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ABSTRACT

Embedded systems have limited energy resources. Hence,
they should conserve these resources to extend their period
of operation. Recently, dynamic frequency scaling (DFS)
and dynamic voltage scaling (DVS) have been added to a
various embedded processors as a means to increase battery
life. A number of scheduling techniques have been developed
to exploit DFS and DVS for real-time systems to reduce en-
ergy consumption. These techniques exploit idle and slack
time of a schedule. Idle time can be consumed by lowering
the processor frequency of selected tasks while slack time al-
lows later tasks to execute at lower frequencies with reduced
voltage demands.

Our work delivers energy savings beyond the level of prior
work. We enhance the earliest-deadline first (EDF) schedul-
ing to exploit slack time generated by the invocation of the
task at multiple frequency levels within the same invoca-
tion. The technique relies strictly on operating system sup-
port within the scheduler to implement the approach. Early
scaling at a low frequency, determined by a feedback mech-
anism and facilitated by a slack-passing scheme, capitalizes
on high probabilities of a task to finish its execution without
utilizing its worst-case execution budget. If a task does not
complete at a certain point in time within its low frequency
range, the remainder of it continues to execute at a higher
frequency. Our experiments demonstrate that the resulting
energy savings exceed those of previously published work by
up to 34%. In addition, our method only adds a constant
complexity at each scheduling point, which has not been
achieved by prior work, to the best of our knowledge.

1. INTRODUCTION

Energy consumption is a major concern for embedded sys-
tems. The availability of services provided by mobile de-
vices powered by batteries is clearly limited by the amount
of power drawn from the batteries over time. But energy
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consumption is also a cost factor for non-battery powered
systems since the operational costs of embedded systems
running non-stop may be significant. Energy conservation
should be a central objective in the design of such systems.

Another factor is posed by the objective of ensuring proper
operational behavior of embedded systems. Hard real-time
systems in particular, ¢.e., systems with strict temporal con-
straints on the execution of tasks, must produce results on
time to ensure operational safety and prevent potentially
catastrophic effects. Real-time schedulability theory pro-
vides firm guarantees for periodic executions of a set of tasks
on uniprocessors in terms of assurances to meet deadlines
[26, 2, 35, 3, 5, 37]. The schedulability theory for real-time
systems relies on a priort knowledge of the worst-case exe-
cution time (WCET) of hard real-time tasks to check if the
deadline of a task can be met. A safe upper bound on the
WCET of a task can be provided through static analysis,
dynamic analysis or even a combination of both techniques
[34, 30, 15, 41, 24, 16, 1, 22, 23, 9, 29, 38]. Regardless of
the methods utilized to obtain the WCET of tasks, exper-
iments show a wide variation between longest and shortest
execution times for many embedded applications. In [38],
execution times of real-world embedded tasks vary by as
much as 87% relative to their measured WCET. Specifically,
variations of 78%, 87% and 74% where observed for graph-
ics, defense, automotive tasks while 30% and 89% variations
were reported for the benchmarks matrix and sort, respec-
tively, with an average case close to the mean of the extreme
execution times (worst-case and best-case times). Wolf re-
ports variations of up to 85% for different image recognition
tasks, such as shape fitting and graph matching, commonly
performed in embedded systems [40].

Recent trends in embedded architecture provide support for
dynamic frequency scaling (DFS) and dynamic voltage scal-
ing (DVS) at the processor level. By modulating the fre-
quency level, the speed of a processor can be throttled or
sped up to meet actual computing demands. DFS and DVS
are generally combined in the sense that lower frequencies al-
low reduced voltage levels to operate a processor. Since the
energy consumption scales linearly and quadratically with
frequency and voltage modulations, respectively, the com-
bination of DFS and DVS can result in significantly lower
power consumption.



DFS and DVS techniques are particularly attractive to real-
time systems for two reasons. First, real-time systems com-
monly execute periodic tasks, which implies that they can-
not enter low-power sleep modes that put the processor in
a standby state, effectively halting any execution. Second,
real-time requirements force system designers to choose em-
bedded processors that are powerful enough to meet the
worst-case execution demands although these demands may
rarely occur. As a result, the system utilization will of-
ten be low and energy consumption can be high under such
circumstances to ensure operational safety. By exploiting
DFS/DVS techniques, we can guarantee hard deadlines of
real-time systems and lower power consumption at the same
time. This opens new opportunities for reduced operational
costs and for embedded applications requiring longer battery
life.

