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ABSTRACT
Scheduling in hard real-time systems requires a priori knowledge
of worst-case execution times (WCET). Obtaining the WCET of
a task is a difficult problem. Static timing analysis techniques
approach this problem via path analysis, pipeline simulation and
cache simulation to derive safe WCET bounds. But such analysis
has traditionally been constrained to only small programs due to
the complexity of simulation, most notably the complexity of static
cache simulation, which requires inter-procedural analysis.

This paper describes a novel approach of compositional static
cache simulation that alleviates the complexity problem, thereby
making static timing analysis feasible for much larger programs
than in the past. Specifically, a framework is contributed that facil-
itates static cache analysis by splitting it into two steps, a module-
level analysis and a compositional phase, thus addressing the issue
of complexity of inter-procedural analysis for an entire program.
The module-level analysis parameterizes the data-flow information
in terms of potential evictions from cache due to calls containing
conflicting references. The compositional analysis stage uses the
result of the parameterized data-flow for each module. Thus, the
emphasis here is on handling most of the complexity in the module-
level analysis and performing as little analysis as possible at the
compositional level. The experimental results for direct-mapped
instruction caches show that the compositional analysis framework
outperforms prior analysis methods for larger programs by one to
two orders of magnitude, depending on the reference for compar-
ison, while providing equally accurate predictions. This novel ap-
proach to static cache analysis provides a promising solution to the
complexity problem in timing analysis, which, for the first time,
makes the analysis of larger programs feasible.
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1. INTRODUCTION
Timely execution is of essence in real-time systems. Particularly

in hard real-time systems, a violation of temporal constraints may
have irreparable effects on the controlled system, its environment
or both. The theory of real-time systems reasons about the feasi-
blility of executing a task set, i.e., offline schedulability tests may
determine if all deadlines of a set of tasks can be met. To obtain
such guarantees, task parameters have to be specified, such as the
period of each task and its worst-case execution time (WCET). On
the one side, the period is typically derived from the operating envi-
ronment, such as temporal constraints on sensors and actuators. On
the other side, determining the WCET is a non-trivial task due to
software complexity, unknown worst-case inputs for even moder-
ately complex computational tasks and hardware complexity with
unpredictable execution behavior.

Experimental approaches to determine the WCET are either con-
sidered unsafe or constrained to a probabilistic approach [28, 4]. In
contrast, static analysis methods have been developed to derive safe
WCET bounds. Such static analysis tools model hardware com-
ponents, e.g., the processor pipeline and caches, and they consider
the longest control-flow paths through the inter-procedural program
representation to obtain an upper bound on the number of cycles for
any execution. The complexity of cycle-level simulations for entire
programs currently restricts the feasibility of analysis tools, partic-
ularly that of static cache analysis, to small programs. Computa-
tionally complex inter-procedural analysis is needed to determine
caching effects, which depend on knowledge of data and instruc-
tion references.

This paper presents a novel framework to perform worst-case
static cache analysis for direct-mapped instruction caches. Instead
of a single integrated inter-procedural analysis phase, the new ap-
proach combines 1) a module-level analysis and 2) a compositional



step. By constraining the analysis to smaller units in the first step
and deferring composition to a second step, the complexity prob-
lem of inter-procedural analysis is addressed for an entire program.
The module-level analysis parameterizes the data-flow information
in terms of potential evictions from cache due to calls containing
conflicting references. The compositional analysis stage uses the
result of parameterized data-flow for each module. The objective
of this approach is to constrain most of the complexity to the mod-
ule level and, thereby, enable a significant reduction in complex-
ity at the compositional level of the analysis. The experimental
results show that the compositional analysis outperforms the inte-
grated inter-procedural approach for larger programs while provid-
ing equally accurate predictions.

2. TRADITIONAL STATIC CACHE ANAL-
YSIS

This section introduces a traditional approach to static cache
analysis [20] before motivating the need for a compositional ap-
proach. Static cache simulation is an analysis technique performed
by a tool to assess the worst-case cache behavior of memory ref-
erences within a program at program analysis (static) time. Static
cache analysis integrates into a set of tools, depicted in Figure 1,
that provide safe upper bounds on the worst-case execution time
(WCET) of programs. These tools range from a modified com-
piler that, besides code, emits program information for the analysis
phases of our tools. The analyzed programs are assumed to have
know upper bounds for each loop, bounded recursion while heap
allocation and indirect calls should be absent. The static cache sim-
ulator classifies references into categories to capture their cache be-
havior. The timing analyzer combines cache categorizations with
program information to simulate the pipeline of an architecture and
consider execution through any possible paths in the control flow.
The details of path analysis and pipeline simulation can be found
elsewhere [2]. As a result of our toolset, an upper bound for the
WCET is provided, which is then used in real-time schedulability
analysis to determine if a task set is feasible, i.e., if it is guaranteed
to meet all deadlines, e.g., with rate-monotone or EDF scheduling
[16, 17].
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Figure 1: Timing Toolset w/ Static Cache Analysis: (a) Tradi-
tional vs. (b) Compositional

