation (e.g., one node
per cluster). Furthermore, the size of signatures is a key player for clustering. Thus,
we considered the size of signatures and related algorithms for space complexity
analysis (e.g., adaptive signature building for ACURDION).

Prior work established the complexity without clustering (1), reference clustering
(2) and signature-based clustering (3), which resulted in the lowest overhead. In
contrast, the complexity of K-Farthest or K-Medoid clustering (4) is even lower
than (3) since it depends on the constant K for ACURDION, and we showed that
K = 9 suffices in experiments. Specifically, the average trace and signature sizes
per node are multiplied by the constant K (instead of the sum of main clusters and

sub-clusters in prior work, which is not constant for some programs, such as MG).

5.6 Dynamic Clustering

We developed yet another clustering algorithm derived from ACURDION, which
only considers Call-Path, SRC, and DEST signatures. It hierarchically clusters at
two levels. First, it clusters based on Call-Path signature. Second, it finds new clus-
ters based on SRC and DEST signatures. The hypothesis for designing dynamic
clustering was that all events and the full communication pattern can be captured
by only considering three signatures and would result in output traces with a very
high replay accuracy even though other signatures are ignored.

We tested dynamic clustering against ACURDION with nine clusters and the orig-
inal ScalaTrace without clustering. Figure 16 and Figure 17 depict replay time and
execution overhead for CG class C (strong scaling), and LU class C (weak scal-
ing). The accuracy of ACURDION and dynamic clustering are almost the same.
The main difference is the number of clusters. For CG, due to the unique commu-
nication patterns for each process, the number of SRC/DEST signatures goes up
significantly, which results in much larger overhead for dynamic clustering.

Programmers could use Dynamic clustering to gain a better understanding about the
number of clusters. We conducted another experiment in which we chose smaller
numbers of clusters (less than 9) for LU to check the accuracy of traces. The replay
engine was unable to execute the trace, simply because some of the events are now
missing, which creates deadlocks. We conducted the same experiment for BT and
reduced the number of clusters to less than three so that the output trace misses
the correct communication pattern. However, because the trace still contained all
the events, the replay engine executed successfully. Surprisingly, the replay time
was accurate. Based on the HPC benchmarks that we tested, it seems the Call-Path
is the root cause of accuracy. As long as the HPC tracing toolset captures all the
events (Call-Paths), the tracing toolset is accurate in terms of timing.

6 Related Literature

Bahmani and Mueller [1] proposed a signature-based clustering algorithm for Sca-
laTraceV2. ACURDION enhances this work in two directions. First, the parameter
signature of [1] is a concatenation of several truncated parameters. At a large scale,
16 bits for representing average COUNT may not be enough to cover all differences
in COUNT. The eleven 64-bit signatures that are created based on characteristics of
the application by the Adaptive Signature Building phase avoid such deficiencies
in ACURDION. Second, the strength of ACURDION lies in its independence of

(b) Replay Time (c) Execution Overhead
Fig. 16. Execution Overhead and Replay Time for CG Class C: Nodes/Tasks=1/16

(b) Replay Time (c) Execution Overhead
Fig. 17. Execution Overhead and Replay Time for LU Weak Scaling: Nodes/Tasks=1/16

user input plug-ins for benchmarks that have unique communication behavior (e.g.,
CG).

CYPRESS [36] is a communication trace compression framework. CYPRESS
combines static program analysis with dynamic runtime trace compression. It ex-
tracts the program structure at compile time, obtaining critical loop/branch con-
trol structures. They compared their result with ScalaTraceV2. As previously men-
tioned, the problem of ScalaTraceV2 was at the inter-compression step. In terms of
space complexity, [1] and ACURDION have at least an order of magnitude smaller
traces than ScalaTraceV2. One of the main problems of CYPRESS is the overhead
of static and dynamic analysis while the combination of ScalaTraceV2+Clustering
does not have any overhead at the compile time of applications. Unlike CYPRESS,
such an approach works even when only binaries/libraries are available for instru-
mentation.

Scalasca [37] collects profile and trace data and feeds it into an automatic analysis
process to detect specific bottleneck patterns. The main limitation of Scalasca is the
slow and inefficient analysis report post-processing, which is inconvenient both for

experiments with complex calltrees or large numbers of processes/threads.