Prior work has shown the potential to save energy by com-
bining these scaling techniques with operating system schedul-
ing, and significant savings have been reported for general-
purpose computing systems [10, 13, 19, 27, 31, 39, 33, 12]
as well as real-time systems [17, 18, 20, 36, 32, 14, 7, 28, 11]
detailed in the related work section. Our work goes beyond
the techniques explored for real-time systems in these previ-
ous studies. We contribute a novel approach for exploiting
the slack time of a schedule. Slack time is generated by ac-
tual executions of tasks that complete under budget with
respect to their WCET.

Past methods distributed idle and slack time of the sub-
sequent execution of following tasks. Our method exploits
slack time generated by the invocation of the task at mul-
tiple frequency levels within the same invocation. The tech-
nique relies strictly on operating system support within the
scheduler to implement the approach. Early scaling at a
low frequency capitalizes on high probabilities of a task to
finish its execution without utilizing its worst-case execu-
tion budget. The scaling level is determined by a feedback
mechanism that utilizes the average execution time of past
task executions to find a suitable frequency setting likely to
complete the task for the current invocation. If a task does
not complete at a certain point in time within its low fre-
quency range, scaling is repeated, and another portion of the
task executes at a slightly higher frequency until finally the
remainder of the task continues to execute at the highest fre-
quency in the worst case. In addition, scaling is facilitated
by a slack-passing scheme. Our experiments demonstrate
that the resulting energy savings exceed those of previously
published work.

The paper is structured as follows. In Chapter 2, we in-
troduce the basic terminology of real-time and power-aware
scheduling in general. We then develop a new scheduling
technique in Chapter 3. Chapter 4 discusses the scheduling
algorithm and examples to illustrate the benefits of our ap-
proach in contrast with past work. Chapter 5 presents an
algorithmic description of our technique. Chapter 6 presents
results to demonstrate the performance of our algorithm un-
der different load conditions. Chapter 7 discusses related
work and Chapter 8 summarizes our efforts.

2. POWER-AWARE SCHEDULING

Embedded systems with temporal constraints traditionally
use real-time scheduling techniques. While legacy systems
often rely on cyclic executives [4], the static nature and in-
flexibility in terms of scheduling of such an approach makes
it hard to conserve energy in a flexible manner. We focus
on dynamic scheduling paradigms, such as earliest deadline
first (EDF) [25], to incorporate power awareness into the
dynamic decision process. As in the original work, we as-
sume a given set of tasks T; with deadlines equal to their
periods P;, a maximum computational budget (WCET) of
C; and an actual execution time of ¢;; for the j* instance
of T;. By always scheduling the task with the earliest dead-
line first in a preemptive fashion, a schedule is feasible (i.e.,
none of its deadlines are missed) if the following necessary
and sufficient condition holds.
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Building on this result, Pillai and Shin [32] extended Inequa-
tion 1 to EDF with DFS modulation. As discussed before,
lower processor frequencies allow a reduction of the voltage
as well (DVS). Since the power consumption is proportional
to the frequency and the square of the voltage, DVS can
result in considerable power savings. For DVS under EDF,
let « = ]f; denote the scaling factor representing the frac-
tion of the current processor frequency f; over the maximum
frequency fm:
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This schedulability test was exploited in [32] to exploit idle
time and slack time due to early completion of a prior task
in order to scale frequencies () for later tasks. One of the
limiting factors of this work was that an entire task was
scaled to execute at a fixed frequency, and another one was
the lack of feedback mechanisms. Our approach takes a
more aggressive approach, as detailed in the next section.

3. FEEDBACK EDF SCHEDULING

In the introduction, we cited various studies that observed
actual execution times or tasks well below the WCET. Past
approaches of real-time scheduling with DVS assumes that
a task executes at one frequency level. With this restric-
tion, EDF scheduling requires that scaling is constrained to
a frequency level high enough to not exceed a certain utiliza-
tion threshold, as expressed by Equation 2. If, as commonly
observed, a task only consumes 50% of its execution time,
the processor frequency could have been cut in half. But
without knowing the actual execution time in advance, we
cannot reduce frequencies to such a low level if a schedule
should remain feasible.