The challenge in performing static cache analysis is to repre-
sent possible cache states during simulation as succinctly as possi-

ble. Even though traditional static cache analysis, depicted in Fig-
ure 1(a), provides a cache abstraction for storage purposes, it still
requires considerable memory space to perform inter-procedural
data-flow analysis. This results in both space and time overhead
that has made the analysis of even moderately large codes infea-
sible in practice. The objective of compositional cache analysis is
to overcome the complexity barrier for larger programs while re-
taining the existing accuracy of traditional cache analysis. In the
following, a brief overview of traditional cache analysis is given.

Throughout the rest of this paper, the discussion is constrained
to the analysis of instruction caches. Data cache analysis based on
data-flow techniques is believed to profit in a similar manner from
compositional analysis since the compositional model only affects
the data-flow framework, not the memory reference categorizations
[29].

The objective of static cache simulation is to categorize every
instruction reference before actual program execution for a spe-
cific cache configuration. The traditional approach consists of three
phases: 1) A control-flow graph for the whole program is con-
structed. 2) The graph is analyzed to determine the program lines
that can possibly be cached before entering each basic block of the
program. 3) This information is used to categorize each instruction
reference.

Inter-procedural analysis: A function instance graph is con-
structed from the control-flow graph of each function and the call
graph of the program. This function instance graph distinguishes
calling contexts as distinct function instances. For example, a func-
tion foo called from main in two distinct basic blocks results in
two instances of foo in the function instance graph.

Instruction Reference Categorization: An instruction refer-
ence is categorized based on the abstract cache state (see below)
of the basic block that contains the instruction. For each loop and
function nesting level, such a category is derived per instruction
based on these terms:
Potentially cached line: A program line can potentially be cached
before entering a basic block if there exists a sequence of control-
flow such that the line is cached when the basic block is entered
along that control-flow.
Abstract cache state (ACS): An ACS of a basic block in a function
instance is the subset of all program lines that can potentially be
cached before entering that basic block.

Based on these definitions and data-flow information obtained
for the function instance graph, each instruction reference is cate-
gorized into one of the following categories:

� Always-Miss: An instruction is categorized as an always
miss if it cannot be guaranteed to be in cache for that ref-
erence. An always miss is predicted when the instruction is
the first reference to a program line in the basic block and the
program line is not in the ACS of that basic block.

� Always-Hit: An instruction is categorized as an always hit if
it is guaranteed to be in cache for that reference. An always
hit is predicted when other instructions in the basic block
have already accessed the same program line or the program
line is in the ACS, and no other conflicting program line is in
the ACS.

� First-Miss: An instruction is categorized as a first miss if
it cannot be guaranteed to be in cache for its first reference
when the loop is entered, but it is guaranteed to be cached for
all later iterations of that loop.

� First-Hit: An instruction is categorized as a first hit if it is
guaranteed to be in cache the first time it is accessed when the



loop is entered, but cannot be guaranteed for later iterations
of that loop.

These categorizations have been formalized in the past and were
demonstrated to yield tight and safe WCET bounds for relatively
small programs [21]. Other work on WCET prediction includes
different data-flow frameworks [7] and integrated timing analysis
frameworks with cache models [18, 14], all of which reported re-
sults for small benchmarks due to analysis overhead.

3. COMPOSITIONAL CACHE ANALYSIS
To overcome the complexity barrier that currently constrains

traditional cache analysis to small programs, a compositional ap-
proach is proposed that separates inter-procedural data-flow analy-
sis over the function instance graph into two stages, as depicted in
Figure 1(b). The first phase, module-level analysis, derives cate-
gorizations from the control-flow information for a module in iso-
lation. Traditional static cache simulation is slightly modified for
this task. Since absolute addresses of instruction references are un-
known at this stage, the cache behavior is captured in four analysis
scopes for each module. In a second stage, the absolute address
information for each module is combined with the four analysis
scopes by performing a limited inter-procedural analysis to derive
final instruction categorizations. This approach not only results in
significantly less inter-procedural analysis overhead during module
composition, it even reduces the total overhead when considering
both analysis stages compared to the traditional approach for larger
programs.

