
NUMA-Aware Memory Coloring for Multicore Real-Time Systems

Xing Pana, Frank Muellera,∗

aDept. of Computer Science, North Carolina State University, Raleigh, NC 27519-8206, USA

Abstract

Non-uniform memory access (NUMA) systems are characterized by varying memory latencies so that execution
times may become unpredictable in a multicore real-time system. This results in overly conservative scheduling with low
utilization due to loose bounds on a task’s worst-case execution time (WCET). This work contributes a controller/node-
aware memory coloring (CAMC) allocator inside the Linux kernel for the entire address space to reduce access conflicts
and latencies by isolating tasks from one another. CAMC improves timing predictability and performance over Linux’
buddy allocator and prior coloring methods. It provides core isolation with respect to banks and memory controllers for
real-time systems. This work is the first to consider multiple memory controllers in real-time systems, combine them
with bank coloring, and assess its performance on a NUMA architecture, to the best of our knowledge.
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1. Introduction

Hard real-time systems are control systems consisting
of period tasks whose jobs perform sensing, computation
and actuation actions and have rigid deadlines. Any dead-
line is miss may have severe impacts ranging from environ-
mental impacts to loss of life. To ensure deadlines are met,
the computational demand of each task needs to be upper
bounded so that a schedulability analysis can determine if
a given task set is feasible, i.e., schedulable without any
deadline miss [1]. Such an upper bound on computation is
derived from the worst-case execution time (WCET) of a
task, which can be determined analytically or experimen-
tally, where the former requires detailed information about
the underlying hardware and results in more rigid bounds
while the latter may provide probabilistic bounds based on
fewer hardware details [2, 3]. One of the objectives in as-
sessing WCET bounds is to ensure that these bounds are
tight — in the sense that they only insignificantly over-
estimate the true WCET — as tighter bounds result in
better actual processor utilization and thus a more cost
effective resource usage. The tightness of these bounds
is directly linked to execution time variance, which can
be caused by program structure (e.g., conditional execu-
tion with alternate short and long paths or variable loop
bounds), processor architecture (e.g., pipeline stalls due
to structural hazards) and memory (e.g., variable latency
memory references due to caches and non-uniform DRAM
latency. Timing variability can be analyzed experimen-
tally by assessing the variance (or standard deviation) of
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actual execution times. By reducing the standard devi-
ation of execution times, bounds of execution times can
be tightened, which allows the actual processor utilization
to be increased. In the following, we will refer to “pre-
dictability” as a means to lower the metric for tightness
of computational bounds, i.e., a lower variance/standard
deviation in computation times of a task or, even better,
constant time, implies higher predictability, while a higher
variance/standard deviation results in lower predictability.
The former is synonymously referred to as “predictable”
and the latter as “unpredictable” behavior in the follow-
ing.

One source of loose computational bounds (unpre-
dictability) are non-uniform memory access (NUMA) ar-
chitectures, which are comprised of many cores partitioned
into sets of “nodes”, where each node has its own lo-
cal memory controller. Multiple nodes comprise a chip
(socket). Memory accesses may be resolved locally (within
the node) or via the network-on-chip (NoC) interconnect
(from a remote node and its memory).

Each core has a local and multiple remote memory
nodes. A memory node consists of multi-level resources
called channel, rank, and bank. The banks are accessed in
parallel to increase memory throughput. When tasks on
different cores access memory concurrently, performance
varies significantly depending on which node data resides
and how banks are shared for two reasons. (1) The latency
of accessing a remote memory node is significantly longer
than that of a local memory node. Although operating sys-
tems generally allocate from the local memory node by de-
fault, remote memory will be allocated when local memory
space runs out or initialization on a different core forced
allocation on a non-local node for subsequent accesses in
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another thread running on another core. (2) Even with
a single memory node, conflicts between shared-bank ac-
cesses result in unpredictable memory access latencies. As
the execution time of tasks has to be conservatively (over-
)estimated in real-time systems, system utilization may be
low.

Recent work explores the methods to make main mem-
ory accesses more predictable. Palloc [4] exploits bank
coloring on dynamic random-access memory (DRAM) to
allocate memory to specific DRAM banks. Kim et al. [5]
propose an approach for bounding memory interference
and use software DRAM bank partitioning to reduce mem-
ory interference. Other approaches ensure that cores can
exclusively access their private DRAM banks by hardware
design [6, 7]. Programmers need to carefully assign colors
to each task and manually set the coloring policy for a real-
time task set. Furthermore, none of these approaches solve
the problem of making memory accesses time predictable
for NUMA systems. Some of them require hardware mod-
ifications while others do not consider NUMA as a source
of unpredictable behavior.

Hard real-time applications tend to allocate and ini-
tialize data structures at the beginning of a a task’s exe-
cution. Each periodic job invocation of a task then utilizes
variables of the data structures for their sensing, computa-
tion and actuation actions. Such variables may be global
variables or heap variables, pre-allocated once at initial-
ization time and subsequently used during each job of a
task. Any data structure can be interchangeably assigned
to global variables or heap allocation at initialization time,
as long as they are preallocated and accessed once as part
of the initialization to ensure that virtual memory alloca-
tion actually results in reserving physical memory space.
This is critical as allocation by itself is lazy, i.e., phys-
ical memory is reserved only once data is accessed due
to the first-touch policy of virtual memory management
within operating systems [8]. Our work handles coloring
for global data, heap, stack and code alike while consider-
ing the effects of NUMA systems. Notice that even global
variables, code segments and stacks are allocated using the
same system call (mmap) as heap allocators, except that
their allocation occurs during load time in code executed
prior to transferring control to application code. In fact,
global allocations prior to task invocations are likely to re-
sult in significant latency variation without coloring. This
is again due to the first-touch policy that, as we will dis-
cuss, results in allocations local to the “main” task instead
of local to a thread representing a task that is allocated
on a specific core.

Memory allocation in programs relies on a system call
that invokes the standard buddy allocator of the operat-
ing system. It adheres to a “node local” memory policy,
which requests allocations from the memory node local to
the core the code executes on from an arbitrary bank. Be-
sides, the libnuma library offers a simple API to NUMA
policies under Linux with several policies: page interleav-
ing, preferred node allocation, local allocation, and alloca-

tion only on specific nodes. However, the libnuma library
is restricted to heap memory placement at the controller
level, and it requires explicit source code modifications to
make libnuma calls. Furthermore, neither buddy alloca-
tion with local node policy nor libnuma are bank aware.

We contribute Controller-Aware Memory Coloring
(CAMC), a memory allocator that automatically assigns
appropriate memory colors to each task while combining
controller- and bank-aware coloring for real-time systems
on NUMA architectures. The objective of CAMC is to
tighten the bounds on a task’s computation time and allow
the utilization of a real-time system to be increased, yet to
make minimal changes to the original application code to
achieve this objective. An implementation of CAMC on an
AMD platform and its performance evaluation with real-
time tasks provides novel insights on opportunities and
limitations of NUMA architectures for time-critical sys-
tems. Memory access latencies are measured, the impact
of NUMA on real-time execution is discussed, and the per-
formance of DRAM partitioning is explored. This is the
first work to comprehensively evaluate memory coloring
performance for real-time NUMA systems, to the best of
our knowledge.

