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Abstract Embedded control systems with hard real-time constraints require that deadlines are met at

all times or the system may malfunction with potentially catastrophic consequences. Schedulability theory

can assure deadlines for a given task set when periods and worst-case execution times (WCETs) of tasks

are known. While periods are generally derived from the problem specification, a task’s code needs to

be statically analyzed to derive safe and tight bounds on its WCET. Such static timing analysis abstracts

from program input and considers loop bounds and architectural features, such as pipelining and caching.

However, unpredictability due to dynamic memory (DRAM) refresh cannot be accounted for by such

analysis, which limits its applicability to systems with static memory (SRAM).

In this paper, we assess the impact of DRAM refresh on task execution times and demonstrate how

predictability is adversely affected leading to unsafe hard real-time system design. We subsequently con-

tribute a novel and effective approach to overcome this problem through software-initiated DRAM refresh.

We develop (1) a pure software and (2) a hybrid hardware/software refresh scheme. Both schemes provide

predictable timings and fully replace the classical hardware auto-refresh. We discuss implementation de-

tails based on this design for multiple concrete embedded platforms and experimentally assess the benefits

of different schemes on these platforms. We further formalize the integration of variable latency memory

references into a data-flow framework suitable for static timing analysis to bound a task’s memory laten-

cies with regard to their WCET. The resulting predictable execution behavior in the presence of DRAM

refresh combined with the additional benefit of reduced access delays is unprecedented, to the best of our

knowledge.

Keywords Real-Time Systems · DRAM · Worst-Case Execution Time · Timing

Analysis · DRAM Refresh · Timing Predictability

1 Introduction

Dynamic Random Access Memory (DRAM) has been the memory of choice in most

computer systems for many years for commodity and embedded systems ranging

from 8-32 bit microprocessor platforms. DRAMs owe their success to their low cost
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combined with large capacity, albeit at the expense of volatility. There are many vari-

ants of DRAMs, such as Asynchronous DRAM, Synchronous DRAM (SDRAM),

Double Data Rate (DDR) SDRAM etc. Each bit in a DRAM is stored in just one

capacitor within the silicon. Due to the structural simplicity (one transistor and one

capacitor per bit) of DRAMs, they can reach very high density resulting in large ca-

pacities. On the downside, just as commodity capacitors, these DRAM capacitors

lose charge over a period of time. Thus, the data stored in DRAM is gradually lost

unless the capacitors are recharged periodically. In contrast, Static RAM (SRAM) is

more complex (uses four transistors and two load elements per data bit) and takes

more space but does not require periodic refresh to retain the data.

DRAMs are typically organized as a small set of banks that maintain their states

independently of each other. Each bank consists of multiple rows and columns. Read-

ing data from a given DRAM row requires the old row to be first closed (precharge)

at a cost of Row Precharge (tRP) delay and the new row to be opened (activate) at

a cost of Row Access Strobe (tRAS) delay. Once the given row is opened, any col-

umn within that row can be accessed within a Column Access Strobe (tCAS) delay.

An auto-refresh operation of a given row involves closing (precharge) the currently

opened row (with a tRP latency) and opening (activate) the row being refreshed (with

a tRAS latency). Thus, the total time taken by an auto-refresh is tRAS+tRP.

In a typical DRAM, refresh operations are triggered by an external control circuit

that periodically sends refresh commands to the DRAM over the command bus. This

method of refreshing DRAMs is called auto-refresh. If a CPU or a peripheral tries to

access the DRAM when an internal refresh is in progress, such memory references

will stall until the refresh operation is complete. A typical DRAM requires one refresh

cycle every 15.6 µs [13]. During the refresh operation, the last opened row is closed

before the refresh row is opened. The processor accesses the DRAM memory for

fetching data and instructions in the event of a cache miss, but this fetch is stalled

while DRAM auto-refresh is in progress. Thus, the response time of a DRAM access

depends on the point of time memory is accessed by the processor relative to a DRAM

refresh.

In general-purpose computer systems, the delay due to DRAM refresh has no

impact on program correctness and little impact on performance. Embedded control

systems deployed in safety-critical environments or process plants, on the other hand,

generally impose more stringent timing predictability requirements that are prone to

be violated due to DRAM refresh delays. From avionics over industrial (chemical

or power) plants to automotive subsystems such as ABS, system correctness extends

from the traditional input/output relationships to deadlines. In such systems, a missed

deadline may result in system malfunction with potentially hazardous implications or

even loss of life. Such systems are typically referred to as hard real-time systems as

opposed to soft real-time systems where deadlines can occasionally be missed. Dead-

lines together with release times or task periods are then combined with an execution

budget to assess the schedulability, e.g., through utilization-based tests under rate-

monotonic (RM) or earliest-deadline-first (EDF) scheduling [12].

Determining the execution budget by bounding the worst-case execution time

(WCET) of a task’s code is key to assuring correctness under schedulability analysis,

and only static timing analysis methods can provide safe bounds on the WCET (in
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the sense that no execution may exceed the WCET bound) [27]. Various methods

and tools for static timing analysis have been developed for a variety of embedded

platforms ranging from 8-bit to 32-bit microprocessors [28]. However, none of these

techniques consider the effect of DRAM refreshes on WCET bounds. Hence, a stati-

cally derived WCET bound is only safe if augmented pessimistically with the cost of

refresh delays, which is inherently difficult to calculate or even to tightly bound due

to the asynchronous nature of refreshes combined with task preemption. In fact, un-

predictability in execution times can be observed in tasks of hard real-time systems

with DRAM. Atanassov and Puschner [2] discuss the impact of DRAM refresh on

the execution time of real-time tasks. For their target configuration, they calculate the

maximum possible increase of execution time due to refreshes to be 2.13%. Using

their analytical method, we calculated the worst-case execution time for the target

configurations we are using in our experiments to be about 2%. This method assumes

that in the worst case every DRAM refresh is overlapped with a memory access.