Assumptions: The compositional approach requires the cache
configuration, supplied to both analysis stages, to be identical. Fur-
thermore, worst-case analysis for direct-mapped instruction caches
is supported by the current implementation. The design can be ex-
tended to set-associative caches similar to previous work [21]. Fi-
nally, each module should be aligned at cache line size. This is
typically already performed by an align directive emitted by the
compiler, hence, it is a realistic constraint. If not present, a module
can be augmented by an alignment directive. Alignment is not a
necessary but rather a simplifying assumption to reduce the over-
head involved in the module-level analysis. This reduces the mod-
ule analysis overhead from � analyses for any possible alignment
to just one analysis, where ��� � �����
	��������������������� � ��� for RISC
architectures and ��� � ���! "�
�#����$�%�����&����� � ��� for CISCs.

3.1 Module-level Analysis
In the first stage, instructions are categorized only on the module

level (assuming cache line size alignment). At this level of analysis,
no information is available about called modules, if any, except
for the name of the modules. Data-flow equations for deriving the
abstract cache state are identical for the traditional inter-procedural
approach and the modular approach. However, two new states are
introduced in the data-flow representation.

C: Within module-level analysis, a must-conflict line is replacing
any existing line in an abstract cache state (ACS) prior to a
call in the ACS after the call if calls are considered in the
analysis.

MC: Within compositional analysis, a may-conflict line is replac-
ing a non-trivial subset of lines in an exit ACS of a mod-
ule, i.e., when due to conditional execution different program
lines may be resident in a specific cache line.

In the following, four analysis scopes are described, which are per-
formed on each module. Each scope differs in its context of ref-
erences and the resulting cache effects for loops and calls: Scope

one captures the absence of loop/callee conflicts, scope two cap-
tures conflicts with callees but ignores loop conflict, scope 3 cap-
tures loop conflicts but not conflicts with callees, and scope 4 en-
compasses both loop and callee conflicts. Later on, compositional
analysis picks the correct scope analysis to lift intra-module cache
analysis to the interprocedural level. A sequence of examples de-
scribes each analysis step as it is performed for a function bar that
a) is called by main and b) is calling foo, as depicted in Figure
2. The dotted backedge from the exit(s) of bar to its entry is op-
tional, as explained later. The instruction cache is assumed to have
four cache lines in the example. The 4-entry ACS sets for the mod-
ules in the figure are listed in Table 1 for each analysis scope, as
discussed below.

Module main

Call bar   

Module bar

Call  foo ACS before call

ACS after call

ACS at exit

ACS at entry

Module foo

ACS at entry

ACS at exit

Figure 2: Flow Graphs for Module-level Analysis

Scope 1: Analysis without backedge, ignoring calls: While
calculating ACS sets by solving the corresponding data-flow equa-
tions iteratively for a module, it is assumed in this scope that a call
in a predecessor block will not affect the incoming abstract cache
state for the basic block. This is equivalent to assuming that ev-
ery line present in the ACS preceding the call will be retained in
cache until after the call. Hence, the callee has no conflicting cache
line. As an example, consider bar in Figure 2 without the dashed
backedge and recall that calls are ignored. Let foo contain a ref-
erence to program line 9 (without conflicts). The relevant ACS sets
for this first scope of modular analysis are depicted in column 2 of
Table 1 and indicate that program line 4 is cached prior and after
the call to foo inside bar. The corresponding traditional analysis
for the same calling sequence (without backedge for bar) would
result in the ACS sets indicated in the third and fourth column of
Table 1 for bar and foo, respectively. The compositional stage,
detailed later, explains how to derive the same states as in the tradi-
tional analysis from the modular analysis scopes, in this case scope
1.