Vampir [5], which is a tracing tool for MPI communication, uses profiling exten-
sions to MPI and facilitates the analysis of message events of parallel execution,
helping to identify bottlenecks and inconsistent run-time behavior. Scalability is
the main problem of Vampire where trace complexity increases with the number of
MPI events in a non-scalable fashion.

Statistical sampling is a method utilized in HPCTOOLKIT [27] to measure perfor-
mance. HPCTOOLKIT provides and visualizes per process traces of sampled call
paths. All of the call paths are presented for all samples (in a thread) as a calling
context tree (CCT). A CCT is a weighted tree whose root is the program entry point
and whose leaves represent sample points.

A density-based clustering analysis was proposed in [19,10,9] that can use an arbi-
trary number of performance metrics to characterize the application (e.g., “instruc-
tions” combined with “cache misses” to reflect the impact of memory access pat-
terns on performance). Using K-means clustering to select representative data for
migration of objects in CHARM ++ is an approach utilized in [16] and [17]. The
above-mentioned clustering algorithms are expensive in terms of time complex-
ity, especially for large-scale sizes. On the other hand, our work is a low overhead
clustering algorithm with O(logP) complexity.

Phantom [35], a performance prediction framework, uses deterministic replay tech-
niques to execute any process of a parallel application on a single node of the target
system. To reduce the measurement time, Phantom leverages a hierarchical cluster-
ing algorithm to cluster processes based on the degree of computational similarity.
First, the computational complexity for most hierarchical clustering algorithms is
at least quadratic in time, and this high cost limits their application in large-scale
data sets [32]. Second, because the paper focuses on performance prediction, it em-
phasizes computational similarity and does not sufficiently cover communication
behavior.

A new algorithm for K-means clustering called Yinyang K-means was proposed
in [6]. By clustering the centers in the initial stage and leveraging efficiently main-
tained lower and upper bounds between a point and centers, Yinyang K-means more
effectively avoids unnecessary distance calculations than prior algorithms. As we
conducted an experiment for both K-Medoid and K-Farthest clusterings, the intra
clustering does not play a significant role in our implementation. Therefore, we did
not utilize Yinyang K-means in our implementation.

A parallel clustering algorithm based on CLARA [13] was proposed in CAPEK [7]
that enables in-situ analysis of performance data at runtime. Even though the algo-
rithm is logarithmic, the process of clustering and creating the global trace file is
based on trace sampling.

Sampling cannot produce accurate data but rather represents a statistical and lossy
method. For instance, if the sampling frequency is too low, results may not be
representative. Conversely, if it is too high, measurement overhead can significantly
perturb the application. In HPCTOOLKIT and CAPEK, finding an appropriate rate
of sampling is complicated, and the cost of having a dense CCT is high. In contrast,
ACURDION/ScalaTraceV2 provides a full trace file without resorting to sampling
and it does so at very low cost by leveraging 64-bit stack signatures.

The Stack Trace Analysis Tool (STAT) [18] provides scalable detection of task
equivalence classes based on the functions that the processes execute. The Proba-
bilistic Calling Context (PCC) approach [4] continuously maintains a probabilis-
tically unique value representing the current calling context in a hash table. STAT
and PCC only consider stack traces. Therefore, if two processes can exhibit the
same stack trace despite having very divergent timing characteristics, these tools
cannot distinguish the difference. On the other hand, ACURDION not only cov-
ers different stack traces, but also captures other characteristics of processes (e.g.,
timing characteristics) by considering 11 signatures.

7 Conclusion and Future Work

This work contributes ACURDION, a novel signature-based clustering algorithm
with a low time complexity of O(logP) and low space overheads. A signature find-
ing algorithm prunes unnecessary metrics and only considers parameters represent-
ing differences among the traces of nodes.

We evaluated ACURDION in comparison to other clustering algorithms for a set of
HPC benchmarks showing its effectiveness at capturing representative application
behavior for communication events. ACURDION is superior to past work because
it is more scalable in terms of space and time complexities at sustained accuracy.
And in contrast to other work, it does not rely on user plugins, which may be hard
to construct. Experiments showed that without loss of accuracy, only nine clusters
suffice to represent the behavior of a wide set of HPC benchmarks codes.