Hence, the refresh overhead is bounded by the number of refresh intervals that can

occur during a job’s execution multiplied by the refresh cost. However, we observe

that this assumption is not valid in the presence of hardware or software preemptions

due to preemptive scheduling. We show that in the presence of preemptions, the num-

ber of refreshes encountered by a task increases with the number of preemptions of

that task. The objective of this work is to develop novel methods for real-time system

design that eliminate unpredictability due to DRAM refreshes and to thereby elimi-

nate the need to consider DRAM refreshes in WCET analysis. We further show that

these methods reduce the power consumption in the DRAM by reducing the number

of precharges without affecting data retention.

Contributions:

1. This paper gives a detailed analysis of the impact of DRAM refresh delays on the

predictability for embedded systems with timing constraints and in particular hard

real-time systems. It identifies the sources that affect response times when the

accesses to DRAM by the processor are not synchronized with DRAM controller

activity.

2. We show that most commonly used analytical method to estimate the delay due to

DRAM refreshes on WCET of tasks is insufficient in the presence of preemptions.

3. Two novel approaches to mitigate the impact of DRAM refresh are developed.

The basic idea behind both approaches is to remove the asynchronous nature

of hardware DRAM refreshes. By modeling and realizing DRAM refresh as a

periodic task in software and performing the refresh operations in burst mode,

delays due to refreshes can be isolated from application execution. (i) The first

method disables hardware auto-refresh in favor of a purely software-based refresh

task. (ii) The second method combines hardware and software based approaches

in a hybrid scheme. Here, the software initiates hardware refresh in burst mode at

regularly scheduled and well-defined intervals for a fixed duration of time.

4. We show that these new methods also result reduced DRAM power consumption

by about 5% due to a lower number of row precharges.
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5. Both approaches to mitigate refresh unpredictability have been implemented on

multiple hardware platforms, and the pros and cons of each in terms of perfor-

mance, overhead and predictability are discussed and experimentally evaluated.

6. We develop a methodology for incorporating variable latency memory references

into static timing analysis to bound a task’s WCET. We formalize our method-

ology in a data-flow framework, provide same algorithms for their incorporation

into static timing analysis at the intra-task level and derive the cost of memory-

related preemption delays (MRPD) for schedulability analysis at the inter-task

level.

These methods effectively eliminate DRAM auto-refresh unpredictability and

have the additional benefit to actually reduce subsequent memory access delays that

otherwise would be incurred under hardware auto-refresh.

Naı̈vely, disabling auto-refresh seems dangerous as DRAM-stored values would

be lost if a software refresh is missed. In a hard (or mixed criticality) real-time system,

however, any deadline miss of a hard real-time task also renders the control system

faulty. It is thus paramount to ensure that deadlines are met for all hard real-time

tasks, including but not limited to the DRAM refresh task, and we demonstrate that

this objective can be met in practice.

The cost of a single asynchronous DRAM refresh is small relative to typical task

periods. Accounting for this cost at the schedulability analysis level offline, however,

turns out to be a daunting task. After all, variations in execution times of task make it

notoriously difficult to constrain the point in execution where a refresh occurs dynam-

ically. Our approach combines the advantages of improving DRAM performance,

lowering its power consumption and providing flexible scheduling, notably not pre-

cluding future extensions for non-preemptive scheduling or scheduling with limited

preemption points.

Variable latencies for memory references as a result of DRAM refresh are a prob-

lem not only in hard real-time systems. For example, Predator [1], a hardware ap-

proach to make SDRAM memory controllers predictable for refreshes, was originally

motivated by a need for highly predictable memory latencies during high-definition

television decoding, which falls into the domain of soft real-time multi-media. We

argue that our methods are universally applicable and, in contrast to Predator, do not

require costly hardware modifications.

This paper is structured as follows. Section 1 provides an overview and moti-

vation for this work. Section 2 describes different methods for performing DRAM

refreshes and their trade-offs. Section 3 presents the approach used in our paper. Sec-

tion 4 elaborates on implementation details and the experimental framework. Section

5 presents and interprets experimental results. Section 7 contrasts our work approach

with prior work. Section 8 summarizes our contributions.

2 DRAM Refresh Modes

Every row in a DRAM should be periodically refreshed in order to retain the data.

Refresh may be accomplished for a given row of DRAM cells by presenting the cor-

responding row address in combination with asserting the row address strobe (RAS)



Making DRAM Refresh Predictable 5

Fig. 1: Different DRAM Refresh Methods. See [13].

line. This method of refresh is called RAS Only Refresh (ROR). In this method, it

is necessary for the hardware/software performing the refresh to keep track of which

DRAM rows are refreshed and ensure that all rows of DRAMs are accessed within

the specified refresh interval. Many modern DRAMs provide an alternative method

to perform refreshes using a special command cycle. One example of such a special

cycle is where the column address strobe (CAS) line is asserted prior to the row ad-

dress strobe (RAS) line, commonly referred to as CAS-Before-RAS (CBR) refresh.

When utilizing the CBR method to refresh DRAMs, it is not necessary for the hard-

ware/software performing the refresh to track row addresses. Instead, we program

the DRAM controller by sending a sufficient number (4096 in our case) of CBR cy-

cles within the specified DRAM retention interval (64 ms in our case). The internal

circuitry in the DRAM controller maintains a refresh counter per bank and refreshes

successive rows for every refresh command until all rows within the bank have been

refreshed. Depending on when refresh commands to successive rows are sent, we can

classify a DRAM refresh scheme as either a distributed refresh or a burst refresh.

2.1 Distributed Refresh in Hardware

In this method of refreshing DRAMs, a single refresh operation is performed period-

ically, as illustrated in Figure 1. Once a full cycle of refresh is complete, it is repeated

again starting from the first row. This is currently the most common method for re-

freshing DRAMs. Most memory controllers use this method to perform auto-refresh

in hardware. However, this method causes the DRAM response time to vary depend-

ing on the relative time and the row numbers of memory accesses by the processor

and the DRAM refresh.