In the following, we develop a framework for greedily schedul-
ing real-time tasks under DFS/DVS and guaranteeing dead-
lines. One objective of our approach is to aggressively and



optimistically reduce power consumption as early as possi-
ble. A second objective is to exploit the existing invocations
of the scheduler during execution to perform frequency scal-
ing so that DFS/DVS essentially comes for free (other than
the calculation of frequency levels). The third objective is to
utilize feedback mechanisms for selecting appropriate scal-
ing levels in order to reduce the energy consumption for task
completion at a certain scaling level.

Our scheduling methods takes a novel approach to frequency
scaling for EDF. Instead of assuming uniform scaling over all
future tasks as in previous work, we scale the current task
T, (incidentally also the task with the earliest deadline).
The remaining tasks are assumed to execute at maximum
frequency fm, i.e., « = 1. This can be expressed as:
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The motivation for only scaling the current task is that av-
erage execution times are typically smaller than worst-case
execution times C;. If the current task finishes early, its slack
can be used by the next task to scale frequencies again, and
so on. Hence, early scaling is likely to leave enough potential
for later scaling.

Slack Passing

The challenge in DVS scaling for EDF scheduling is posed
by the ever changing precedence on scheduling tasks based
on the shortest deadline. If a task is scaled, its execution
may exceed the equivalent WCET without scaling. Past
schemes determined the scaling factor based on variations
of the EDF utilization test. Their complexity was O(n) in
the number of tasks n at each scaling point, i.e., at each
task release.

We promote a simple approach of slack passing with a con-
stant complexity for scaling. Slack passing is based on the
observation that slack generated by early completion of a
prior task can be passed on to the next task if this next
task was released prior to the slack origination point. This
is depicted in Figure 1.
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Figure 1: Slack Generation

Let task T7 with WCET C; execute its jth invocation with
an actual execution time of c¢1;. The figure indicates that C1
spans t4..t7 in the worst-case EDF schedule. Let us assume
its release time and deadline were T2 and T9, respectively.
During the actual schedule, T}; was invoked at T3 due to
early completion of a prior task (not depicted). The gener-
ated slack is C1 — c1j. If other tasks are released within

the interval #2..t9, they then can utilize all of this slack
(rij < tb), part of the slack (t5 < r;; < t9) or none of this
slack (> t9) assuming these tasks have a deadline > ¢9. This
is based on the observation that the time allotted to Ty that
remained unused is available within the reservation scheme
for EDF based on the worst-case scenario. Consider the j**
invocation of an arbitrary 7; with an absolute deadline of
d;j. Let fi; and Fj; be its absolute actual and worst-case
completion (finish) times, respectively. Furthermore, let r;;
be its absolute release time, and let I;; be its worst-case in-
vocation time. Then, the amount of slack s.; generated by
a previous task Tpr that can be consumed by the current
task T¢; is defined as:

Cp— o if rej < Ipk + cpi
Scj = For —rej if Ipp +cpr <7cj < Fpp (4)
0 lf TC]‘ 2 Fpk

Equation 4 only defines the relation between any two tasks’
invocations. This scheme can be extended to transitive slack
passing by keeping track of slack consumption of the current
task. Any slack passed by Tpi to T.; allows the latter task
to be activated prior to its worst-case scenario. Hence, any
execution without preemption up to spr units of time con-
tributes to the allotment of execution budget of the previous
task (or tasks). Thus, at task completion time f.; (or at an
earlier preemption point at time ¢) we only need to account
for the actual execution in ezxcess of the slack, denoted by
’
ch :

c'cj = max(0,cc; — Spk) (5)

We can then calculate the slack T,; can pass to its successor
task Ty; according to Equation 4 by substituting these tasks
with Ty, and T.;, respectively, and by substituting c'C]- for
Cpk:

Cp — c'cj if rni < Iej — c'cj
sni =18 Fej—rni if Ij+ccj<rni<Fy;  (6)
0 if rni > Fej

Notice that transitive slack passing is only safe in the ab-
sence of preemption. This shortcoming is addressed next.

Preemption Handling

If a task T¢; is preempted before it can complete, it obviously
cannot generate any slack based on its own execution since
the remaining time is not known. However, slack passed to
this task may not have been exhaustively utilized yet. Let
cq be the portion of the execution of the task prior to the
preemption point. Then, we can allocate prior slack spi
within the last units of ¢,, as depicted in Figure 2. This
slack scj, calculated as

Sej = min(Spk — Ca, Ca) (7)

can be passed to the preempting task T,;. If we consider
frequency scaling as well, Equation 7 changes since execution
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Figure 2: Slack Generation at Preemption

at a lower scaling factor a only contributes to a fraction of
the equivalent budget at the highest frequency:

. C C
sey = min(spi = %, %) ®)

Slack passing at preemption follows a greedy scheme based
on the same assumptions again. We pass as much slack
as possible to scale the preempting task aggressively. And
we speculate on early completion of the preempting task to
aggregate more slack. When the preempted task is resumed,
this aggregated slack can be utilized by the next EDF task,
such as for the remaining execution of T.; or a task with an
even earlier deadline.