References

[1] Amir Bahmani and Frank Mueller. Scalable performance analysis of exascale mpi
programs through signature-based clustering algorithms. In International Conference
on Supercomputing, pages 155–164. ACM, 2014.

[2] David H Bailey, Eric Barszcz, Leonardo Dagum, and Horst D Simon. Nas parallel
benchmark results. Parallel & Distributed Technology: Systems & Applications, IEEE,
1(1):43–51, 1993.

[3] Daniel Becker, Felix Wolf, Wolfgang Frings, Markus Geimer, Brian J. N. Wylie,
and Bernd Mohr. Automatic trace-based performance analysis of metacomputing
applications. In International Parallel and Distributed Processing Symposium, pages
1–10, 2007.

[4] Michael D Bond and Kathryn S McKinley. Probabilistic calling context. In ACM
SIGPLAN Notices, volume 42, pages 97–112. ACM, 2007.

[5] Holger Brunst, Manuela Winkler, Wolfgang E Nagel, and Hans-Christian Hoppe.
Performance optimization for large scale computing: The scalable vampir approach.
In Computational Science-ICCS 2001, pages 751–760. Springer, 2001.

[6] Yufei Ding, Yue Zhao, Xipeng Shen, Madanlal Musuvathi, and Todd Mytkowicz.
Yinyang k-means: A drop-in replacement of the classic k-means with consistent
speedup. In Proceedings of the 32nd International Conference on Machine Learning
(ICML-15), pages 579–587, 2015.

[7] Todd Gamblin, Bronis R De Supinski, Martin Schulz, Rob Fowler, and Daniel A
Reed. Clustering performance data efficiently at massive scales. In International
Conferernce on Supercomputing, pages 243–252. ACM, 2010.

[8] M. Geimer, F. Wolf, B. J. N. Wylie, E. Abraham, D. Becker, and B. Mohr. The scalasca
performance toolset architecture. In International Workshop on Scalable Tools for
High-End Computing, June 2008.

[9] Juan Gonzalez, Judit Gimenez, and Jesus Labarta. Automatic detection of parallel
applications computation phases. In IEEE International Symposium on Parallel &
Distributed Processing (IPDPS), 2009., pages 1–11. IEEE, 2009.

[10] Juan Gonzalez, Kevin Huck, Judit Gimenez, and Jesus Labarta. Automatic refinement
of parallel applications structure detection. In Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International,
pages 1680–1687. IEEE, 2012.

[11] Intel. Intel trace analyzer and collector, 2015. https://software.intel.com/en-us/intel-
trace-analyzer.

[12] I. Karlin, A. Bhatele, J. Keasler, B.L. Chamberlain, J. Cohen, Z. DeVito, R. Haque,
D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C.H. Still. Exploring
traditional and emerging parallel programming models using a proxy application. In
Parallel Distributed Processing (IPDPS), pages 919–932, May 2013.

[13] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to
cluster analysis, volume 344. Wiley.com, 2009.

[14] Andreas Knupfer. Construction and compression of complete call graphs for post-
mortem program trace analysis. In International Conference on Parallel Processing,
pages 165–172, 2005.

[15] Kenneth R Koch, Randal S Baker, and Raymond E Alcouffe. Solution of the first-
order form of the 3-d discrete ordinates equation on a massively parallel processor.
Transactions of the American Nuclear Society, 65(108):198–199, 1992.

[16] Chee Wai Lee and Laxmikant V Kalé. Scalable techniques for performance analysis.
Parallel Programming Laboratory, Department of Computer Science, University of
Illinois, Urbana-Champaign, Tech. Rep, pages 07–06, 2007.

[17] Chee Wai Lee, Celso Mendes, and Laxmikant V Kalé. Towards scalable performance
analysis and visualization through data reduction. In IEEE International Symposium
on Parallel and Distributed Processing (IPDPS), 2008., pages 1–8. IEEE, 2008.