It is well known that, whenever a DRAM reference by the processor is blocked by

an auto-refresh operation, the processor has to wait for a delay bounded by tRAS+tRP.

However, we make another key observation here, which has not been considered by

related works and show that its omission leads to WCET bound violations that render

hard real-time systems incorrect: A DRAM refresh closes a previously opened row by

the processor and opens up the new row being refreshed. Hence, the next memory

access by the processor, likely to the same row, now requires the refresh row to be

closed and the old row to be reopened at an additional cost of tRAS+tRP.
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Table 1: Delays due to Interfering Refresh Cycles

Old Row Ref. Row Next Row Normal Delay Delay w/ Refresh

n n n tCAS tRP+tRAS+tCAS

m n n tRP+tRAS+tCAS tRP+tRAS+tCAS

m n m tCAS tRP+tRAS+tCAS

Table 1 shows the additional delay suffered by the processor due to an interven-

ing refresh in addition to the latency of the refresh operation itself. Depending on

which rows are accessed by the processor and refresh operation, the memory exhibits

different latencies. The “Old Row” column indicates the previously opened row in

the DRAM. “Ref. Row” indicates the row being refreshed. “Next Row” indicates the

next row being accessed by the processor following the refresh operation. “Normal

Delay” is the delay suffered by the processor during the next memory access in the

absence of any interim refresh operations. “Delay with Refresh” is the delay for next

memory access due to an interim refresh operation, excluding the latency of the re-

fresh operation itself. With an interim refresh operation, next memory access always

takes tRP+tRAS+tCAS as the DRAM controller is not aware of which internal row

is actually refreshed.

Thus, we see that a refresh operation not only delays by making the processor

wait for a memory access for the duration of the refresh operation itself, but also

causes additional delays for future accesses as rows need to be reopened.

Existing methods estimate the increase in WCET for tasks due to DRAM refresh

using the formula given by Atanassov and Puschner [2], expressed as:

T
refr
WCET = TWCET + ⌈

TWCET

tRint − tmax
delay

⌉ × tmax
delay (1)

This formula computes the maximum number of refresh operations that can occur

during a task’s WCET and multiplies it with cost of each refresh. For example, if we

consider a task with a WCET of 1000 µs, at the rate of one refresh for every 15.6 µs

and 200 ns maximum refresh delay, there can be a maximum of 65 refresh intervals

during the entire task execution, which increases the task’s WCET to 1013 µs. Now

consider that this task gets preempted by higher frequency tasks / interrupts every 100

µs, each running for 20 µs. This means that our 1000 µs task now runs in chunks of

80 µs each. There can be a maximum of 6 refresh intervals during this 80 µs period.

Thus, during the total task execution time of 1000 µs, there can be a total of 76 refresh

intervals. This increases the WCET of task to 1015.2 µs, which exceeds the 1013 µs

bound from Eq. 1.

This example illustrates that the actual delay caused by refreshes in the presence

of preemptions is dependent on the number of preemptions and the duration of each

time slot during the task execution. Predicting the maximum number of preemptions

due to interrupts, higher priority tasks and the interval between the preemptions is not

a straight forward problem. In systems where DRAM and other peripherals share the

same bus, it is necessary that all unrelated bus traffic cease during the entire period of

a refresh operation to avoid contention, which is hard to model [2]. The time required
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for a DRAM refresh in these systems thus degrades system performance not only

from a memory availability standpoint, but also because of the time that the bus is

unavailable during DRAM refresh, precluding other non-memory access bus traffic

during that time.

As an example, the DSP platform we used in our experiments has 16MB DRAM

space split across 4 banks that can be accessed and refreshed in parallel. Each bank (4

MB) has 4096 rows of 1KB requiring a total of 4096 refreshes. In distributed refresh

mode, the refresh rate of a typical (and also this) DRAM is 15.6 µs with a duration of

150 ns for refreshing one row. Thus, the entire DRAM is refreshed once every 64 ms

with a total total overhead of 614 µs for 4096 refreshes. This ratio of 1-2% overhead

is typical for DRAM technology, but it does not yet take into account the overhead

of additional tRP/tRAS delays for individual DRAM references that interfere with

refreshes occurring in the background.

2.2 Burst Refresh in Hardware

An alternative method for performing DRAM refresh is called burst mode in which

a series of explicit refresh commands are sent, one right after the other, until all rows

have been refreshed. Once a sufficient number of refresh commands have been sent

to refresh the entire DRAM, no more commands are sent for some time until the

beginning of the next refresh period as illustrated in the Figure 1. The majority of

the DRAM controllers do not readily support this mode of refresh in hardware. Even

though we can configure them to send refresh commands one right after the other,

they often lack the ability to stop and set up rates for subsequent bursts. Even when

this mode is supported in hardware, refresh still interferes with task execution making

task timings unpredictable as described earlier.

3 Our Approach

Fig. 2: Power supply current of a typical DRAM during refresh. See [15].

The basic problem with the hardware-controlled DRAM refresh is that the peri-

odic refresh events generated by the DRAM controller and the memory access events

generated by the processor are not synchronized with each other. Whichever event
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comes later will have to wait for the former to complete. Also, an interleaving re-

fresh operation delays the next memory access. The central idea of our approach is

to remove the asynchronous nature of the two events and schedule the two events at

predetermined time intervals so that they do not interfere with each other. Below, we

describe two methods to perform DRAM refresh using this approach.

3.1 Software-Assisted Predictable Refresh

In this method, a new periodic task with a reserved time slot is created for performing

the DRAM refresh in software. This task issues precharge operations of different

rows in a back-to-back manner, i.e., after one refresh completes, the next is started

instantly. It makes use of RAS Only Refresh (ROR). To refresh one row of the DRAM

memory using RAS Only Refresh, the following steps must occur:

First, the row address of the row to be refreshed must be applied at the address

lines. The RAS line must switch from high to low while the CAS line remains high.