Greedy Task Partitioning and Feedback for Ideal

Scaling

In order to determine the best scaling factor a that allows a
task to complete execution at this level and still guarantees
a feasible schedule, we scale a portion of task Tx. We take
the approach of splitting the next task T} into two subtasks
Ts and T, a method previously not employed for EDF. Tz
executes at maximum frequency f,, while T4 can be scaled
down to an arbitrary « level.

Cr,=Ca+Cg (9)

We can now formulate the constraints for frequency scaling
based on slack passing and task splitting. Let s, be the
slack passed to Tx. Then,

C
f+03=0k+s,c (10)

denotes the scaling of C'4 units at «, including the utilization
of aggregated slack. By substituting Cp in Equation 10
using Equation 9 and solving for o, we get:

Ca

= — 11
Ca + sk (11)

«

There is one pitfall in our assumption to scale task T}. We
assume that we can exploit all the slack for scaling. How-
ever, the task’s absolute deadline dy; may constrain us. Let
now be the current time. EDF scheduling guarantees that
now + Cr < dij. But we can only scale up to a dura-
tion bounded by the difference between the WCET and the
deadline. We can reassess the portion of slack sj, that can
be utilized by the current task as:

sx = min(dr; — (now + Cy), sx) (12)

Hence, only after bounding the slack to s, (and substituting
its value for s; in Equation 11) is it safe to combine scaling
with slack passing.

Equation 11 is based on the assumption that scaling can
only be based on the WCET C},. Our objective, in contrast,
is to finish execution of T} within C'4 units on the average.

We use feedback about the average execution time within
each task to anticipate the required budget for future ex-
ecution times. Our scheme simply aggregates actual exe-
cution times over task invocations to calculate an average
time Cavg of past CPU activity (scaled to the maximum
frequency level). Hence, by substituting Cavg for C4 in
Equation 11, we can obtain an ideal scaling factor for a
single frequency setting that, on the average, allows us to
complete the task at this setting.

Actual Scaling Factor

Realistic processors typically support different frequency set-
tings in certain fixed-rate increments. Hence, the minimal
scaling factor « obtained through Equation 11 may not
match any fixed frequency setting. We choose the next
higher setting since we intend to finish our execution on
the average under the current scaling level. We select an
o' corresponding to a fixed rate frequency, obtained from
the discrete frequency levels {fi,..., fm}, such that o’ > «
with a from Equation 11, where fi and f,, are the minimum
and maximum frequency levels, respectively (the slack sy is
substituted by its portion before the deadline s},).

. ] Cav
a' :mzn{ ff—;,ff—fn,..-,i_z ff_:n Z Oavg+gs’k } (13)

Scheduling the split task T} then amounts to scaling the ini-
tial execution of T4 down to o’ and creating a timer inter-
rupt at the end of its maximum execution C4. If the actual
execution of T} completes within T4, there is no overhead
for this method. If T} cannot complete in T4, the scheduler
is triggered by the timer interrupt at the end of T4. The
scheduler then increases the frequency to f,, and dispatches
Ts to still complete T} on time.

ldle Time Utilization

The last challenge is to exploit idle time within this scheme.
Since EDF is a dynamic scheduling policy where tasks are
scheduled according to deadlines, it becomes challenging to
anticipate the actual execution slots for tasks when execu-
tion time varies. We take a novel approach that is intriguing,
not just because of its simplicity, but also because it natu-
rally fits our slack-passing scheme. Embedded systems with
timing constraints may, in theory, be constructed with task
sets of up to 100% utilization. In practice, the worst-case
utilization of realistic systems is generally lower than 100%.

In an under-utilized system, we simply add another task, the
idle task Ty, +1. This task fills the gap between the utilization
of the value obtained by Equation 1 and 100%. In other
words,

Pn+1 = Pl, Cn+1 = P1(1 — U),Cn+1 = 0.