Summary of Contributions:
• In contrast to prior work for non-NUMA alloca-

tions [4] or “local node” policy in buddy allocation with-
out bank awareness, CAMC colors the entire memory
space transparent to the application by considering mem-
ory node and bank locality together. Tasks are automati-
cally assigned to one (or more) colors for memory regions
disjoint from colors of other tasks in the system.
• CAMC follows the philosophy of single core equiva-

lence [9]. It avoids/reduces (i) memory accesses to remote
nodes and (ii) conflicts among banks when possible in an
effort to make task execution more predictable via colored
partitioning.
•We modified the Linux kernel so that each task has its

own memory policy. Heap, stack, static, and instruction
(text/code) segment allocations return memory frames ad-
hering to this policy upon task creation as well as for ex-
pansions of stack or heap segments dynamically for heap
allocations or deeply nested calls.
•We assess the performance of CAMC for Parsec codes

on a standard x86 platform, with and without real-time
task sets. This allows us to compare CAMC with Linux’
standard buddy allocator with “local node” policy and pre-
vious coloring techniques.
• We quantify the non-uniform latency between nodes

and experimentally show that (i) monotonically increas-
ing alternating stride patterns result in worse performance
than prior access patterns believed to trigger the “worst”
behavior; (ii) CAMC increases the predictability of mem-
ory latencies; and (iii) CAMC avoids inter-task conflicts.
• By comparison, CAMC is the only policy to pro-

vide single core equivalence when the number of concur-
rent real-time tasks is less than the number of memory
controllers. By coloring real-time tasks and non real-
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time tasks disjointly (with mappings to different memory
controllers), real-time tasks increase their level of isola-
tion from each other following the single core equivalence
paradigm, which is essential both to facilitate composi-
tional analysis based on single-task analyses and to im-
proving the schedulability of real-time task sets.
• We describe an algorithm for the mapping of phys-

ical address bits for AMD processors. Its principles can
be applied to any architecture as long as the mapping of
physical address bits is documented.
• CAMC automatically assigns memory colors to tasks

based on global utilization of memory colors, much in con-
trast to prior work that requires manual configuration by
programmers. CAMC does not require any code modi-
fications for applications. Invocation of a command line
utility prior to real-time task creation suffices to activate
coloring in the kernel. The utility issues a single mmap()

system call with custom parameters for coloring in a back-
wards portable manner by exploiting semantic restrictions
of the system call.

The rest of this paper is organized as follows. Section 2
introduces the memory organization of modern multicore
CPUs and discusses the problem of memory controller se-
lection and bank sharing. Section 3 presents the design
and implementation of controller-aware memory coloring.
Section 4 describes the experimental platform and ana-
lyzes the overhead of the approach for micro-benchmarks
and experiments with the NAS and Parsec benchmarks.
Section 5 reviews related work and Section 6 summarizes
the contributions.

2. Background

In this section, we briefly describe the organization of
a DDR3 SDRAM system and how it services a memory
accessing request.

DRAM Organization: Dynamic random-access mem-
ory (DRAM) is organized as a group of memory con-
trollers/nodes (Fig. 1), each associated with a set of cores
(e.g., four cores per controller). Each controller governs
multilevel resources, namely channel, rank, and bank.
Each rank consists of multiple banks, where different banks
can be accessed in parallel. Multiple channels further pro-
vide interleaving of memory accesses to improve average
throughput.

Each bank has a storage array of rows and columns
plus a row buffer, see Fig. 2. When the first memory re-
quest to a row element is issued, a row of the array with
the respective data is loaded into the row buffer before it is
relayed to the processor/caches. Next, to serve this mem-
ory request, the requested bytes of the data are returned
using the column ID. Repeated/adjacent references to this
data in this row result in “memory bank hits” — until the
data is evicted from the row buffer by other references, af-
ter which a “memory bank miss” would be incurred again.
The access latency for a bank hit is much lower than for a
bank miss.

Fig. 1: 16 Cores, 4 Memory Controllers and Nodes

When multiple tasks access the same bank, they con-
tend for the row buffer. Data loaded by one task may
be evicted by other tasks, i.e., under bank contention the
memory access time and bank miss ratios increase as ac-
cess latencies fluctuate.

Fig. 2: DRAM Device Organization

Memory Controller: Cache misses within the last-level
cache (LLC) of a processor are forwarded to the mem-
ory controller, which acts as a mediator between the LLC
and the DRAM devices. The memory controller translates
read/write memory requests into corresponding DRAM
commands and schedules these commands while satisfying
timing constraints of DRAM banks and buses, see Fig. 3.
When multiple memory controllers exist, references experi-
ence the shortest memory latency when the accessed mem-
ory is directly attached to the local controller (node). A
memory access of one node to memory of another incurs
additional cycles of load penalty compared to local mem-
ory as it requires the traversal of the memory interconnect
between cores. Overall, proper placement of data can in-
crease the overall memory bandwidth and decrease its la-
tency due to node locality when remote memory accesses
are avoided, i.e., both performance and predictability can
be improved due to more uniform and shorter latencies.
In particular, if remote node references can be completely
avoided, the upper bound on access latencies can be tight-
ened.

As briefly outlined in the last section, allocation and
initialization of all global variables within the context of
the initial (main) task results in all data being local to
that task’s core due to the aforementioned first-touch pol-
icy. Subsequent tasks allocated to other cores on different
nodes consequently suffer remote access latencies when ac-
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Fig. 3: Logical Structure of DRAM Controllers

cessing these global variables. One method to address this
problem is to perform global allocations in the context of
the specific task that later accesses this data. But this
would require restructuring of the initialization phase of
applications. Alternatively, the main task may indicate
at allocation time which node a specific data structure
should be allocated on. Our work follows this latter idea
as it requires less program restructuring, i.e., the initial-
ization code only needs to be augmented by systems calls
to indicate which node the following allocations should be
associated with.

3. Controller-Aware Memory Coloring (CAMC)

3.1. Motivation

Upon the first reference (touch) of a memory page dur-
ing application execution, a page fault is raised by the
memory management unit. This fault results in a trap,
which invokes an operating system (OS) handler. The han-
dler makes the page accessible at a new map location in
physical memory if it was a legal memory address or raises
a user signal in case of an illegal memory access. The OS
maintains a list of available physical memory frames from
which pages are dealt out in FIFO order for such new page
mappings.

After a physical memory frame is allocated to an ap-
plication (on first memory touch), such a frame can be
accessed again until the application frees it or terminates.
When a variable or instruction is accessed, its virtual ad-
dresses are translated into physical ones based on the page
table maintained by the OS. An access request for a physi-
cal address will be sent to the corresponding memory con-
troller. The DRAM memory controller then translates the
physical address into a DRAM address to identify chan-
nel ID, rank ID, bank ID, row, and column. With those
parameters, the DRAM cell that contains the requested
data can be located. As discussed in Sec. 2, to serve the
memory request, a row with the respective DRAM cell is
loaded into the bank’s row buffer and suffers row buffer
hit/miss delay.

Accesses to memory are uniform in latency in a single
node/memory controller system. However, a NUMA sys-
tem with multiple nodes causes memory access latencies

and contention to vary. As described in Sec. 2, DRAM
memory access latency is largely affected by: (1) where
data is located, i.e., local vs. remote memory node; (2)
how much of the accesses contend; and (3) how memory
banks interleave.

A memory node consists of multiple memory banks,
each of which can be accessed in parallel. Multiple tasks
may share the same memory bank and contend for the
same bank’s row buffer under Linux’ buddy allocation.
As shown in Fig. 4, Tasks 1 and 2 are accessing the same
DRAM bank and compete with one another on their re-
spective memory request, i.e., task 1 requests the red data
(left side arrow) while task 2 tries to access blue one (right
side). In this case, task 2 replaces the row buffer that had
been populated by task 1 and thereby evicts the data of
task 1 in the row buffer. This subsequently increases mem-
ory access times and bank miss ratios if task 1 proceeds
to access memory close by (spatial locality) so that access
latencies fluctuate due to alternating row buffer hits and
misses.