Then, at the end of the required amount of time, the RAS line must return to high.

The ROR refresh is not commonly supported in DRAM controllers. However, simply

reading any word within some other DRAM row would have the same effect as re-

freshing the currently open row, except at a slightly higher cost of putting the column

address (CAS latency) and fetching the word into the register. The DRAM controller

tracks the currently open row in each of the DRAM banks and automatically issues

the Activate (ACTV) command before a read or write to a new row of the DRAM. On

systems with caches enabled, we have to ensure that our accesses reach the DRAM

row by using cache bypass instructions (e.g., atomics).

3.2 Hybrid Software-Initiated Hardware Refresh

The second method is a hybrid hardware/software method in which the period of the

refresh interval is overwritten by reprogramming the DRAM control registers. Most

DRAM controllers allow the refresh interval to be configured. Instead of requiring a

fixed delay (15.6 µs in our example) between the two refresh cycles, we configure

them to occur one right after the previous refresh cycle. Once this refresh period

is configured and hardware refreshes are enabled, the refresh task just waits for a

predetermined amount of time to let the entire DRAM be refreshed and then disables

the refresh altogether. When the refresh task is waiting, the processor can be forced

into a reduced power state or it can perform calculations not involving the DRAM.

At the beginning of the next refresh period, the refreshes are re-enabled with zero

delay between the refresh cycles and the same pattern is repeated. This behavior

is similar to the hardware burst refresh method in terms of its timing diagram (see

Figure 1). In contrast to the hardware-induced burst, our scheme starts and stops

each burst of refreshes through software control at pre-scheduled intervals. No other

tasks are executed when a refresh task is running. This can be ensured in a real-time

system by assigning the highest priority to the refresh task or by disabling and re-

enabling refreshes each time the refresh task is preempted and resumed respectively.
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This method requires special handling of interrupts during a refresh burst in order to

avoid interference. One option is to completely disable the interrupts during the entire

duration of the refresh burst. Another option is to disable and re-enable refreshes

upon entering and leaving the ISRs. Yet another option is to run the whole ISR from

internal SRAM. Further, instead of sending one long burst, it is possible to send

multiple smaller bursts more frequently as long as enough refresh commands are sent

within the refresh threshold. This reduces the latency suffered by other tasks due to

the refresh bursts. Once all rows have been refreshed, no refresh is going to occur

until the next invocation (after the next release) of the refresh task. As seen earlier,

the duration of one burst of refreshes (614 µs) is about 2 orders of magnitude smaller

than the refresh period (64 ms). In between invocations of the refresh task, real-time

tasks in the system execute with guaranteed absence of any interference from DRAM

refreshes. This method makes use of the CAS before RAS (CBR) Refresh. The main

difference between ROR and CBR refresh is the method for keeping track of the row

address to be refreshed. With ROR, the refresh task must provide the row address to

be refreshed. With CBR, the DRAM memory keeps track of the addresses using an

internal counter.

3.3 Impact on DRAM Power Consumption

As we have seen earlier, performing a refresh operation on DRAM involves closing

(precharge) the currently open row and activating the row being refreshed in every

bank. The major source of power usage in a DRAM comes from these precharge

operations. Figure 2 shows the power supply current during the refresh operation (es-

sentially a row precharge) for a typical DRAM in self-refresh mode [15]. We observe

that we can reduce the power consumed by the DRAM by reducing the number of

precharge operations wherever possible. As we have seen, an intervening refresh op-

eration closes the open row that is currently being accessed by the processor. When

the processor tries to read this row again, it has to close (precharge) the new row

and activate the old row that it wants to access. This costs an additional precharge

operation and, hence, a small amount of additional power. In our approach, since all

refreshes occur in bursts at pre-scheduled intervals, they do not interfere with other

tasks in the system. This realization led us to conduct experiments on the power con-

sumption of DRAMs under different methods explained in this paper. Section 5.4

discusses these results.

4 Implementation

We implemented our methods on three different embedded hardware platforms. The

first platform is a TMS320C6713 DSP Starter Kit (DSK) module from Spectrum

Digital. This board has a Texas Instruments TMS320C6713 DSP chip running at

225 MHz. This is a 32-bit processor with an advanced Very Long Instruction Word

(VLIW) architecture, eight independent functional units that can execute up to 8 in-

structions per cycle, fixed and floating point arithmetic, 2 levels of caching, up to
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256KB of on-chip SRAM, 512KB of flash memory, an on-chip DRAM controller

and 16MB of SDRAM memory. We utilized the programming environment and the

compiler supplied though the Code Composer Studio v3.1 from Texas Instruments.

The DSK uses a 128 megabit synchronous DRAM (SDRAM) on the 32-bit Ex-

ternal Memory Interface (EMIF). Total available memory is 16 megabytes. The inte-

grated SDRAM controller is part of the EMIF and must be configured in software for

proper operation. The EMIF clock is configured in software at 90MHz. This number

is based on an internal clock of 450MHz required to achieve 225 MHz operation with

a divisor of 2 and a 90MHz EMIF clock with a divisor of 5. When using SDRAM, the

controller must be set up to refresh one row of the memory array every 15.6 microsec-

onds to maintain data integrity. With a 90MHz EMIF clock, this period is 1400 bus

cycles. The second embedded platform features a Samsung AX4510 microcontroller

board. The Samsung S3C4510B is a 32-bit ARM7 TDMI RISC processor design run-

ning at 50MHz clock speed. It also has 8KB of configurable on-chip SRAM/unified

cache, an on-chip DRAM controller, 4MB of external Flash and 16MB of external

SDRAM. We used the Keil Embedded Development Tools for development and test-

ing on this platform. The S3C4510B provides a fully programmable external DRAM

interface with four DRAM banks and auto-refresh mode for SDRAMs. It also pro-

vides control registers to configure the DRAM refresh mode, refresh timings, and

refresh intervals. The third platform is an IBM PowerPC 405LP evaluation board

used exclusively for the SDRAM power measurement experiments. This supports

Dynamic Voltage and Frequency Scaling (DVFS) where voltage and frequency can

be scaled in software via user-defined operation points ranging from 266 MHz at

1.8V to 33 MHz at 1V. There are four PC-133 compatible SDRAM memory modules

(1M x 32b x 4 internal banks, 128Mb, non-ECC). The four 16-MB modules are ar-

ranged to provide 64MB of total SDRAM memory. More details about this platform

are given later in the section 5.4.