Scope 2: Analysis without backedge, considering calls: In this
type of analysis, it is assumed that a call affects the ACS such that
there is a conflicting line brought into cache by the callee. In other
words, the callee module caches its own lines and evicts cache lines
in the ACS of the caller. Since the absolute address information for
the lines of the called module is not known during module-level
analysis, we indicate this by a C (must-conflict) in the ACS, as de-
fined previously. Consider Figure 2 without backedge for bar but
with the call to foo. Let foo contain a reference to program line
8 (conflicting with program oine 4). Table 1 column 5 indicates a
must-conflict as '�( in the ACS after the call, i.e., a must-conflict
for a reference mapping to cache line 0. Column 6 and 7 indicate a
corresponding situation where traditional analysis evicts line 4 (at
entry) in foowith line 8 (at exit), which is in bar after the call. By
parameterizing the module-level ACS with a must-conflict, compo-
sitional analysis uses this scope 2 if a callee contains an evictor in
its exit state.

Scope 3: Analysis with backedge, ignoring calls: In the fol-



Scope 1 Scope 2 Scope 3 Scope 4
mod. trad. trad. mod. trad. trad. mod. trad. trad. mod. trad. trad.

ACS bar bar foo bar bar foo bar bar foo bar bar foo
at entry � 4 � � 4 � � , � 6 � � 4 � � , � 6 � � 4 �

before call � 4 � � 4 � � 4 � � 4 � � 4 � � 4 � � 4 � � 4 �
after call � 4 � � 4,9 � ��'$(�� � 8 � � 4 � � 4,9 � �
'$(�� � 8 �

at exit � 4,9 � � 8 � � 6 � � 4,9 � � 6 � � 8 �

Table 1: Abstract Cache States for Analysis Scopes

lowing two scopes, the module-level control-flow graph is aug-
mented by backedge(s) from exit(s) to the entry block. Such a
virtual backedge simulates the effect on data-flow analysis if the
module is repeatedly called within a loop. Scope 3 adds this/these
backedge(s) but ignores calls. Figure 2 illustrates the backedge as
a dotted edge in the control-flow graph of bar. Let foo contain
a reference to program line 9 (without conflicts). Table 1 depicts
the ACS for module-level analysis in Column 8. At the first call,
the ACS is the empty set ( � ) while for consecutive calls, program
line 6 is cached along the backedge from the last call to bar. Line
4 is in cache prior and after the call to foo since this analysis dis-
regards calls. Traditional analysis considers this call, which brings
program line 9 into cache (Columns 9 and 10 of Table 1). This ad-
ditional caching effect is considered in the compositional stage for
our novel analysis technique.

In this analysis, ACS sets of the exit blocks of the module prop-
agate along the added backedges to the entry block of the module.
Hence, the categorizations from this analysis are obtained with the
same effect as if this module is being called from a loop in another
module, and the control returns to this module from the calling loop
for each loop iteration except for the first iteration. Calls are ig-
nored during this analysis. This simulates calls within this module
that do not have any effect on the incoming ACS of the successors
of the calling basic block.

Scope 4: Analysis with backedge, considering calls: This
scope also adds backedges from exits to the entry block. Addition-
ally, effects of calls are considered. The objective of this scope is to
simulate a module M being called from a loop of another module,
where M has itself a call that affects the ACS following this call.
Figure 2 illustrates this situation, where the dotted backedge and
calls are considered. Let foo contain a reference to program line 8
(conflicting with program line 4). Table 1 further depicts the ACS
effects in Columns 11 and 12/13 for modular and traditional anal-
ysis, respectively. Due to repeated calls, line 6 may be retained in
the module-level analysis and line 4 is replaced by another line due
to the call to foo. Traditional analysis identifies this replacement
as line 8. This effect is again captured by the compositional stage
in our approach.

In addition to these four different types of analysis scopes,
module-level analysis records for each basic block the loop num-
bers for any enclosing loop(s) and for each loop the set of basic
blocks contained in the loop. This information is subsequently used
by the compositional analysis stage.

3.2 Compositional analysis
Compositional analysis is performed on an entire program when

the absolute address information for each module is available.
Initial predicted categorizations: For each instruction of each

module in the program, it is assumed that the module-level cate-
gorizations ignoring calls are the initial categorizations. These are
optimistic categorizations in the absence of temporal locality across
module boundaries (due to calls). Subsequently, necessary adjust-
ments are applied to these categorizations during the compositional

stage. Two adjustments are necessary for each line in each module:

Adjustments as a caller: When a basic block B has a predecessor
P and P contains a call, then the ACS in block B is adjusted
based on module-level analysis considering calls.

Adjustments as a callee: When a module M is being called
within a loop L of another module, then during calls to M
within iterations ����� � , lines of M may still be cached (but not
necessarily during the first iteration). Hence, for those lines,
adjustments are based on module-level analysis with added
backedge(s).