It is called the idle task because its actual execution time



is zero, even though its WCET is not. Our slack-passing
scheme exploits the difference between these times to gen-
erate slack in the amount of C),4+1 whenever the idle task is
released. It never actually runs, but it indicates where the
reservation slots for idle time are within an EDF schedule.
We choose a period of the idle task equal to the shortest
period of any task in the task set. This ensures that at least
one idle invocation lies within the invocation of any other
task, which allows other tasks to have at least one source for
slack. The idle task is special in its algorithmic handling in
that future invocations can provide slack for regular tasks
if the worst-case idle invocation lies within the invocation
of another task. This handling is orthogonal to future slack
stealing at preemption, as discussed before. We explain idle
slack stealing in more detail in the algorithm and an exam-
ple.

We now turn to a description of the algorithm.

4. ALGORITHM AND EXAMPLE

An algorithmic description of the optimistic scheduling tech-
nique derived in the last section is depicted in Figure 3. We
use the following notation:

e T;;: the j-th instance of task T;

e ij,pk,nl,ab : indices for the current, previous, next
and idle jobs, respectively, relative to T};

e r;;: the release time of Tj;
e d;j: the deadline of Tj;
e C;: the WCET of T; (without scaling)

e ¢;j: the actual execution time of T;; up to now (with
scaling)

e left;j: the remaining execution time of Tj; (without
scaling)

e slack;;: future slack (preallocated at preemption)

Initially, the overall system utilization is determined to con-
figure the idle task (see label (0) in Figure 3). At each
scheduling point for a task activation, the scaling level is
calculated and the scaled task portion is scheduled. If a task
was preempted, the newly released task receives its recalcu-
lated slack prior to scaling. Slots from idle jobs increase the
slack. We omitted partial credit for idle jobs in legal inter-
vals (as discussed in the subsection titled “Slack Passing”)
to keep the presentation simple (1). In the absence of slack,
there is no scaled portion, and the task proceeds to execute
at the highest frequency. Otherwise, a timer interrupt is set
at the end of the scaled portion.

At task preemption, future slack for the completion of Tj;
is calculated, and the remaining slack is adjusted. Future
slack is reserved in idle slots within two ranges (2). First, we
attempt to reserve slots part the deadline of the preempting
jobs since the preempting deadline is an earlier one that
cannot utilize these future slots. If this is not sufficient, any
other legal idle slots are reserved. Again, partial credit for
idle slots is omitted.

Procedure Initialization
for each T}, € {T1,T>,...,T,} do
Cavg_k — Ck/2
leftro = Ck
UG +82+...+8
Pn+1 — Pl, Cn+1 — P x (1 — U),Cn_H — 0} (0)
let slack + 0

Procedure TaskA ctivation(Tj;)
if processor was idle for d then
slack < slack — d
if T;; was preempted/interrupted then
slack < slack + slack;; — left;;
forall Ty, idle task jobs in dpk..d;; do

slack « slack + C, (1)
. ; Cavg.i
al +— mln{ff—;, e ;—:|ff—; > 7Caug_iislack}
if (ar = 1) then
Ca0
else

Ca + slack x at[(1 — aur)
SetInterrupt(T;, Ca/af)
SetFrequency (/)

Procedure TaskPreemption(T;;)

slackij — cij + leftij - C;

slack < slack — slack;;

let s ¢ slack;;

forall T, idle task jobs

in d;ij..dpr and in r;;..t while s > 0 do (2)

slack < slack — C,
s < slack — C,
reserve C, for Tj;

Procedure TaskCompletion(Tj;)
if T;; was preempted then
if ¢;; > C; then (late finish)
slack < slack — ci; + C;
else (early finish)
slack < slack + C; — cij
forall T,; idle task jobs in r;;..dy; do
slack < slack — C, (3)
Cavg.i ¢ (Cavgi X (j —1) +cij X al)/j
leftij+1y =Ci

Procedure SetInterrupt(T;ij, Ca)
Set timer interrupt for Tj;,
triggered C'4 time units later

Procedure InterruptHandler(Tj;)
if T;; not completed then
slack « slack — (cij + lefti; — Cs)
SetFrequency(1)

Procedure SetFrequency(a/)

farx fm

Figure 3: Pseudocode of Feedback DVS-EDF Algo-
rithm

At task completion, either generated slack is aggregated
upon early completion or consumed slack is accounted for.