Other Threads ...PeriodicTest Thread

Custom RMA Scheduler

MicroC OS II RTOS

DSK 6713 Kit

TMS320C6713
Processor

Fig. 3: System Architecture

Figure 3 depicts the layered system software architecture utilized in our experi-

ments on the embedded platform. Our implementation effort includes porting a com-

monly used real-time operating system, Micro C/OS-II [9], which has a fixed priority

preemptive scheduling. We then implemented a rate monotonic (RM) scheduler [11]

on top of Micro C/OS-II with novel support for creating and running periodic threads

of arbitrary periods imposing strict execution-time control within each period. If a

thread does not complete execution by its deadline, it is preempted and rescheduled
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during the next period by the scheduler. This scheduler is also capable of monitoring

the total execution time of each task with a precision of 4 CPU clock cycles excluding

the time spent inside interrupt service routines and the scheduler overheads. We uti-

lized the same system software architecture on all three hardware platforms discussed

earlier. Micro C/OS-II and our custom RM scheduler are ported to these platforms

and provide the same APIs to applications on all platforms. Hence, the test applica-

tion can be run on different platforms with minimal modifications. In addition, we

also run experiments on Linux on the PowerPC Platform (more details can be found

in later sections). All programs were written in C and assembly language on these

platforms.

5 Results

We performed several experiments on the embedded platforms discussed in the pre-

vious section. This section describes these experiments and the results.
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Fig. 4: Memory Latencies on DSP Platform using SRAM / Simulator. Time Range [2900-3000] µs.

5.1 Unpredictable Timings under Hardware DRAM Refresh

First of all, we wanted to assess the effect of DRAM refresh cycles on the timing of

application tasks, in a controlled environment with a real workload and selectively
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Fig. 5: Memory Latencies on DSP Platform using SDRAM. Time Range [19310-19340] µs. Software and

Hybrid Values are so close that the Lines cover each other in the Graph.

disabled caches. We used a bubblesort algorithm to sort 100 integer elements as a test

load. We disabled the instruction and data cache in all these experiments in order to

force memory accesses for every instruction, which provides better control over the

experiment. The test load function is run inside a periodic task of 400 ms period.

We executed this workload in three different scenarios. First, we ran the load

using SRAM memory. For this purpose, we modified the linker script to place all

code, data and stack segments in the on-chip SRAM. The on-chip SRAM has a very

low latency and, unlike DRAM, does not require periodic refreshing. Figure 4 shows

the result of execution using SRAM. We can see that the workload takes exactly the

same amount of time in every iteration. This is because the on-chip SRAM does not

need periodic refreshing and exhibits uniform latency every time it is accessed.

Next, we executed the same load on a TI cycle-accurate device simulator for

the TMS320C6713 processor. The measured times matched those for SRAM-based

execution as seen in Figure 4.

Finally, we ran the same workload on SDRAM memory, which requires refresh.

The SDRAM controller is initialized using the default configuration script supplied

along with the 6713DSK kit. This causes the SDRAM controller to send one auto-

refresh command every 15.6 µs. Every time an auto-refresh command is received,

the SDRAM internally refreshes one row in every bank. The 6713DSK SDRAM has

four banks, 4096 rows per bank and 1024 bytes per row. Thus, the SDRAM requires

4096 refresh commands to refresh the entire memory. The entire SDRAM is refreshed

approximately every 64ms. With the SDRAM controller correctly configured to retain
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Fig. 6: Memory Latencies on ARM Platform using SDRAM. Time Range [2920-2940] µs. Software and

Hybrid Values are so close that the Lines cover each other in the Graph.

the data, we modified the linker script to place all code, data and stack in SDRAM.

The earlier workload is run again with this setup and the resulting times are shown in

Figures 5 and 6 for the DSP and ARM platforms, respectively.

We make the following observations from the graphs. First of all, the measured

times for SDRAM are much higher than for SRAM. This is caused by the higher

latency of SDRAM compared to the on-chip SRAM. (Of course, SRAM is much

more costly and significantly smaller than DRAM so that many embedded systems

utilize DRAM in practice.) Secondly, the measured values are very jittery in nature.

There are mainly two reasons for variations in DRAM response times. First of all,

every time a new row is accessed within a bank, the SDRAM needs to close the

current row and open the new row, which requires tRP + tRAS time. However, since

we access the same set of memory addresses in every iteration of the workload, this

cannot be the reason for variations in the graph. The same conclusion is is also true

for the CAS latency (tCAS) that is incurred every time we access different columns

of the same row.

Secondly, the SDRAM auto-refresh cycles occurring during the workload exe-

cution also cause variations in the time taken. As we saw earlier, one auto refresh

occurs every 15.6 µs and each refresh takes time for one Row Access Strobe (tRAS)

and Row Precharge (tRP). The refresh happens asynchronously from the point of

view of program execution. The processor needs to access memory when it has to

fetch a new instruction or data. The worst-case delay occurs when there is a refresh

in progress every time the processor accesses the memory. The best-case behavior
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Fig. 7: Memory Latencies for DRAM Refresh Techniques on DSP Platform in Time Range [19,290-

19,340] µs

occurs when the processor is not accessing memory whenever there is a refresh in

progress. Further, an intervening refresh cycle could close the currently opened row

by the processor causing the next memory access by the processor to take longer.