Bottom-up processing: The algorithmic details are described
in the following. In the compositional analysis stage, a limited
amount of analysis is done in order to obtain the inter-procedural
relationship in terms of the cached lines passed across the mod-
ule boundaries during calls and call returns. The modules are pro-
cessed starting from the leaf module in a call graph and gradually
traversing the graph toward the root, i.e., the main function. The
algorithm for bottom-up processing over basic blocks is given in
Figure 3.

The algorithm traverses modules in a bottom-up order exactly
once per module. The complexity of the algorithm is �
	 ���� � � ��
� ���  � ���� where nf is the number of modules, nlf is the maximum
number of loops in any one module, nbl is the maximum number
of basic blocks in any one loop and npb is the maximum number
of predecessors of a basic block. Thus, the complexity of this al-
gorithm that captures the inter-procedural analysis information is
constrained in that it does not re-analyze module-intrinsic details,
i.e., callees need not be reconsidered after an initial pass. The set
of program lines and conflicting program lines of a block are de-
noted as conf lines and conf prog lines, respectively (see [23] for
details).

The algorithm determines the lines of each loop and a unique
loop header. The must exit lines for a module (line 47 of Fig. 3)
represent lines that are guaranteed to be in cache when the control
of execution returns from the module. Conversely, may exit lines
are lines of a module that might be present in the cache on exit from
the module (but their presence cannot be guaranteed), denoted as
MC (a May-Conflict line, as defined previously).

Consider Figure 4. When control is transitioned to the module
getbit, line 43 may or may not be cached as an exit line. If a
block B in a module des calls getbit, then for the successor S
of block B, it is necessary to consider the fact that, when the control
returns to S, line 43 of getbit might be in the cache to capture
the worst-case scenario. Hence, this line is an MC line in the exit
ACS of getbit.

For each basic block and for each surrounding loop, bottom-up
processing gathers the lines that must be in cache before entering
the block (must in lines in Figure 3) and also the lines that might
be in cache (may in lines). Line 15 of the algorithm shows the
formula for calculating the must out lines for a basic block if the
block has a call. All the lines in the must out lines calculated on



for (each function F)
if (isleaf function ��� all children processed) � // for bottom-up order

for (each loop L in F) �
/* Calculations for in lines of each block of this loop */
for (each block B in the loop L) �

inter out = full set;
union out = � ;
for (each predecessor P of B in loop L) �

if ( B!=L � loopheader)
if (backedge(P-to-B)) // P-to-B form a loop inside L.

continue; // Disregard this predecessor.

12: must out lines(P)=must in lines(P) �
conf prog lines(P) � prog lines(P);

if (iscaller(P)) �
function C = P � callee;

15: must out lines(P)=must out lines(P) �
conf prog lines(C � may exit lines) �
prog lines(C � must exit lines);�

inter out=must out lines(P) � inter out;
may out lines(P)=may in lines(P) �

conf prog lines(P) � prog lines(P);
if (iscaller(P)) �

function C = P � callee;
22: may out lines(P)=may out lines(P) �

conf prog lines(C � must exit lines) �
prog lines(C � may exit lines);�

union out=may out lines(P) � union out;�
inter out=must in lines(B);
union out=may in lines(B);�
// Processing for block B complete

/* Adjustments applied as a caller */
31: for (each block B in L) �

for (each line l in B)
if (l conflicts with some line in in line(B))

for (each instruction in l)
normal category = module-level cat considering call;�

/* Calculations of loopheader and lines within this loop */
find loopheader of loop L;
lines(loop L) = cache all the lines of each block of this loop;
if (loop L has calls)

for (each callee)
lines(loop L) = lines(loop L) � lines(callee);

�
// Processing for loop L complete

// calculate the must and may exit lines for this function.
47: F � must exit lines = full set;

F � may exit lines = empty set;
for (each exit block E) �

50: F � must exit lines � = must in lines(E) �
conf prog lines(E) � prog lines(E);

F � may out lines � = may in lines(E) �
conf prog lines(E) � prog lines(E);�

�

Figure 3: Algorithm for Bottom-up Processing
line 12 that are in conflict with any of the may exit lines of the
callee are subtracted. Note that the set may exit lines of the callee
is referenced here to ensure that the set must out lines calculated is
safe and accurate. Then, all the lines in must exit lines of the callee
are added, because these lines must be in cache when the control
returns from the callee. The formula on line 22 similarly calculates
the may out lines.