Fig. 4: Memory Bank Contention

We design Controller-Aware Memory Coloring
(CAMC) to avoid remote memory node accesses and re-
duce bank contention. CAMC is realized inside the Linux
kernel (V2.6). It comprehensively considers memory node
and bank locality to color the entire main memory space
(heap, stack, static, and instruction segments) without
requiring hardware or application software modifications.
The entire memory space is partitioned into different
sets, which we call “colors”. Each memory bank receives
a different color. CAMC forces an exact mapping for
each active virtual page to a physical frame of the
CAMC-indicated color. Such a color indicates a unique
bank color (bc), which translates a physical address
to memory module locations: node, channel, rank, bank,
columns, and rows. The bank color, bc, of a physical
frame is determined as

bc= ((node×NC+channel)×NR+rank)×NB+bank,
where node (controller), channel, (memory) rank, and
(memory) bank are specific to this physical frame and

NC the number of channels per memory controller,
NR the number of ranks per channel,
NB the number of banks per rank.
Example: In a system with two nodes, two channels

per node, two ranks per channel, and four banks per rank,
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if we access node 1, channel 0, rank 1 and bank 3, bc =
((1× 2 + 0)× 2 + 1)× 4 + 3 = 19.

CAMC optimizes the physical memory frame selection
process based on this partitioning to provide a private
memory space for each task on their local memory node
in order to make memory access latency stable and pre-
dictable. But in practice, it is hard to avoid all remote
accesses as tasks run concurrently and may incur complex
memory reference patterns, e.g., due to data sharing. If
one were to conservatively assume remote references for
all memory accesses, bounds on the WCET would be very
loose, so that system utilization would be low. In con-
trast, we assume that only shared reference latencies are
bounded conservatively (to be remote) as CAMC guar-
antees absence of controller/bank conflicts and supports
locality.

3.2. Address Mapping for Page Coloring

In the following, we explain how to read PCI informa-
tion (Algorithm 1), which provides the controller ranges
(Tab. 1) and bit indices for ranks (Algorithm 1, sequential
within the range of a controller) and banks (bits in Fig. 5).
This suffices to calculate and store the color, bc, for each
allocated frame in the page table (last paragraph of this
subsection).

A physical address is translated by CAMC to a DRAM
address and then mapped onto the physical structure of
main memory as described before (node, channel, rank,
bank, columns, and rows). Some vendors only release
bit-level mapping information under non-disclosure agree-
ments (e.g., Intel — even though some prior work has pub-
lished mappings for certain Intel processors) while oth-
ers disclose this information in their architecture manu-
als (e.g., AMD, ARM). This work is based on the AMD
Opteron hardware platform, but its principles apply to
any documented mapping. Algorithm 1 illustrates how
we query PCI registers and determine the bits that trans-
late physical addresses to DRAM locations on the AMD
platform (with PCI register addresses documented in the
architecture manual). We denote the physical address of
a memory frame as “phyaddr”, while nodes[n] represents
the PCI information for each memory node. We then use
this mapping information to color every memory page.

Table 1: Range for Each Memory Controller

range of physical address

Controller 0 0x0 – 0x227FFFFFF

Controller 1 0x228000000 – 0x427FFFFFF

Controller 2 0x428000000 – 0x627FFFFFF

Controller 3 0x628000000 – 0x827FFFFFF

The range of its physical address identifies the memory
controller/node of a frame. E.g., on the AMD Opteron
6128 processor with a total of 32 GB physical memory,
a page’s physical address is in a range between 0x0 and
0x827FFFFFF, where each controller serves a subrange
(see Tab. 1), which is used to determine the node ID if

the address resolves to the current node’s range (lines 3-
6) or to search for an address resolution in the next node
(line 29). If channels are interleaved, phyaddr is modi-
fied to compensate (lines 7-10). Channel and rank ID bits
are indicated by the “DRAM Controller Select Low Reg-
ister” (lines 11-12) and “DRAM CS Base Address Reg-
isters” (lines 15-22), respectively. After determining the
frame’s memory controller, channel, and rank information,
we translate the physical address to the DRAM bank ad-
dress by removing masked bits and normalizing (line 23).
Next, we identify the bank, row, and column bits based
on the “DRAM Bank Address Mapping Register” (lines
24-25 and Fig. 5).

Fig. 5: DRAM Bank Address Mapping Register (AMD Opteron)

Algorithm 1 Translate Address
1: INPUT: phyaddr, nodes[n]
2: for i=0...n-1 do
3: DramBase=getPCI(DRAM Base Registers)
4: DramLimit=getPCI(DRAM Limit Registers)
5: if DramBase ≤ phyaddr ≤ DramLimit then
6: NodeID = i
7: if Node Interleaving == True then
8: temp = getPCI(Swap Interleaved Region Base/Limit

Register)
9: Modify phyaddr to remove node interleaving based on

temp
10: end if
11: temp=getPCI(DRAM Controller Select Low Register)
12: Translate phyaddr to ChannelID based on temp
13: Modify phyaddr to remove channel interleave
14: for CS = 0...7 do
15: CSBase=getPCI(DRAM CS Base Address Registers)
16: CSEn=CSBase & 0x00000001
17: CSMask=getPCI(DRAM CS Mask Registers)
18: /*Get the specified bits of PCI register according pro-

cessor document*/
19: CSBase=CSBase & 0x1FF83FE0
20: CSMask=(CSMask | 0x0007C01F) & 0x1FFFFFFF
21: if (CSEn != 0) and ((phyaddr & ∼CSMask) == (CS-

Base & ∼CSMask)) then
22: RankID = CS
23: Modify phyaddr to remove masked bits and get

normalized address for this rank
24: DramAddrMap = getPCI(DRAM Bank Address

Mapping Register)
25: Translate phyaddr to BankID, RowID and

ColumnID based on DramAddrMap
26: end if
27: end for
28: else
29: continue
30: end if
31: end for

Our coloring mechanism is triggered upon boot-up of
the OS. It scans all frames and calculates the color in-
formation for memory controller, channel, rank and bank
per frame (and corresponding frame). Consider an AMD
Opteron 6128 with four memory controllers, two channels
per controller, two ranks per channel, and eight banks per
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rank (4 × 2 × 2 × 8 = 128 banks in total). After boot-up
and page color initialization, the system groups the entire
memory space into 128 colors and records in the page table
which color a page belongs to.

3.3. CAMC User Interface

Once the system is fully booted, it is ready for per-
task CAMC allocation. Instead of manual configuration
by the programmer in prior works, the user only needs
to trigger memory coloring in CAMC. Subsequently, the
coloring policy is applied automatically, i.e., all tasks are
assigned appropriate memory colors without a program-
mer’s manual selection. To turn on/off memory coloring
in CAMC, we designed a coloring toggle capability, which
is triggered via a single mmap() system call exploiting a
backwards-compatible mmap extension to turn on/off and
configure kernel coloring of memory pages per task.

The parameters of this coloring toggle call indicate
what kind of coloring action and how many colors should
be assigned to real-time tasks during initialization (and
can be changed by the programmer based on the per-
task memory requirement, with a default of one color per
task). Our enhanced mmap() retains the calling convention
of standard mmap calls, which allocates pages by creating
new mappings in the virtual address space of the calling
task.

The “protection” parameter allows the distinction of
standard mmap vs. coloring mmap calls with full backwards
compatibility for the former while triggering our kernel ex-
tensions for the latter. Specifically, a set bit 30 of the mmap
third parameter (unused in Linux) triggers coloring; oth-
erwise, calls experience standard (legacy) behavior. For
colored mmap(), the first parameter indicates the color ac-
tion (turn it on/off) and the number of colors to assign
per real-time task. On the AMD Opteron platform, the
color num has a value range of 0-127.

A sample call for coloring is as follows:
char * A = (char*) mmap(color action+color num,

length, prot | (1<<30), flag, fd, offset);

3.4. Memory Policy Configuration

A backward-compatible enhancement of the mmap()

call registers (adds) the current user id to the coloring user
list in the kernel after CAMC is activated. As there may be
many other tasks running in the system, one may quickly
run out of colored memory resource if the kernel assigns
colored resources to every task. To avoid coloring for non
real-time tasks and OS background processes, a command-
line coloring request indicates the path of a binary. We
check this execution path of new tasks to determine if this
task should be colored.