This causes the observed degree of unpredictability in the measured time as shown in

Figures 5 and 6.

5.2 Software-Assisted Predictable Refresh

Next, we modified the code to disable SDRAM auto-refresh and created a separate

periodic task to refresh all the SDRAM rows in software, as described in Section 3.

The refresh task was created with a periodicity of 10ms. It refreshes a subset of rows

in each period, such that the entire SDRAM is refreshed within 60ms. Thus, when the

workload thread runs, it never has to wait due to an auto-refresh in progress. Figure 7

shows the results for this configuration. As can be seen from this graph, the measured

times with software-assisted refresh (second line from the top) in all intervals are

uniform. Also, the average time is less than that with hardware-based SDRAM auto-

refresh. This is because task execution is never interrupted by an asynchronous auto-

refresh. This graph illustrates that, by delegating the SDRAM refresh responsibility

into a dedicated periodic task, other real-time tasks in the system become isolated

from the erratic latency response of the SDRAM due to auto-refresh.
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Performing the SDRAM refresh in software instead of hardware has some addi-

tional overheads. First of all, in hardware, for every auto-refresh command sent by the

controller, one row is refreshed in all the banks in parallel. Since we have to explic-

itly read one word from every row during software refresh, we cannot take advantage

of this bank parallelism. Thus, instead of sending 4096 auto-refresh commands, we

now need to access 4 × 4096 rows to entirely refresh the SDRAM. Also, sending a

hardware auto-refresh command does not utilize the address and data buses, nor does

it bring any data into cache. However, in a software refresh, since we explicitly read

one word from every bank, we potentially evict data from cache. This can be avoided

in many embedded processors that support cache-bypass load instructions. In the ab-

sence of bypass support, such evictions can be modeled in static cache analysis to

bound WCETs and cache-related preemption delays [10,16,21,23,24]. Nonetheless,

any memory access requires bus bandwidth. Because of these overheads, the total

time spent for a software refresh is larger than that of a hardware auto-refresh. In

our experiments on the DSP platform, we measured that the software refresh task, as

described above, takes about 16% of the processor time compared to a maximum of

4-5% overhead in hardware auto-refresh (due to blocked DRAM accesses, see Sec-

tion 2.1). Yet, we not only increase predictability but also performance of all other

tasks in the system by a moderate 2.8% to 0.16% (for smaller and larger workloads,

respectively, where the latter is shown in Figure 7) due to absence refresh-incurred

delays on memory references.
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We also ran the same experiments on our ARM platform using bubble sort on 50

elements. The results are shown in the Figure 8. Since this platform has a much slower

processor frequency (50MHz), the difference in the speed of DRAM and the proces-

sor is less significant compared to the TI DSP platform. Hence, we only observe mi-

nor variations in the measured times due to background DRAM refreshes. Again, the

software-based refresh technique has succeeded in producing uniform timing values.

In an effort to improve the performance of software refresh, we implemented a

set of optimizations. One optimization is that instead of accessing every successive

row one after the other linearly, we access one row from each of the four banks and

then move to the next row. It is also important to make the four load instructions

from four banks independent of each other. This enables the SDRAM to pipeline

these loads. A read in progress on one bank will not block the read in other banks.

With these optimizations in place, we measured the overhead of the refresh task to be

about 12%, which is lower than in the earlier case, but still more than the hardware

auto-refresh overhead.

5.3 Hybrid Software-Initiated Hardware Refresh

Our second method improves the performance further by utilizing the hardware re-

fresh capabilities in a different manner. In this approach, we initially disable the hard-

ware auto-refresh. A periodic refresh task is again created with a 10ms period. During

each period, this task first enables the hardware auto refresh when invoked. But in-

stead of configuring for one refresh for every 15.6 µs, the SDRAM controller is con-

figured to send successive refresh cycles back-to-back without any delay. The refresh

task waits for a calculated amount of time after which it disables the auto-refresh.

The refresh task is allowed to run for a predetermined amount of time in each period,

such that the entire SDRAM is safely refreshed, e.g., within 60ms in case of the TI

DSP. Since this method uses the hardware auto-refresh, all banks can be refreshed

in parallel, which implies that no data is actually transferred between memory and

processor, i.e., caches remain completely unaffected. Figures 7 and 8 show the mea-

sured times for this hybrid approach. In Figure 7, the lines for the hybrid and software

approaches coincide with each other as measured cycle times are identical for both

approaches. As can be seen from the graphs, the measured times are constant for both

the DSP and ARM platforms. We measured the processor overhead of the refresh task

to be about 9%, which is significantly lower compared to the non-optimized software

refresh approach.

There is one problem with the current implementation of this approach. Most of

the SDRAM controllers do not track how many auto-refresh cycles they have sent.

Because of this, the refresh task cannot determine exactly when it has completed

sending the required number of refresh cycles. The only method to mitigate this prob-

lem is to allocate time for the refresh task in excess of worst-case refresh time. We

also plan to prototype a modification to the SDRAM controller on an FGPA to track

the exact number of auto-refresh cycles it has sent. The refresh task can use this in-

formation to more accurately time the auto-refresh. The SDRAM controller can be
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made more intelligent to support this method. A similar approach is also possible for

DRAMs that support monitoring of the leakage discharge on a per-row basis.