For preemption, we only need to adjust for the unscaled dif-
ference. Unused slack not eligible for consumption by the
next task is subtracted (3). As always, partial credit for idle
slots is omitted. We also keep track of average execution
times per task.

Upon receiving an interrupt, we scale to the maximum fre-
quency to ensure timely completion in case the WCET is ex-
ploited. Consumed slack is subtracted, including the budget
for the remaining execution at the maximum frequency.

The algorithm has a constant complexity if the idle task
period is chosen adequately. So far, we have argued for an
idle task period equal to the shortest period of the task set.
In this case, each loop in the algorithm may iterate up to
1;—" times. Conversely, an idle period equal to the period
of the longest task results in only one iteration. This low
runtime overhead is unique, to the best of our knowledge.
Other DVS scheduling schemes impose a linear overhead in
the number of tasks.

The following example illustrates the benefits of aggressive
DVS under EDF that we promote. Consider the task set
and actual execution times in Figures 4(a) and 4(b), respec-
tively. Figure 4(c) depicts the scaling factors determined

Task T; | WCET C; | Period P;
1 3 ms 8 ms
2 3 ms 10 ms
3 1 ms 14 ms

idle 1 ms 4 ms

(a) Task Set

Invocations

Task T; Ci1 cij,j >1
1 2 ms 1 ms
2 1 ms 1 ms
3 1 ms 1 ms
idle 0 ms 0 ms

(b) Actual Execution Times

time | Task Tj; o Cij
0.00 11 0.50 | 4.00
4.00 21 0.50 | 2.00
6.00 31 0.25 | 6.00
10.00 12 0.75 | 1.33
11.33 22 0.50 | 2.00
14.00 32 0.25 | 2.00
16.00 13 0.25 | 4.00
20.00 32 0.25 | 2.00
22.00 23 0.50 | 2.00
24.00 14 0.25 | 4.00
28.00 33 0.25 | 2.00

(¢) Scheduling Parameters

Figure 4: Sample Task Set

by our scheduling approach and the actual execution time
with scaling. Figure 5(a) shows the time line for the execu-
tion of tasks, which shows frequent processor idle times in
the absence of scaling. Figures 5(b) and (c) show the exe-

T1T213 T1 T2 T3 T1

100%
75%
50%
25%

30

o
o1+

) No Scahng

100% T1T2 T3 T1 T3 T2 Tl T3
cont.

75% —
50% —
2% 7 ‘ q,

(b) Our Feedback DVS at Begmmng of 1st Hyperperlod
TT T2 T3 TL T2 T3 T1L T3 T2 T1 T3

cont.

280 285 290 295 300 305 310
(¢) Our Feedback DVS at Beginning of 2nd Hyperperiod

Figure 5: Sample Execution

cution with scaling under our feedback EDF scheme for the
beginning of the first and second hyperperiods, respectively.
Notice the changes in scaling between the two hyperperiods.
These changes are due to our adaptive scheme responding
to the average execution times seen in the past.

We shall demonstrate our approach for a few examples of
task releases.

e At time zero, the idle task is generating 2ms of slack
(first and second instance), which allows T1 to lower
its frequency to 0.5 assuming an actual execution time
of 1.5ms. Our implementation uses 50% of the WCET
as the initial setting for the actual execution times,
which was motivated in the introduction. After 4ms,
a portion of the original slack (1ms) can be passed to
T2. T2 receives additional slack (1ms) from the third
instance of the idle task.

e At time 16, T1 preempts T3 and receives enough slack
(3.5ms) to start its execution at 25%. T1 cosumes one
unit of slack and passes the rest on to the preempted
task. T3 then adds its future slack (1ms) reserved at
preemption time, reassesses its scaling level and con-
tinues at 25%.

In comparison, our approach results in a schedule that matches
the optimal energy consumption more closely than prior
work, as will be demonstrated in comparison with Pillai and
Shin’s approach in the next section. For this example, we
measured a 27% reduction in energy consumption, using the
model detailed in the next section.

We also compared our work with Melhem’s speculative dy-
namic DVS schemes [14], using the same task set and exe-
cution times as Figure 5(a) and 5(b).