[18] Gregory L Lee, Dong H Ahn, Dorian C Arnold, Bronis R De Supinski, Barton P
Miller, and Martin Schulz. Benchmarking the stack trace analysis tool for bluegene/l.
In PARCO, pages 621–628, 2007.

[19] German Llort, Juan Gonzalez, Harald Servat, Judit Gimenez, and Jesús Labarta. On-
line detection of large-scale parallel application’s structure. In IEEE International
Symposium on Parallel & Distributed Processing (IPDPS), 2010, pages 1–10. IEEE,
2010.

[20] G. Marin and J. Mellor-Crummey. Cross architecture performance predictions for
scientific applications using parameterized models. In SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, 2004.

[21] Michael Noeth, Prasun Ratn, Frank Mueller, Martin Schulz, and Bronis R de Supinski.
Scalatrace: Scalable compression and replay of communication traces for high-
performance computing. Journal of Parallel and Distributed Computing, 69(8):696–
710, 2009.

[22] Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-medoids
clustering. Expert Systems with Applications, 36(2, Part 2):3336 – 3341, 2009.

[23] Sameer S. Shende and Allen D. Malony. The tau parallel performance system. Int. J.
High Perform. Comput. Appl., 20(2):287–311, May 2006.

[24] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha. A
framework for performance modeling and prediction. In Supercomputing, November
2002.

[25] Texas Advanced Computing Center Stampede.
http://www.tacc.utexas.edu/resources/hpc/stampede, 2014.

[26] Ryutaro Susukita, Hisashige Ando, Mutsumi Aoyagi, Hiroaki Honda, Yuichi Inadomi,
Koji Inoue, Shigeru Ishizuki, Yasunori Kimura, Hidemi Komatsu, Motoyoshi
Kurokawa, Kazuaki J. Murakami, Hidetomo Shibamura, Shuji Yamamura, and
Yunqing Yu. Performance prediction of large-scale parallell system and application
using macro-level simulation. In Supercomputing, 2008.

[27] Nathan R Tallent, John Mellor-Crummey, Michael Franco, Reed Landrum, and
Laksono Adhianto. Scalable fine-grained call path tracing. In International
Conferernce on Supercomputing, pages 63–74. ACM, 2011.

[28] J. Vetter and M. McCracken. Statistical scalability analysis of communication
operations in distributed applications. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2001.

[29] J. Vetter and F. Mueller. Communication characteristics of large-scale scientific
applications for contemporary cluster architectures. Journal of Parallel Distributed
Computing, 63(9):853–865, September 2003.

[30] Xing Wu and Frank Mueller. Scalaextrap: Trace-based communication extrapolation
for spmd programs. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 113–122. ACM, 2011.

[31] Xing Wu and Frank Mueller. Elastic and scalable tracing and accurate replay of non-
deterministic events. In Conference on International Conference on Supercomputing,
ICS ’13, pages 59–68. ACM, 2013.

[32] Rui Xu, Donald Wunsch, et al. Survey of clustering algorithms. IEEE Transactions
on Neural Networks, 16(3):645–678, 2005.

[33] T. Yang, X. Ma, and F. Mueller. Cross-platform performance prediction of parallel
applications using partial execution. In Supercomputing, November 2005.

[34] Jidong Zhai, Wenguang Chen, and Weimin Zheng. Phantom: Predicting performance
of parallel applications on large-scale parallel machines using a single node. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
305–314, 2010.

[35] Jidong Zhai, Wenguang Chen, and Weimin Zheng. Phantom: predicting performance
of parallel applications on large-scale parallel machines using a single node. ACM
Sigplan Notices, pages 305–314, 2010.

[36] Jidong Zhai, Jianfei Hu, Xiongchao Tang, Xiaosong Ma, and Wenguang Chen.
Cypress: Combining static and dynamic analysis for top-down communication trace
compression. In Supercomputing. To appear, 2014.

[37] Ilya Zhukov and Brian J. N. Wylie. Assessing measurement and analysis performance
and scalability of scalasca 2.0. In Proc. of the Euro-Par 2013: Parallel Processing
Workshops, volume 8374 of Lecture Notes in Computer Science, pages 627–636.
Springer, 2014.

[38] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23(3):337–343, 1977.