5.4 Reduction in DRAM Power Consumption

Our experiments to assess the power saving potential of the new refresh method is

performed on an IBM PowerPC 405LP evaluation board [17]. This board is cus-

tomized for conducting power-related experiments with support for Dynamic Voltage

and Frequency Scaling (DVFS). Voltage and frequency can be scaled in software via

user-defined operation points ranging from 266 MHz at 1.8V to 33 MHz at 1V. There

are four PC-133 compatible SDRAM memory modules (1M x 32b x 4 internal banks,

128Mb, non-ECC). The four 16-MB modules are arranged to provide 64MB of total

SDRAM memory. Individual SDRAM memory modules are arranged on the evalua-

tion board in “banks” to improve throughput. In this board design, four modules with

four banks are installed such that each module containing four internal banks. This

board has several probe points that enable us to measure the voltage and current of

all SDRAM modules — independently of the remaining components, such as pro-

cessor and I/O. We used an analog data acquisition board to measure the voltage and

current supplied to the SDRAM modules. A real-time earliest deadline first (EDF)

scheduling policy was implemented as part of a user-level threads package under the

Linux operating system running on the board. A suite of task sets with synthetic CPU

workloads was utilized, similar to the task set of pattern one in DVSleak [29] with ag-

gressive dynamic frequency and voltage scaling (DVFS) enabled based on feedback.

Each task set comprises ten independent periodic tasks whose WCET is in the range

of 1ms to 100ms. The task set is designed to allow user control of the CPU/memory

load so that we can study the SDRAM power consumption at various load points. On

this platform, we implemented the refresh task within a Linux kernel module. When

this module is loaded, it disables auto-refresh by programming the DRAM Controller

and starts a task with a period of 10 ms responsible for DRAM refreshes. At every

invocation, this task refreshes a subset of rows using our hybrid refresh method. Fig-

ure 9 compares the power consumption of the SDRAM at different load points (from

10% to 90%) between our approach and hardware auto-refresh. As can be seen from

the graph, our approach always consumes less power than the hardware auto-refresh

method. For the memory subsystem, we obtained about 5% power savings on the av-

erage for the same amount of work in a fixed period of time. Power savings are linear

to execution time here as we do not exploit the DVFS of the board. We suspect that

operating system noise caused the power to be the same for 30% and 50% utilization

(for the hybrid method). This prompted us to verify power savings on the board by

replacing Linux with Micro C/OS-II.

We ported Micro C/OS-II and the RMA scheduler described earlier onto this

platform to conduct DRAM power experiments in a tightly controlled RTOS envi-

ronment. A periodic refresh task is created with a 10 ms period to perform DRAM

refreshes using our hybrid scheme. The processor is configured to run at a frequency

of 266.6 MHz/1.8V without DVFS. The instruction and data caches were disabled

as in our earlier experiments. The idle loop is configured to execute out of internal
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Fig. 9: Power comparison between different refresh methods under Linux. Range [500-1200] mWatt

SRAM in order to avoid DRAM accesses when the CPU is idle. The CPU load is

controlled by changing the period and execution time of the test task. We assume that

the number of DRAM accesses is proportional to the CPU load when cache is not

enabled. We used the same bubblesort algorithm to sort 100 integer elements as a

test load. We then measured the SDRAM power consumption under both hardware

auto-refresh and hybrid refresh schemes, the results of which are shown in Figure

10. These results indicate that the hybrid refresh scheme reduces the SDRAM power

consumption for the memory subsystem by up to 2.5% over different CPU utiliza-

tions. Notice that this experiment did not exploit aggressive DVFS with feedback

(DVSleak [29]) as DVFS capabilities are not available under Micro C/OS-II. Instead,

the processor was running at full clock speed (266 MHz) all the time. Hence, power

consumption in Figure 10 is expected to be higher than that with DVFS in Figure 9.

6 WCET Analysis for Variable Memory Latencies

Our approach to handle DRAM refresh in software or as a hybrid approach provides

a clean separation between refresh-induced latencies and the executing real-time ap-

plication tasks. Only the dedicated software refresh task is subject to refresh delays,

which are incorporated into the real-time schedule and are subject to the same schedu-

lability tests as any other task (albeit at higher priority as interrupts remain disabled

during a refresh, see Section 3.2).



Making DRAM Refresh Predictable 19

 800

 1000

 1200

 1400

 1600

 1800

 0  10  20  30  40  50  60  70  80  90  100

S
D

R
A

M
 P

o
w

e
r 

in
 m

W
a
tt

CPU Utilization in %

Auto Refresh
Hybrid Refresh

Fig. 10: Power comparison between different refresh methods under Micro C/OS-II. Range [700-1800]

mWatt

All remaining real-time tasks now experience predictable access times when ref-

erencing memory as discussed in the following. A memory reference is uncondition-

ally subject to a tCAS latency. Conditionally, if the reference refers to a different row

than was previously accessed on a given memory bank, a tRAS latency is imposed.

Yet, applications no longer suffer from precharge (tRP) delays or unpredictable tRAS

overheads due to interrupt-triggered hardware refreshes as reported in Table 1.

These constraints can be expressed as data-flow equations of the control-flow

structure of a function within the code of a task. Let CFG(f) = (s, V, E) be the

control-flow graph of function f , where V is the set of basic blocks (vertices), E is

the set of control-flow transitions (edges) v → w for each branch from v ∈ V to

w ∈ V and s ∈ V is the start vertex of f . Let B be the set of memory banks of the

DRAM. We then define the set of defined, def , and killed, kill, rows per memory

bank b ∈ B based on the mapping of a memory reference m to a row r(m) and the

corresponding bank b(r(m)). (We say m is a memory reference if a corresponding

instruction or data reference in the code results in cache misses at all levels — or may

result in cache misses according to may analysis [3, 16]).