After CAMC activation, the user id and execu-
tion path of tasks are checked as they are spawned. If
the user id has been registered and the execution path
matches a user-specified configuration pattern, the OS ker-
nel will configure the memory policy for this task to adhere

to the supplied coloring constraints. In other words, col-
oring constraints are recorded globally within the kernel
(slab) allocator for all tasks that have registered colors via
mmap and are subsequently used on each task’s allocation
request.

In addition, a coloring flag, using color, is set in the
task struct by the kernel. Any subsequent memory allo-
cation calls (including heap, stack, static, and instruction
segments) will return pages based on memory policy and
coloring requirements.

Once a coloring memory policy has been established,
this task is guaranteed to receive isolated (colored) mem-
ory pages in terms of controller locality and bank arbi-
tration. No software/application source code or hardware
architecture modifications are needed for CAMC. Fig. 6
depicts the configuration of the coloring memory policy.

Fig. 6: Program Flow to configure memory coloring

A table records the utilization of global memory colors
and each task’s coloring allocation. Once a new coloring
task is created, CAMC automatically selects one color (de-
fault 1, configurable to > 1) from memory regions disjoint
from colors of other tasks in the system. If a task needs
more memory space, CAMC assigns a new color should we
run out of a task’s pre-allocated colors.

CAMC is activated when a new task (process) is cre-
ated by a fork() system call. Such a fork() results in shar-
ing of the parent process’ pages (with read-only permis-
sion) between the child and parent processes following the
copy-on-write (COW) paradigm of Linux. The memory
space will not be copied for the child process until the
child begins to execute. Whenever the child process calls
the do exec function, pages for the binary indicated as
a parameter are allocated in place of the original parent
pages. CAMC ensures that the entire memory space of the
child is colored by configuring the coloring memory policy
in the do exec function.
3.5. Page Allocation Design

We next detail how page coloring is provided for both
interleaved and non-interleaved modes. Subsequently we
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show in Algorithm 2 how separate free lists are maintained
per color and dealt out upon being requested via mmap().
When the free list of a certain color is empty, unused “high
order” memory regions are broken into 4KB sized order-0
regions and added to the free list by color (derived by their
physical address, see Algorithm 3).

The Linux buddy allocator has been augmented to im-
plement CAMC. We only handle order = 0 allocations in
CAMC when the current task has its coloring flag set (line
3) while higher orders are handled by the original buddy al-
locator, since user-level memory allocations are eventually
performed in the page fault handler at page granularity
(4KB, i.e., order = 0). Common kernel internal allocation
requests for obtaining a page frame are thus handled by
CAMC.

CAMC also supports channel interleaving for multi-
channel memory architectures. With channel interleaving,
one page is spread evenly across channels at cache line
granularity to increase memory throughput.

The interleaving boundary is related to the size of cache
line and determined by the memory physical address, (6th
bit of physical address on our platform, where a cache
line is 64B). When channel interleaving is enabled, the
color assigned to each memory bank does not only repre-
sent its memory location, but also indicates channel inter-
leaving information, i.e., one color contains multiple mem-
ory banks (but a subset of the total number of banks).
By assigning this color in CAMC, one task can access
those banks at the same time though multiple channels.
Via memory coloring, we still guarantee isolation and pre-
dictability.

Algorithm 2 Select colored page: find page of given
size,color
1: INPUT: order
2: OUTPUT: page
3: if order==0 and (current->using color) then
4: for i = order ... MAX ORDER do
5: Get a memory list ID, MEM ID, that matches require-

ments
6: if Get Successful then
7: return page from color list[MEM ID]
8: else
9: if free list[i] is empty then

10: continue //try next order
11: else
12: create color list (i, head page of the buddy set)
13: end if
14: end if
15: end for
16: return NULL /* no more pages of this color */
17: else
18: return page from normal buddy alloc
19: end if

Algorithm 3 Create color list: move page from buddy to
colored free lists
1: INPUT: order, page
2: for i = 0 ... 2order−1 do
3: append page to color list[page color]
4: end for

Once the memory policy is configured, one needs to de-
termine which page to select at a page fault. This process
is shown in Algorithms 2+3. Our approach instructs the
kernel to maintain a free list and m color lists, where m
denotes the total number of banks in DRAM system.

At first, all color lists are empty and all free pages are
in the non-colored free list of the buddy allocator. Upon
a page fault, the returned page has to match memory col-
oring requirements if flag using color is set (line 3).

Orders greater than zero default to the standard buddy
allocator while order zero requests traverse the correspond-
ing colored free list to find an available page (line 5). E.g.,
when a task requests a color 0 page, the kernel traverses
the color list[0].

If free pages exist here, the kernel removes one such
page from the corresponding colored free list and hands it
to the user (line 7). Otherwise, the kernel traverses the
general buddy free list (line 10) and returns the first page
with a matching color for this task (line 7). Any pages
with non-matching colors encountered during the traver-
sal are added to the corresponding color lists by calling
the create color list function (line 12). The call to
create color list causes a buddy (of size = 212+order)
to be separated into 2order single 4KB pages, which will be
added to the respective color lists (Algorithm 3). If new
page is left (memory of this color exhausted), then an error
will be indicated by returning NULL (line 16), which is the
conventional manner of indicating an allocation has failed.
For example, with 128 colors and no interleaving, a higher
order region of n pages, where n is divisible by 128 (since
it has 212 pages or a multiple thereof) will be distributed
round robin over the 128 free lists. If a task requires large
amounts of memory (more than 1/128 in the example), it
requests more than one color so that page requests can be
fulfilled by choosing any page of the assigned colors.

When the task frees a memory space, the kernel adds
each page to free lists corresponding to their color. In ad-
dition, the colors assigned to a task will be returned to the
“coloring pool” when this task calls do exit to terminate
upon which memory coloring resources are recycled. Thus,
memory space can be configured on a per-task basis for a
specific bank and memory controller.

4. Evaluation Framework and Results

This section provides details on the hardware platform
and benchmarks for experiments before reporting results
for our approach in comparison with previous work plus
multicore results for multi-threaded benchmarks and real-
time experiments to assess our coloring method.

4.1. Hardware Platform

A two-socket SMP with AMD Opteron 6128 (Magny
Cours) processors with eight cores per socket (16 cores al-
together) comprises our experimental platform. The 6128
Opteron processor has private 128KB L1 (I+D) caches per
core, a private unified 512KB L2 cache, and a 12MB L3
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cache shared across eight cores. There are two nodes per
socket (4 nodes as in Fig. 1 but 8 memory controllers to-
tal instead of just 4 in the figure), and nodes are con-
nected via HyperTransport. The core frequency is between
800MHz-2GHz with a governor that selects 2GHz once a
CPU-bound task starts running. There are two channels
per memory controller, two ranks per channel, and eight
banks per rank, i.e., 128 banks altogether. Eight-way par-
allel access is support to these banks.

4.2. CAMC vs. Buddy with Local Node Policy

Let us first investigate the memory performance im-
pact of CAMC with a synthetic benchmark. The synthetic
benchmark represents a performance stress test close to
the worst possible case. In the experiment, a large memory
space is allocated for varying numbers of threads (tasks)
with CAMC.

Each thread then performs many writes in this space.
We record the execution time of every 524,288 (512*1024)
memory writes. Since the only work for each thread is
to access main memory, the execution time reflects the
memory access latency, i.e., total execution time divided
by the 524,288 accesses. We report the average memory
access latency and repeat experiments multiple times.

We use large strides to defeat hardware prefetching and
allocate a large address space to inflict capacity misses
in all caches so that we can assess the performance of
memory controller coloring. Accesses follow a pattern
where a thread writes to addresses with alternating (pos-
itive/negative) offsets increased by a fixed step size of at
least cache line size. Consider split (64KB+64KB) I+D
L1 caches with 64-byte caches lines. For an integer array,
we select a step size of 64 bytes to touch each cache line
exactly once. If a thread initially accesses the 256th array
element, its next accesses are to the 272th (+16), 240th
(-16), 288th (+32), 224th (-32) element and so on.