We see from Figure 6 that, in theory, the aggressive algo-
rithm based on speculation can reduce the processor speed
of some tasks to a very low level. However, their scheme does
not take discrete processor levels into account, as found in



time | Task Tj; o Cij

0.00 11 0.75 | 2.66
2.66 21 0.56 | 1.78
4.45 31 0.20 | 5.00
9.45 12 0.77 1 1.30

10.75 22 0.46 | 2.17
14.00 32 0.12 | 2.00
16.00 13 0.56 | 1.78
17.78 32 0.16 | 4.75
22.53 23 0.72 | 1.38
24.00 14 0.45 | 2.22
28.00 33 0.08 | 2.00

(e) Scheduling Parameters

100% - T1 T2 T3 T1 T2 T3 T1 T3 T2 T1 T3
75% cont.

50%
25%

0 4.45 9.45
(f) Schedule Diagram

14 16 17.78 2253 24 28 30

Figure 6: Sample Execution of DRA algorithm

practice. Furthermore, our algorithm results in lower power
consumption on the average.

5. EXPERIMENTS

We implemented our algorithm in a simulation environment
that supports EDF scheduling. In the same environment,
we also implemented the look-ahead DVS algorithm, which
is the best dynamic scheduling algorithm for energy con-
servation with EDF scheduling that we know of [32]. The
results of both algorithms were verified by ensuring proper
task release, activation and completion. We provide dif-
ferent frequency settings to simulate DFS. In addition, we
calculate energy consumption based on DVS with voltage
levels specified for each processor frequency. For this pur-
pose, we assume scaling to the lowest level during idle times
since it is not realistic to put a processor into sleep mode
for frequent task releases, as given in periodic scheduling.
We restrict ourselves here to report results based on four
frequency settings and associated voltage levels, as depicted
in Table 1.

frequency | voltage
25% 2V
50% 3V
75% 4V
100% 5V

Table 1: Processor Model for Scaling

We experimented with a task set of three tasks varying
utilizations and changing proportions between actual and
worst-case execution times. Utilizations were varied between
10% and 100% in increments on 10%. Our EDF feedback
approach with variable frequencies, Feedback-DVS, modu-
lates frequencies based on average execution times of the
past and uses task splitting. It assumes an actual execution
time that is 50% of the WCET at time 0, and the values are
adjusted over time. The energy consumption is compared
to Look-ahead EDF [32], an upper bound in the absence of

scaling within tasks (but scaling at 25% during idle time)
and a lower bound for scaling at an optimal level based on
the actual utilization. The lower bound assumes ideal scal-
ing levels instead of discrete levels supplied by a processor,
and it does not take missed deadlines into account.

Figures 7, 8, 9 and 10 summarize the results for actual ex-
ecution times of 25%, 50%, 75% and 100% of the WCET,
respectively. Overall, our Feedback-DVS outperforms the
Look-ahead-DVS of [32]. Both schemes reduce energy con-
sumption considerably compared to the upper bound with-
out scaling for tasks. In the absence of any scaling (fixed
processor frequency and voltage, even during idle time), the
energy consumption would be that of the right top corner
(equivalent to 100% utilization). Our scheme achives con-
siderable improvements over the upper bound. In fact, it
closely approximates the lower bound (more closely than
the look-ahead scheme).
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Figure 7: Energy Consumption for 25% of WCET

At 25% of the WCET, savings mostly materialize above 40%
utlization for our feedback scheme. Below this point, any
task can be scaled at the lowest energy level, i.e., there are
virtually no differences. At high utilizations, energy savings
of up 34% are achieved by our feedback scheme compared
to the look-ahead method.

At 50% of the WCET, we observed similar results with a
regular savings of up to 22% of our feedback approach over
the look-ahead scheme.

At actual executions of 75% of the WCET, up to 16% engery
savings can be obtained by our feedback scheme compared
to the look-ahead approach.

For 100% of the WCET, our feedback EDF technique results
in slightly worse performance than the look-ahead mecha-
nism in most cases but differences are in the order of 1-5%.
This can be explained as follows. Since all of its execution
budget is used by each task, speculation on early completion
does not materialize any slack, only idle time can provide
slack.

Figure 11 depicts the savings of our feedback EDF approach
relative to the look-ahead approach and the optimal lower
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Figure 8: Energy Consumption for 50% of WCET
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Figure 9: Energy Consumption for 75% of WCET

bound. Numbers are normalized for the look-ahead ap-
proach. This is a snapshot for 80% utilation at the four
different proportionate rates between actual and worst-case
execution time. Our approach more closely approximates
the optimal case, particularly when execution budgets are
not fully exhausted. As mentioned before, actual executions
are typically well below the worst case, i.e., our feedback ap-
proach caters to the more typical case.