As can be seen from line 31 of this algorithm, this information
is used to adjust the categorizations for a module when it acts as

Line 43

Line 42

Line 44

Line 45

Block 1

Block 2

Block 3

Block 4

Module  getbit

Line 43 cached along only  1−2−4

Figure 4: Module with Two Paths in Exit Lines

a caller. When a block has a call to another module, its successor
block might have some lines of the calling module as its incoming
lines. In that case, the categorizations for those lines of the suc-
cessor that conflict with incoming lines of the module need to be
adjusted. This is done using the module-level analysis considering
calls. For adjusting the categorizations with added backedge(s), a
similar analysis (not described in the figure) is performed for each
function and each loop, but with an added backedge from each exit
block to the entry block of the function. Thus, the adjustments
to the initial categorizations required for a module when a mod-
ule acts as a caller are applied during bottom-up processing. It
is important to understand here that these adjustments will change
the categorizations from an overly optimistic to a realistic and safe
(conservative) worst-case value.

A module may alternatively represent a callee. In that case, some
lines of the module may still be in cache when the flow of control
returns to the module on every loop iteration, except for state prior
to the first iteration. This will cause subsequent hits for such lines.
These adjustments are applied during the second pass when each
instruction is categorized w.r.t. each loop it lies in and each instance
of the module. This is achieved by using information of the incom-
ing lines for each calling block of the module and also the adjusted
module-level analysis with added backedge(s), as explained in the
following.

Adjustments Inside Callees: During this second and final pass
of the compositional analysis, categorizations of each instruction
might be adjusted depending upon whether the module is called
by some other module or not, algorithmically depicted in Figure 5.
This algorithm is used for each line

�
in the program.

In the do while(); loop of this algorithm, we determine if line l is
still in cache when the control returns to line l of the module from
the call within loop L. If so, the line will be a hit, consequently, the
categorizations from the simulated analysis with added outer loops
is used.

In summary, the novel compositional static cache categorizations
approach operates in two stages. In the first stage, analysis is done
on module-levels without knowledge of the absolute addresses of
the module and those of the called modules. In the second stage,
a two-pass approach is used. In the first pass, information is gath-
ered in a bottom-up manner about incoming lines for each basic
block and the exit lines of each module. Adjustments to the initial



// Algorithm applied to a particular instance of a module.

for (each loop L with header H the line l lies in) �
l in conflict=FALSE;
calling block C = basic block that contains l;
do �

if (l conflicts w/ any line in
must in lines(C) � may in lines(C)) �

l in conflict = TRUE;
break;

� // next, backtrace by walking up call chain:
C = caller block of C for current instance of module;

� while(C � currentmodule != H � currentmodule);

for (each instruction i of l)
if (!l in conflict)

i.finalcat = adjusted categorizations obtained
from module-level analysis with added backedges;

else
i.finalcat = adjusted categorizations obtained from

from module-level analysis without added backedges;
�

Figure 5: Adjustments for Final Categorizations

categorizations when the module acts as a caller are applied in this
pass. In the second pass, each instruction is categorized for each
loop level and each instance of the module. Also, adjustments are
applied when the module acts as a callee. The complexity is kept
at module level for the compositional approach, i.e., none of the
callees have to be re-evaluated.

4. EXAMPLE
The following example shows the difference in calculations and

categorizations between the traditional and compositional analy-
sis schemes. The example depicted below has a conditional call
to illustrate the effects of alternate execution paths on the analysis
schemes.

#include<stdio.h>
int a[] = {1,2,3,4,5,6,7,8,9,10};

int value (int i) {
return a[i];

}

int main() {
int sum = 0, i;
for(i=0; i<10; i++)

if(i)
sum += value(i);

return sum;
}

The corresponding control-flow graph is depicted in Figure 6.
The figure also lists the categorizations based on different calcu-
lations. In the calculations, line I indicates an invalid line. When
the analysis begins, it is assumed that all the lines of the ACS are
invalid lines. Also, an ACS denoted as [a b c d] indicates that pro-
gram line a is mapped to cache line 0, line b is mapped to cache
line 1 etc. We consider the ACS at the basic block level. For each
basic block, we provide in and out sets indicating the ACS en-
tering and exiting the block. The cache is assumed to contain four
lines.

pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %eax 

movl a(,%eax,4), %eax

leave

ret

pushl %ebp

movl %esp, %ebp

pushl %esi

pushl %ebx

andl $−16, %esp

xorl %esi, %esi

xorl %ebx, %ebx

testl %ebx, %ebx

jne .L11

incl %ebx

cmpl $9, %ebx

jle .L8

popl %ebx

movl %esi, %eax

popl %esi

leave

ret

subl $12, %esp

pushl %ebx

call value

addl %eax, %esi

addl $16, %esp

jmp .L5

value()

main()

Line 0

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Block 1

Block 2

Block 3

Block 4

leal −8 (%ebp,%esp)

Block 6

Block 7

m

h

h

h

fm, m

h

m

h

h

h

m

h

h

m

fm, m

m

h

h

m

h

h

h

m

h

fm, m
h

m

h

h

h

Traditional W/o call With call

m

h

h

h

m

h

m

h

h

h

m

h

m

h

h

h

m

h

h

m

fm, m

h

h

h

m

h

h

h

m

h

fm, m

h

m

h

h

h

m

h

h

h

m

h

h

m

fm, m

m

h

h

m

h

h

h

m

h

m

h

m

m

h

h

Block 5

Figure 6: Categorizations by Traditional vs. Module-level
Analysis for Always-hits (h), Always-misses (m), First-hits (fh)
and First-misses (fm).

The ACS calculations in the traditional approach are made using
the inter-procedural data-flow analysis. In contrast, module-level
analysis is constrained to only the control-flow graph of a module
at a time before compositional analysis combines module-level re-
sults. For the main function, the ACS calculations are performed
in two stages, 1) ignoring calls and 2) considering calls such that
the ACS is invalidated on return.

The differences between the categorizations obtained at differ-
ent stages from the two approaches are depicted in Figure 6. The
first column of categorizations is based on calculations in the tra-
ditional approach. Our ultimate aim is to achieve the exact same
categorizations using the new method. The second column shows
the categorizations calculated in the first step of the compositional
analysis method, assuming there are no calls in the main module.
A list of categorizations a,b denotes the cache behavior of the inner
nest and the outer nest, respectively, where a nesting represents a
loop (multiple iterations) or a function instance (one iteration).

There are some differences between the categorizations of the
first column and the second column since the call to value was



ignored. The possible differences in calculations due to the call to
value are taken into account in the second step to obtain the cat-
egorizations shown in the third column. Comparing column three
with column one, we notice that all the categorizations are the same
or, if different, have the same effect. The differences in the calcu-
lations are as follows:

1. The first instruction in basic block 4 was initially categorized
as a hit by the compositional method. The in and out sets
are shown below.

Traditional analysis -
in(4) = [4 I 2 3 out(4) = [4 I 2 3

0 1 6 7] 1 6 7]
Compositional analysis -

a) Ignoring calls -
in(4) = [4 I 2 3 out(4) = [4 I 2 3

6 7] 6 7]
b) Considering calls -

in(4) = [4 I 2 3 out(4) = [4 I 2 3
C C C 7] C 7]

In the traditional approach, the in for basic block 4 has a
conflict between line 4 (which contains basic block 4) and
line 0 (which is in module value). Thus, it is categorized
as a miss. The same in set is shown for the compositional
analysis calculations. When ignoring calls, the conflict for
line 4 remains unrecognized since the cache effect of the call
to value is not considered. The categorization is adjusted
by the algorithm in Fig. 5 since the conflict between 0 and
4 is recognized resulting in an always-miss, just as in the
traditional approach.

2. The first instruction in basic block 6 and the fifth instruction
in basic block 1 show different categorizations for the two
types of cache analysis. But the categorization produce the
same effect during timing analysis since a first-miss for one
iteration (for function value without a loop) is equivalent
to an always-miss. (This is an artifact of instruction catego-
rizations [21]).

5. EXPERIMENTAL FRAMEWORK
This section describes the experiments performed to measure

the performance improvement of the new compositional approach
over the traditional approach and the accuracy of categorizations
predicted by the new approach. Five benchmarks from the C-Lab
real-time benchmark suite [6] (adpcm, ndes, cnt, mm and fft)
and one benchmark (multimedia audio decoder - mad)
from the MiBench [8] embedded benchmark suite were used.