4.2.1. Local vs. Remote Memory Controller Latency

We bound one thread to a specific CPU core (to defeat
the Linux load balancer that may migrate tasks to differ-
ent cores) and perform allocations for different memory
controllers. Table 2 indicates the average memory access
latency and standard deviation over a sequence of accesses
per memory controller, where the task is running on core 1
(to reduce interference since core 0 often serves interrupts
as per Linux policy). Since controller 0 is local to core 1,
memory at controller 0 is accessed locally while that at
other controllers is accessed remotely (see Fig. 1). We ob-
serve 60% lower memory access latency and 33% smaller
deviation for local over remote references, simply due to
resolving all references locally with our allocator.

Table 2: Access Latency of each Controller

average standard deviation

controller 0 14.41 ns 0.56

controller 1 22.5 ns 0.65

controller 2 & 3 36.37 ns 0.84

Observation 1: Memory latency for local controllers is
lower than for remote ones.

Table 2 also shows the variations in memory access
latencies for a task (on core 1) accessing different remote
memory controllers. The latency is the lowest (14.4ns)
when accessing local controller 0. It increases to 22.5ns
for controller 1 and is the highest (36ns) for controllers 2
and 3. This reflects the required number of hops over the
on-chip interconnect discussed earlier.

Observation 2: Memory latency increases across re-
mote controllers with the number of hops over the on-chip
interconnect.

4.2.2. CAMC vs. Buddy Allocation with Local Node Policy

A comparison of the cost of CAMC and buddy allo-
cation with “local node” policy is given next. While all
memory is allocated to the local controller 0, tasks access
disjoint banks under coloring while bank conflicts can and
will occur under buddy allocation. The synthetic bench-
mark executes 4 threads in parallel with 4 threads bound
to cores 0-3, each allocating colored/buddy memory and
accessing it as before.

Table 3 depicts the average latency per access of all
4 threads and the standard deviation for a sequence of
100 experiments. The execution time (38ns) is shorter
under CAMC due to a reduction in worst-case latency
compared to about 53ns (buddy) on average, a 28.3% re-
duction. More significantly, the standard deviation of ac-
cess times under CAMC is much lower than buddy allo-
cation, which indicates that the memory access time be-
comes more predictable with coloring. CAMC accesses
disjoint private banks per thread on the same controller
while buddy shares memory controller and banks among
the threads.

Observation 3: Memory access time is reduced and be-
comes more predictable with CAMC coloring.

Table 3: Cost of CAMC Normalized to Buddy

access latency norm. allocation cost during:

latency std.dev. computation initialization

buddy 53.21 ns 9.33 1 1

CAMC 38.22 ns 1.42 1 1.17

4.2.3. CAMC Overhead

The overhead of CAMC allocations normalized to stan-
dard buddy allocation is depicted in Table 3. CAMC im-
poses no overhead over buddy allocation during regular
program execution. But during initialization, CAMC has
a 17% overhead during allocations over standard buddy
allocation, which is explained as follows.

The color lists are empty at program start, and any
coloring request results in a traversal of the free list until
a page of the requested color is found. Any pages encoun-
tered during the free list traversal are further promoted to
their respective index in the color lists.
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Currently, this initial overhead can be avoided by pre-
allocating colored pages during initialization (and option-
ally freeing them). Alternatively, this overhead could be
removed by reversing the design such that all pages ini-
tially reside in color lists and are demoted into the free
list on demand. To avoid the initial overhead, one can
preallocate (and then free) the maximum number of pages
per color that will ever be requested. Subsequent requests
then become highly predictable. To amortize the over-
head of initialization, it typically suffices to make a single
allocation call for coloring.

Observation 4: CAMC imposes no overhead over buddy
allocation during periodic real-time task execution. Its ini-
tialization overhead can be avoided by pre-allocating space
for real-time system.

4.3. NAS Parallel Benchmark Results

We investigated the performance impact of CAMC for
IS, the only C code from the NAS Parallel Benchmark
(NPB) suite [10]. The NPB suite is designed to evaluate
the performance of parallel kernels. We investigate the
OpenMP version of IS. IS is an integer sort application
with many random memory accesses. We configured IS to
run with 4 OpenMP threads. Each thread is bound to a
different CPU core. The benchmark dynamically allocates
about 32 MB of memory per thread before accessing it.
The normal buddy allocator may inflict conflicts when ac-
cessing memory while CAMC ensures that neither remote
memory nor shared memory bank accesses are issued by
these threads.

Fig. 7: NPB OpenMP IS Result for 4 Threads

Fig. 7 depicts the overall execution time (y-axis) for
a sequence of experiments (x-axis), each allocating their
own 32MB data and then accessing it. We make the
following observations. Upon default buddy allocation
(blue/upper curve), the execution time of the IS OpenMP
benchmark fluctuates between 3.6-4.2 seconds in consec-
utive runs. The fluctuation is due to (1) data (especially
stack, static, and instruction segments) placed on remote
memory controllers relative to cores bound to threads, and
(2) contention at the memory bank level for shared data
accesses. With CAMC (red/lower curve), the execution

time is nearly constant at 3.65 secs. Notice that the best-
case timing for buddy is even lower than that under color-
ing, though not by much. This is due to the overhead of
maintaining 128 separate queues for coloring.

For real-time scheduling, a tight but safe (conserva-
tive) bound on the execution time is important to ensure
good system utilization. CAMC provides a much tighter
bound than buddy allocation (lower standard deviation),
i.e., more predictable real-time behavior. And CAMC has
up to 12.4% higher performance due to reduced conflicts
and memory access latency.

Observation 5: Not just multi-threaded programs un-
der Pthreads (see synthetic benchmark result), but also
OpenMP programs benefit from CAMC.

Fig. 8: Mixed: 1 Parsec code + up to 3 memory attackers

4.4. System Performance

Performance and predictability for the PARSEC
benchmark suite featuring multithreaded programs are in-
vestigated next with “simlarge” inputs [11]. In the ex-
periment, we create a multi-task workload where several
“memory attackers” run in the background (as non real-
time tasks) to assess their interference on memory la-
tency for a foreground (real-time) task similar to prior
work [5, 4]. We call these background tasks the “memory
attackers”, represented by instances of the stream bench-
mark. Fig. 8 depicts an example with 4 tasks, one (fore-
ground task) is a Parsec benchmark and the others (back-
ground) are memory attackers.

4.4.1. Performance

Next, the runtime of shared vs. private (isolated)
bank allocation (different controllers and different banks)
is compared. Since CAMC coloring occurs automatically
after activation, none of the benchmarks (neither any fore-
ground benchmark nor the memory attackers) need to be
modified, and each receives a disjoint colored space ac-
cessing only local node memory in private banks without
inter-thread sharing.

We deploy 3 memory attackers (Stream benchmark)
and measure the wall-clock execution time of the fore-
ground task to assess the impact of isolation via coloring.
All tasks (memory attackers and the Parsec benchmark)
are bound to different CPU cores. We also report results
without background attackers for comparison. We used 3
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configurations: (1) In same bank, the Parsec benchmark
and all 3 memory attackers are colored so that they access
the same bank. This configuration represents the worst
case for buddy allocation even with “local node” policy.
(2) In diff bank, CAMC forces the foreground benchmark
to share one memory controller/node (their local node)
with attackers. However, they each are assigned a private
bank/color. This is also called bank-level coloring. (3)
In diff controller, foreground task and attackers allocate
pages from their private bank and private local controller
for full task isolation via CAMC.

The experimentally determined WCETs for all Par-
sec benchmarks with background attackers (bars 1-3) and
without (bar 4) are depicted in Fig. 9. We observe
that the WCET is reduced under controller-aware color-
ing (private bank) in all experiments. Both diff bank and
diff controller obtain better performance than same bank.
The ferret benchmark gets the largest performance en-
hancement (28.9%) and the fluidanimate benchmark the
smallest one (6.2%) for bank-level coloring (diff bank). In
contrast, the canneal benchmark gets the largest perfor-
mance enhancement (41.7%) and swaptions the smallest
one (11.2%) for controller-level coloring (diff controller).