Our Feedback-DVS algorithm has some interesting proper-
ties. During the first hyperperiod, it exhibits slightly worse
energy results due to the fact that its initial tasks cannot
accurately predict the worst-case execution times. After one
hyperperiod, the values approach a stable point, and scal-
ing is more accurate resulting in higher energy savings. In
the graphs, we reported the results for up to ten hyperpe-
riods. Hence, our actual results for later hyperperiods are
even slightly better than shown.

6. RELATED WORK

There have been a number of efforts for incorporating DVS
techniques into general-purpose computing systems. But
only recently did researchers begin to apply DVS to embed-
ded systems with timing constraints. Most of those specif-
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Figure 10: Energy Consumption for 100% of WCET
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ically target hard real-time systems, just as in our study,
where deadlines cannot be missed. In some frameworks,
worse-case execution time is used to make voltage-frequency
scaling decisions, such as in [7]. They designed a software
tool to convert an application automatically into a low en-
ergy version solely based on remaining worse-case execution
time obtained off-line. Others combine off-line and on-line
information to make DVS scheduling decisions. The off-line
component determines the lowest possible maximum pro-
cessor speed as the initial speed setting while guaranteeing
deadlines of all tasks based on WCET. The on-line compo-
nent dynamically adjusts the processor speed (or brings a
processor into sleep mode) according to the status of task
sets, so as to exploit execution time variations and idle in-
tervals. The on-line adjustment mechanism can be based on
actual workload to reclaim unused time and energy [17, 19,
36], or it can be based on statistical information about the
practical workload to anticipate and exploit early comple-
tions of future executions, as is the case in [14, 11].



Our research is more closely related to the work described
in [32, 14, 11]. In [32], Pillai and Shin proposed a set of dy-
namic DVS algorithms based on traditional hard real-time
mechanisms, namely rate-monotone (RM) scheduling and
EDF. It extends the schedulability test of RM and EDF al-
gorithms to incorporate CPU frequency scaling. Unlike our
algorithm that applies frequency scaling to only the current
task, they assume the same frequency scaling factor upon
all tasks in a real-time task set. In their most aggressive
variant, a look-ahead technique is used to achieve extensive
energy savings by deferring as much work as possible. How-
ever, the frequency value obtained in their algorithm is not
the lowest possible frequency for a single task, as compar-
isons with the optimal case and with our work show.

Another aggressive real-time DVS scheme is presented by
Melhem et al.[14], which speculates on and exploits early
completions of future task executions on the fly based on
statistical information about the workload. We used an even
more aggressive scheme to calculate future task scaling levels
based on their past execution profile. Our work not only
incurs lower overhead during scheduling but also produces
lower energy levels, as demonstrated in Section 4.

The idea of deriving a feasible dual-level voltage schedule
from an ideal case is first proposed by F. Gruian [11, 12].
It combines off-line and on-line scheduling, both at task
level and task-set level. Stochastic data is used to derive
energy-efficient schedules. We use a different method that
splits a task into two parts and always assigns the high-
est frequency to the second part. Our algorithm focuses on
dynamic scheduling (EDF) while [11] restricts the focus to
fixed-priority schemes.

Slack stealing has been used in dynamic and static schedul-
ing schemes [6, 21, 8]. The purpose of slack stealing was to
capitalize on slack for the sake of executing aperiodic jobs.
In contrast, our approach passes slack to the periodic tasks
of a task set.

7. FUTURE WORK

We are working on extensions with stochastic scaling levels,
which improves energy consumption for tasks with a high
variance of its actual execution time. We are also imple-
menting the algorithm on an embedded architecture with
support for DVS and DFS to obtain real-world measure-
ments.

8. CONCLUSION

We have developed a new approach for DFS/DVS that ex-
tends EDF in a highly efficient manner. Our technique relies
strictly on operating system support within the scheduler to
implement the approach. Early scaling at a low frequency,
determined by a feedback mechanism and facilitated by a
slack-passing scheme, capitalizes on high probabilities of a
task to finish its execution without utilizing its worst-case
execution budget. If a task does not complete at a certain
point in time within its low frequency range, the remain-
der of it continues to execute at a higher frequency. Our
experiments demonstrate that the resulting energy savings
exceed those of previously published work by to 34%. In
addition, our method adds only a constant complexity at

each scheduling point, which has not been achieved by prior
work, to the best of our knowledge.
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