Definition 1 The set of rows defined in a basic block def(v) for v ∈ V is r(m) for

the last memory reference in v for any bank b(r(m)) that row r(m) maps to.
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Definition 2 Conversely, the set of rows killed in a basic block kill(v) is the inverse

piece-wise set of all rows that map into same bank as the corresponding row in def(v)
or simply

kill(v) = ∪

r 6=d

b(r) = b(d) where d ∈ def(v)

Definition 3 We can then define the data-flow sets incoming to in(v) and outgoing

from out(v) a block v relative to its predecessor blocks preds(v) where preds(v) =
∪

p∈V

p → v ∈ E and in(s) = ∅.

in(v) = ∩

p∈preds(v)

out(p)

out(v) = in(v) ∪ def(v) \ kill(v)

This set of data-flow equations can then be solved iteratively over the control-flow

graph until it converges (reaches a fixpoint). An outline of an algorithmic framework

is depicted below in Algorithm 1.

Algorithm 1 Iterative Data-flow Algorithm

FOREACH block v

FOREACH bank b

in[v,b] = φ

REPEAT

converged = true

FOREACH block v

oldin[v]=in[v]

LET p0 ∈ preds(v), in[v] = out[p0]

FOREACH p ∈ preds(v) \ p0

FOREACH bank b

in[v,b] = in[v,b] ∩ out[p,b]

IF oldin[v] 6= in[v]

converged = false

out[v]=def[v] ∪ (in[v] ∩ kill[v])

UNTIL converged

The resulting sets are then suitable for determining the memory latencies of in-

dividual memory references within a basic block in a sequential manner. It can thus

readily be incorporated into static timing analysis to determine the WCET of individ-

ual instructions, basic blocks, functions and eventually entire tasks (see Algorithm

2). In fact, it can be performed after static cache analysis once it can be determined

which instruction and data references result in cache misses through all cache levels.

This approach allows the derivation of safe but tight bounds on the WCET of a

task. This follows an intra-task model where WCET is first bounded separately for

each task before inter-task effects, such as cache-related preemption delay (CRPD),
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Algorithm 2 WCET Calculation of Access Strobes

FOREACH block v

openrows=in[v]

FOREACH mem ref m (instr/data cache miss at all levels)

wcet[v] = wcet[v] + tCAS

IF openrows[b(r(m))] 6= r(m)

openrows[b(r(m))] = r(m)

wcet[v] = wcet[v] + tRAS

are taken into account at a higher level. These inter-task costs are considered at the

level of schedulability analysis. For DRAM memories, there is also a memory-related

preemption delay (MRPD). This delay stems from the fact that preemption may re-

sult in opening another row on a memory bank before resuming a preempted task

at a point where an open row prior to preemption was modeled to be reused by a

subsequent reference in the absence of preemption (intra-task analysis). Multiple ap-

proaches can be utilized to bound the MRPD.

At a coarser granularity, one may assume that there is no row reuse for any banks

across preemptions. Alternatively, in a fine-grained approach, one models the inter-

section between row usage of different tasks to determine if a subset of rows outside

this intersection can be retained across preemptions. These options are equivalent to

CRPD modeling of an entire cache invalidation vs. invalidation of only those lines

in the intersection between two tasks [20, 23, 24]. Since caches have a large number

of lines, the fine-grained approach can give significantly better results, particularly

when the points of preemption are constrained as well [21, 22].

The DRAM model differs significantly from caches in that the number of memory

banks tends to be small (in the order of 1-8) while the number of rows is large (in

thousands). Hence, a preemption statistically results in new rows to be opened on all

banks with a very high probability. This indicates that the coarse-grained model is

sufficient to model the MRPD effect. In other words, a preemption adds an overhead

of γ = |rows| × tRAS to a task’s execution time.

7 Related Work

Past work on DRAM refresh focuses on hardware principles, such as refresh meth-

ods (mostly in patents), power enhancements, fault tolerance support or discharge

monitoring [4–8,18,25]. One exception is the work by Moshnyaga et al. that utilizes

operating system facilities to trade off DRAM vs. flash storage to mitigate current

differences in access latencies, bandwidth and power consumption [14]. In contrast

to our work, theirs does not address refresh side-effects on predictability. Our work is

rather in the spirit of prior work on increasing the predictability of hardware periph-

erals for real-time software, such as bus-level I/O transaction control [19]. Another

related work called RAPID [26] proposes retention-aware placement in DRAM, a

novel software method that can exploit off-the-shelf DRAMs to reduce refresh power

to vanishingly small levels approaching non-volatile memory. However, this method

is not designed to address the predictability problem of real-time systems. Preda-
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tor [1] is a predictable SDRAM memory controller using a hardware-based approach

to achieve a guaranteed lower bound on efficiency and an upper bound on the latency

in the presence of SDRAM refreshes and multiple users sharing the same SDRAM.

In contrast, our approach is fully software based and succeeds in completely eliminat-

ing the unpredictability due to DRAM refreshes. Predator was motivated by a lack of

predictability of a soft real-time application area in the multi-media domain, namely

real-time processing for high-definition television during decoding but is applicable

to hard real-time as well, just as are our methods.

8 Conclusion

In this paper, we examined the effect of DRAM refreshes on the predictability of real-

time tasks. We proposed two novel methods to increase predictability of hard real-

time systems in the presence of DRAM refreshes, namely (1) a software-assisted re-

fresh and (2) a hybrid software-initiated hardware refresh. Both methods were imple-

mented and evaluated on two embedded platforms. Experimental results confirmed

that both methods result in predictable DRAM accesses without additional refresh

delays. We further formalize the integration of variable latency memory references

into a data-flow framework suitable for static timing analysis to bound a task’s mem-

ory latencies with regard to their WCET. We further discussed the cause of overheads

for DRAM accesses with respect to our methods. In the future, additional optimiza-

tions could be applied to these methods. We are pursuing FPGA-based modifications

to a DRAM controller to add native support for burst refreshes in hardware. The burst

refresh time can be overlaid with non-memory based activities, such as in-core com-

putation, I/O operations, or memory accesses from other on-chip memory devices.

Overall, our new methods alleviate the unpredictability of DRAMs due to refreshes,

which facilitates the design of hard real-time systems with DRAMs in an unprece-

dented manner.
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