Fig. 9: Parsec: diff. controller/diff. bank/shared bank/single

In all 3 cases, the execution time is relatively pre-
dictable (small variance), yet diff controller has the tight-
est range of execution times of these methods, i.e., it is
more predictable and the only one that provides single-
core equivalence as it matches the last bar, single run (no
attacker). Differences between the last two bars of 0.1%
for most, 2.73% for X264, and 2.54% for ferret, are due
to increased LLC contention for 4 tasks. Notice that LCC
coloring would have removed LLC contention.

Observation 6: CAMC increases the predictability of
memory latencies by avoiding remote accesses and reduc-
ing inter-task conflicts. It is the only policy to provide
single-core equivalence when one core per memory con-
troller is used.

The average WCETs of the 3 memory attackers un-
der 3 memory configurations are shown in Fig. 10. The
error bars show the maximum and minimum runtime
of 3 Stream benchmarks. The results indicate that
diff controller gets a 40% and diff bank a 14.8% perfor-
mance enhancement over same bank. Hence, not only fore-

Fig. 10: Background Attacker (Stream): Diff. Con-
troller/Bank/Shared Bank

ground tasks (from the Parsec suite), background memory
attackers (the Stream benchmark) also improve in perfor-
mance under CAMC.

Since same bank represents the worst case for standard
buddy allocation, real-time tasks should be scheduled con-
sidering the same bank WCET for safety. After all, com-
pared to buddy the WCET of real-time tasks is much re-
duced under CAMC.

4.4.2. Predictability

By assigning memory space appropriately to each task,
we can also make a task’s execution time more predicable.
In this section, we investigate the predictability impact of
controller-aware memory coloring for Canneal and X264
with Stream cluster instances in the background (attacker)
since these are the most memory-bound codes. To this
end, we compare the execution times under CAMC and
buddy allocation for the Canneal benchmark as the num-
ber of memory attackers and the allocated memory size
change. All tasks are bound to different cores (0,1,2,3)
that belong to one memory controller.

Table 4: Execution Time of Canneal: 1+3 Attackers
Allocator Canneal+1 Attacker Canneal+3 Attackers

Buddy 12.278 secs 17.665 secs

CAMC 9.712 secs 9.811 secs

Table 4 indicates the average execution time of Can-
neal in seconds for one and 3 “attackers” (both averaged
over 10 runs). We observe that the time decreased, i.e.,
the performance increased for CAMC compared to buddy
by 20.9% and 44.46% for 1 and 3 attackers, respectively.
Furthermore, the execution time of Canneal remains sta-
ble under CAMC since background attackers always ac-
cess other memory controllers, i.e., Canneal does not suf-
fer from memory access contention with other tasks. With
increasing numbers of attackers, the execution time gap
between CAMC and buddy allocation widens since each
attacker adds more controller/bank conflicts.

Table 5 depicts the average execution time over ten re-
peated runs under CAMC and buddy allocations for differ-
ent amounts of allocated memory (100K, 200K and 400K
elements for simsmall, simmedium and simlarge inputs,
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Table 5: Canneal: Performance Sensitivity to Allocation Size

Allocator small size medium size large size

Buddy 8.45 secs 17.72 secs 22.3 secs
CAMC 8.41 secs 10.32 secs 11.12 secs

respectively). Here, Canneal co-runs with three memory
attackers. We observe that CAMC and buddy result in
nearly identical runtimes for small allocation sizes. But
performance under CAMC increases as the allocation sizes
become larger and more background attackers are present
due to additional contention between the tasks at con-
troller/bank levels.

We next assess the X264 benchmark in terms of
predictability for varying numbers of attackers (Stream
benchmark). We dynamically change the number of mem-
ory attackers running in the background so that 1-3 attack-
ers are active at any given time. Fig. 11 depicts the execu-
tion time of X264 (y-axis) over a sequence of experiments
(x-axis). We observe that execution is quite uniform un-
der private bank allocation with CAMC (red/lower curve)
while it fluctuates more frequently (is less predictable) for
shared banks under buddy allocation (blue/upper curve).
Buddy’s shortest time is about 45% of its longest time cre-
ating a wide range of variation. In contrast, shortest and
longest times of CAMC differ by just 5.8%. Also, coloring
results in a performance enhancement of 47% over buddy
allocation for the longest times.

Fig. 11: Runtime: X264 Coloring vs. Buddy

Observation 7: CAMC enhances performance and
makes task execution more predictable across different in-
put sizes and numbers of background tasks, which provides
single-core equivalence for real-time systems assigned to
disjoint memory controllers.
4.4.3. Multiple Cores

The next experiment executes a Parsec/X264 bench-
mark with multiple memory attackers (Stream bench-
mark) in the background on multiple cores. In 4 exper-
iments, we ran Parsec/X264 with 0/3/7/15 memory at-
tackers pinned to different cores. Fig. 12 depicts the run-
time (left y-axis) of X264 (foreground) and Stream (back-
ground) (right y-axis, avg. and min/max as error bars)
over the 3 allocation policies (x-axis). We observe that
the performance enhancement by CAMC becomes smaller

as the number of background tasks increases. For 16 tasks,
node-level coloring finally degrades to bank-level color-
ing. Notice that the predictability of background tasks
(stream) also degrades for 16 tasks (cores) with CAMC
matching that of the other allocators irrespective of the
number of active task. This is due to contention within the
shared queue of a memory controller before requests enter
bank-specific queues. Even for 16 tasks, our approach still
results in superior performance to normal buddy allocation
(same bank) where both controller and bank queues are
shared by all tasks. However, compared to just one core,
only the 4-core case under our policy provides single-core
equivalence as this is the only configuration to avoid mem-
ory controller queue sharing. Furthermore, the 3 back-
ground Stream benchmarks result in better performance
under CAMC with increasing variance under contention,
which is uniformly higher, both for our 16-core case and
the other schemes.

Observation 8: CAMC results in superior performance
for multicore executions per controller, where both con-
troller and bank queues are shared across tasks, but can
no longer provide single core equivalence.

4.5. Real-Time Performance

The next experiments evaluate CAMC under rate-
monotonic scheduling for a task set composed of 2 periodic
hard real-time tasks, (1) synthetic (alternating strides)
and (2) IS SER (NAS PB), sharing core 0 (task param-
eters depicted in Table 6) plus three non-real-time tasks
(Stream) on cores 1,2,3 (omitted in the table). These cores
share the same memory controller. Real-time tasks period-
ically execute jobs at a rate of 150 and 200ms under an exe-
cution time C of 90/60ms for a task utilization U of 0.6/0.3
for tasks 1 and 2, respectively. When tasks 1 and 2 execute
together, CAMC isolates execution from background tasks
(Stream) in diff-controller mode so that no deadlines
are missed. For the CAMC diff-controller mode, all non-
real-time tasks are mapped to different memory controllers
via coloring than real-time tasks. Although non-real-time
task suffer more remote memory accesses, CAMC guaran-
tees strict memory isolation for real-time tasks.

Table 6: MC Tasks for Buddy Allocator

taski period Ci Ui

1: Synthetic 150 ms 90 ms 0.6

2: IS SER 200 ms 60 ms 0.3

Fig. 15 shows the corresponding real-time extended
Gantt chart from one execution of this scenario: Tasks
1 and 2 are released (arrays up) at time 0, synthetic has a
shorter period and executes first followed by IS. Here, ex-
ecution always results in a feasible schedule and all dead-
lines (arrows down) are met, which is what one would ex-
pect based on verification of schedulability via response-
time analysis. In contrast, the same-bank configuration
does not provide isolation between Tasks 1+2 and the
background tasks (Stream), which causes deadlines to be
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Fig. 12: Runtime of one X264 and 3/7/15
Stream Tasks

Fig. 13: Palloc: Avg. Memory Latency for
Controller/Bank/no Coloring

Fig. 14: Alternating Strides for Con-
troller/Bank/no Coloring

missed. Fig. 16 depicts the same task set, but the execu-
tions of both synthetic and IS are longer due to Stream’s
interference. Task 1 executes first for 107ms, then task 2
(IS) runs but is preempted by the 2nd job of higher prior-
ity task 1 at 150, which was not enough time to finish, so
the deadline of IS is missed at 200. The red box (first box
of IS SER) indicates this deadline miss.

Fig. 15: Feasible Schedule: diff-controller

At the 2nd release of IS at 200, task 1 is still running,
and when IS starts at 257, it only runs for 43ms before
being preempted by the 3rd job of task 1 (running for
just 90ms here due to variations in interference), but then
continues at time 390 for another 10ms, which is again not
enough to finish by its deadline of 400 (red box). The 3rd
job of task 2 finally has enough time (50+37=87ms) to
just finish by 594 since it is only preempted by one job of
task 1 (running for 107ms).

Overall, the interference of background tasks was suf-
ficient to cause deadline misses, which one would not have
expected based on calculated response times derived from
isolated executions of tasks 1+2, i.e., interference causes
schedulability analysis to not be compositional anymore
with respect to single task executions. This holds for pol-
icy that causes interference and not just buddy allocation.

Fig. 16: Deadline Misses (red) for same-bank

Observation 9: In experiments, schedulability analysis
for real-time tasks remains compositional under CAMC,
yet for other policies with interference, compostionality
cannot be guaranteed: Deadlines of hard real-time tasks
at higher priority can be missed if any other tasks run on

other cores (even if just in the background).
The observed execution times (avg. over 100 runs,

min./max. and standard deviation) for tasks 1 and 2, re-
spectively, are depicted in Tables 7+ 8 for the same 4 con-
figurations as in previous experiments. Notice that a single
task run (without background tasks) results in the smallest
standard deviation, followed by diff-controller (adding
minimal overhead due to LLC contention), and then others
with higher interference at the bank/NUMA node level.
These execution times also reflect the runtime behavior
previously depicted in the real-time extended Gantt chars.
While the any of the other policies always meet deadlines,
Table 9 quantifies the deadline miss rates for same-bank

and diff-bank.

Table 7: Task 1: Synthetic Exec. Time

SameBank DiffBank DiffContr. SingleRun

avg. 90.6 ms 78.5 ms 62.5 ms 60.7 ms

max 107.1 ms 89.3 ms 75.8 ms 61.2 ms

min 80.4 ms 68.3 ms 61.5 ms 60 ms

std.dev. 4.88 4.33 2.46 0.44

Table 8: Task 2: IS SER Exec. Time
SameBank DiffBank DiffContr. SingleRun

avg. 74.6 ms 67 ms 56.7 ms 54.3 ms

max 87.8 ms 74.4 ms 59.8 ms 56 ms

min 64.3 ms 58.8 ms 55.4 ms 53.7 ms

std.dev. 5.28 4.2 0.83 0.41

Table 9: Deadline Miss Rates
SameBank DiffBank DiffContr. SingleRun

deadline misses 82% 23% 0 0

4.6. Influence of Coloring on Bank-Level Parallelism

We next experiment with MatMult, which multiplies
two matrices, A and B, and stores the result in matrix
C, to illustrate its dependence on the number of access
streams. We compare MatMult under buddy and CAMC
allocation. For the latter, we also varied the numbers of
banks (1-3) allotted to a task.

Fig. 17 shows that Matmult’s execution time increases
as the number of banks decreases. Its execution time is
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about 15.1 seconds for buddy allocation (using 128 banks),
but increases to 15.37 seconds when only one bank is
available. Matmult has 3 access streams (one per array:
A,B,C). If we use the performance for 3 banks as a ref-
erence, then execution time increases by 1.22% when re-
stricting it to just 1 bank — and time increases by only
0.6% for 128 banks (entire memory space), i.e., 3 banks
nearly suffice to reach the bank level parallelism of this
algorithm.

Fewer memory banks are available for an application
under CAMC than buddy (see Section 3). This experiment
shows that CAMC exploits most of the bank-level paral-
lelism as long as the application’s bank-level parallelism
does not exceed the number of available banks.

Fig. 17: Time for MatMult Allocating 128/3/2/1 Banks

Observation 10: Application sensitivity to memory par-
allelism allows the selection of the number of banks un-
der CAMC so that single-core equivalence can be pro-
vided without significant performance penalty as opposed
to buddy.

4.7. Latency Comparison with Prior Work

The performance of our approach is next compared to
Palloc [4], a DRAM bank-aware memory allocator that
provides memory bank isolation on multicore platforms,
but not memory controller locality as it does not support
NUMA platforms.

4.7.1. Latency Benchmark

We utilize Palloc’s latency benchmark [4, 12], which it-
erates through a randomly shuffled linked list whose size is
twice that of the last-level cache (LLC) size. When follow-
ing the references of the linked list, a subsequent memory
request must wait until the previous request finishes due
to data dependencies. Such “pointer chasing” serializes
memory accesses. As the linked list is randomly permuted
over a large memory area, hardware prefetching does not
kick in and caches will suffer capacity misses because the
working set size is much larger than the LLC size. Thus,
this latency benchmark represents a “bad” memory access
pattern, but not the worst case as we will show.

One instance of the latency benchmark is placed on
core 0 (the “foreground” load) and up to 3 latency bench-
mark instances are co-run in the background (cores 1-3).
The actual number of background tasks varies (0-3), just
as in prior work [4].

We run experiments for the 3 memory settings of
same bank, diff bank, and diff controller for allocations of
pages from different memory banks of disjoint memory
nodes, where the latter utilizes a different controller per
task (banks 0, 32, 64, 96 on the Opteron platform). Fig. 13
shows the execution time (y-axis) of the latency bench-
mark over all memory accesses of the foreground task (on
core 0) for varying numbers of tasks (x-axis), i.e., the ag-
gregate number of background tasks plus one foreground
task. The (very small) error bars show the range of exe-
cution times of background latency tasks.

We observe that the execution time more than doubles
for same bank from 0 to 3 background tasks. This is due
to significant bank-level conflicts as all tasks compete for
accesses on the same memory bank.

The execution time for diff bank slightly increases by
≈4% from 0 to 3 background tasks. References from each
task are isolated from one another as each task accesses
a disjoint memory bank, i.e., no inter-task bank conflicts
occur.

The runtime for diff controller is almost constant
(slightly smaller than diff bank) from 2-3 background
tasks. diff controller not only reduces bank conflicts but
also avoids conflicts in the shared controller queue. Also,
CAMC provides higher predictability as the error bars are
the smallest for diff controller.

4.7.2. Synthetic Benchmark

Palloc [4] and CAMC are further contrasted under our
synthetic benchmark (striding back and forth with increas-
ing offsets) under the same setup as for the Palloc latency
benchmark. Fig. 14 uses the same x/y-axes as before.

We observe that the execution time is still constant
under diff controller but increases steadily for same bank
and at a slope roughly twice as steep as diff bank. This
shows that the synthetic benchmark triggers a memory
reference pattern that is worse than that of the latency
benchmark. More significantly, it underlines the impor-
tance of controller-aware (and not just bank-aware) col-
oring. Bank sharing is still subject to conflicts between
references that enter the shared controller queue before
they are relayed to their bank queues. Only controller-
aware coloring provides uniform access latencies in this
observed worst case. In comparison to the Palloc [4] re-
sults, CAMC obtains similar performance for bank color-
ing (diff bank), albeit on a different platform (AMD) than
their work (Intel). CAMC goes beyond the capabilities of
Palloc by further improving performance (diff controller)
and making coloring applicable to NUMA multicores. PCI
registers provide the information for address bit selection
of coloring in a portable manner.
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4.7.3. SPEC Benchmark

We also compare our memory controller coloring with
Palloc [4] by utilizing 11 of the 15 SPEC2006 benchmarks
evaluated in their work (as 4 of them would not build in our
Linux environment). In the experiment, we run SPEC2006
programs in two settings. First, we run one SPEC2006
program by itself on core 0, called Solo setting. Second,
we run three 470.lbm program instances on cores 1-3 while
executing one SPEC2006 program on core 0. This setting
is called Corun setting. These are the same configura-
tions of the SPEC2006 experiments in the Palloc work [4].

Fig. 18 shows the slowdown ratios of SPEC2006 under
our memory controller coloring. Slowdown ratios equal
Solo IPC (Instructions per cycle) divided by Corun IPC.
The higher the slowdown ratio the more conflicts occur and
the lower the performance is. The best case of a slowdown
ratio is 1, which means memory access conflicts have been
eliminated. The figure shows that the slowdown ratio is
almost exactly one under our memory controller coloring
but much larger under normal buddy allocation. In com-
parison to the results reported for Palloc [4], our approach
obtains better performance through controller-aware mem-
ory coloring and, more significantly, single core equivalence
as the slowdown is 1.

Fig. 18: Slowdown Ratios: SPEC2006 Program on Core 0 (x-axis)
plus 3 470.lbm Instances on Cores 1-3

Observation 11: For single controller (UMA) plat-
forms, CAMC is comparable to Palloc in performance. For
multi-controller (NUMA), CAMC outperforms Palloc as
the latter lacks NUMA awareness, i.e.. only CAMC pro-
vides single-core equivalence.

5. Related Work

The performance of multithreaded programs on NUMA
multicores system has been studied extensively [13, 14,
15, 16, 17, 18, 19]. Blagodurov et al. [13] and Mc-
Curdy et al. [14] describe the performance problems of
NUMA for multithreaded applications and investigate
their causes. Marathe et al. [15] propose a profiler to
optimize data placement of multithreaded programs via
hardware-generated memory traces. Lachaize et al. [16]
use profiling to understand why and which memory ob-
jects are accessed remotely and so one can choose efficient

application-level optimizations for NUMA systems. Majo
et al. [17] study which factors limit the performance of mul-
tithreaded programs on NUMA multicores and describe
source-level transformations to address these problems.
Yun et al. [18] present a new parallelism-aware worst-case
memory interference delay analysis for multiple parallel re-
quests. To analyze memory delays in multicore real-time
systems, a memory server under partitioned fixed-priority
scheduling is introduced [19].

Scheduling or page placement has been proposed to
solve the data sharing problem in NUMA system [20, 21,
22, 23, 24]. Li et al. [20] present a loop scheduling al-
gorithm to exploit data locality and dynamically balance
the load. Majo et al. [21] use program-level transforma-
tions to eliminate remote memory accesses. Ogasawara et
al. [22] propose an online method for identifying the pre-
ferred NUMA memory nodes of objects during garbage col-
lection. Ward [23] designs synchronization algorithms for
buses and caches subject to sharing constraints in real-time
systems. Huang et al. [24] propose a scheduling model for
mutually exclusive execution among different task classes
that avoids inter-class interference. However, compared
with CAMC, these approaches introduce overhead and
cannot eliminate the data sharing problem completely.

The basic idea of using DRAM organization informa-
tion in allocating memory at the OS level is explored in
recent work [25, 5, 4, 26, 27, 28]. Verghese et al. [29]
increase data locality of multithreaded programs by page
migration and page replication across processors. But they
still face the problem of data sharing, and their data move-
ment/copying incurs significant overhead. Chisholm et
al. [28] present criticality-aware optimization techniques
for shared LLC areas allocated for an MC-scheduled mul-
ticore system. Our work not only considers cache parti-
tioning but also partitions DRAM for MC multicore real-
time system. Awasthi et al. [27] examine the benefits
of data placement across multiple memory controllers in
NUMA systems. They introduce an adaptive first-touch
page placement policy and dynamic page-migration mech-
anisms to reduce DRAM access delays in multiple memory
controllers system but do not consider bank effects, nor
do they provide task isolation. Pan et al. [25] contribute
an allocator that colors heap memory at LLC, bank, and
controller level to ensure locality per level and requires
modifications to applications. In contrast, CAMC colors
the whole memory space (heap, stack, static, and instruc-
tion segments) without requiring application changes. Liu
et al. [26] modify the OS memory management subsystem
to adopt a page-coloring based bank-level partition mech-
anism (BPM), which allocates specific DRAM banks to
specific cores (threads). Palloc [4] is a DRAM bank-aware
memory allocator that provides performance isolation on
multicore platforms by reducing conflicts between inter-
leaved banks. Our work differs from Palloc and BPM in
that we not only focus on bank isolation but also con-
sider memory controller locality, i.e., we avoid timing un-
predictability originating from remote memory node ac-
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cesses. Our approach extends to multi-memory-controller
platforms commonly found in NUMA systems. It colors
all memory segments, not just the heap, and requires no
code changes in applications.

Reineke et al. [30] propose a PRET DRAM controller
that partitions the memory space based on the internal
structure of the DRAM chip in order to eliminate con-
tention caused by sharing DRAM resource. In contrast,
our work designs a software solution that can be applied
to commodity DRAM controllers. Kim et al. [31, 32] dis-
cuss the hardware Isolation for mixed-criticality system
and multicore real-time systems. Chisholm et al. [33]
utilize the hardware management to provide strong iso-
lation guarantees to higher-criticality tasks with respect
to DRAM banks and the LLC. Kim et al. [5] present tech-
niques to provide a tight upper bound on the worst-case
memory interference in a COTS-based multicore systems.
They explicitly model the major resources in a DRAM
system and analyze the worst-case memory interference
delay between tasks running in parallel. Suzuki et al. [34]
combine cache and bank coloring to obtain tight timing
predictions. Mancuso et al. [9] promote single core equiva-
lence and combine several techniques to address contention
at different levels of the memory, such as memory band-
width (MemGuard), cache and memory bank. Yet, sharing
within the memory controller results in varying of execu-
tion time depending on the number of cores. In contrast
to these, our approach addresses both memory banks and
memory controllers and ensures single core equivalence up
to as many cores as there are memory controllers. Yun et
al. [35] propose a software scheduler to reduce memory con-
tention and to satisfy schedulability constrains. Gomony
et al. [36] present a real-time multi-channel memory con-
troller architecture and an algorithm to map clients to
channels while minimizing bandwidth utilization. Alham-
mad et al. [37] design a global scheduling algorithm for
sporadic real-time tasks that efficiently co-schedules cores
and DMA activities to increase predictability. Our ap-
proach not only colors memory spaces, such as channels,
but also banks and controllers. It improves both perfor-
mance and timing predictability.

6. Conclusion

A novel controller-aware memory coloring allocator for
real-time systems, CAMC, has been designed and imple-
mented. CAMC comprehensively considers memory node
and bank locality to color the entire memory space and
eliminates accesses to remote memory nodes while reduc-
ing bank conflicts. CAMC provides more predictable per-
formance than the standard buddy allocator and outper-
forms previous work for the studied NUMA x86 platform.
Experimental results indicate that CAMC reduces mem-
ory latency, avoids inter-task conflicts, and improves tim-
ing predictability of real-time tasks even when attack-
ers are present. This work assesses the real-time pre-
dictability of DRAM partitioning on NUMA architectures,
which is unprecedented. It thus develops a methodology

to partition resources for exclusive access (one core per
memory controller) for single core equivalence of real-time
tasks. This can facilitate WCET analysis as the sharing of
NUMA resources need not be considered in static WCET
predictions while still providing sound timing bounds for
real-time schedulability analysis. An open problem re-
mains how all cores (instead of just one core per memory
controller) could be utilized while providing single core
equivalence. Such methods currently lack hardware sup-
port, such as rate-based or prioritized guarantees within
memory controllers.
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