Timing Analysis: We modified the static timing analysis tool
from [10], to make it compatible with an architectural simulator
based on the SimpleScalar toolset [1]. The static timing anlaysis
tool takes program flow information from a GCC with a Portable
Instruction Set Architecture (PISA) backend, which also interfaces
with the architectural simulator. Both the architectural simulator
and the timing analysis tool use a pipeline model with six stages
(fetch, decode, issue, execute, memory and write back) featur-
ing static branch prediction (Ball-Larus heuristic [3]). Both tools
take into account a 8KB I-cache and a constant memory latency of
100ns.

To calculate the Worst-Case Execution Cycles (WCEC), the
Real-time benchmark is compiled using the PISA-GCC compiler
and the control-flow information obtained is supplied to the static
instruction cache simulator (which may use the traditional in-
tegrated approach or the compositional approach) to obtain the

caching categorizations. These categorizations obtained for the I-
cache are used in the timing analyzer to determine accurate WCET
bounds.

Architectural Simulator: The architectural simulator is based
on the SimpleScalar toolset [1]. It supports a simple six-stage in-
order processor pipeline model. All the Real-time benchmarks are
compiled with the SimpleScalar GCC-based compiler for the Sim-
pleScalar ISA (PISA), a MIPS-like ISA [5]. The Architectural
Simulator loads actual binaries and executes them on the pipeline
model. The actual or observed execution times for the benchmarks
are obtained from the architectural simulator.

Experiment 1: Performance improvement: Static cache anal-
ysis is performed for the six benchmarks using the traditional
integrated approach and the compositional approach for various
cache configurations. Different cache configurations are formed
by changing the number of cache lines (varying from 4 to 1024
in powers of 2) and the size of each cache line (from 8 bytes to 64
bytes). Execution times of the two analysis procedures are recorded
and compared.

Experiment 2: Comparison of WCEC: To determine the ac-
curacy of predictions, the WCEC was measured for all the bench-
marks using the timing analyzer discussed earlier. Data on WCEC
were collected for categorizations predicted by the traditional ap-
proach as well as by the new approach. Subsequently, the WCEC
obtained using the two approaches were compared. To obtain the
control-flow analysis information, the benchmarks were compiled
using gcc for PISA.

Experiment 3: Comparison of WCEC with architectural
simulator: The WCECs for the six benchmarks were obtained us-
ing the timing analyzer for the various cache configurations (as de-
scribed in the previous sub-section). The benchmarks were also ex-
ecuted on the architectural simulator to obtain the execution times.
These numbers were compared to the WCEC obtained from the
timing analysis tool. The benchmarks were executed for worst-case
input data on the architectural simulator (when available).

6. EXPERIMENTAL RESULTS
In this section, the results for each of the three experiments are

described. First, we report timing results for the analysis overhead.
Figure 7 shows times required by the traditional approach and the
compositional approach for a cache line size of 16 bytes. The graph
is shown for three of the six benchmarks, because the patterns in
the results obtained for these three benchmarks are representative
of the complete set.

Figure 7: Overhead Traditional vs. Compositional



The first set of ten bars describe the computation times for the
mad benchmark for 4, 16, 64, 256, 1024 cache lines respectively.
The second set of ten bars represents the adpcm benchmark and
the last set represents mm. The odd-numbered bars (single bars)
show the time taken by the traditional cache analysis approach.
The even-numbered bars (stacked bars) show the total time taken
by the compositional analysis approach, taking both the modular
and the compositional stages into account. These bars are stacked,
separately showing the time taken for the module analysis (lower
portion of bar) and the time taken for compositional analysis (upper
portion of bar). Note that if module analysis had been performed in
advance, the only computation times that should be compared are
the traditional and the compositional stage times. Also note that the
y-axis shows a logarithmic scale.
mad is a relatively large benchmark with around 9000 instruc-

tions. It consists of around 74 functions and the program structure
involves complex loop and control-flow constructs. For mad (Fig-
ure 7), a significant savings in computation time is observed for
all different cache sizes. For a cache with 1024 lines, the new ap-
proach takes a total of around 350 seconds compared to the 6600
seconds of the traditional approach, resulting in savings of an order
of a magnitude. If only the compositional stage time is compared
to the traditional time, as expected, a significant improvement in
the compositional approach is observed. For instance, the tradi-
tional approach takes about 6600 seconds for 1024 lines compared
to only about 45 seconds for the new approach, a savings of two
orders of magnitude. Notice that a 16 bytes cache line size requires
more time than a 32 byte line size.

Figure 7 shows that for adpcm the total time for the two-stage
approach is smaller than that for the traditional approach for cache
lines ranging from 8 to 512. However, for a cache with 1024 lines,
the time for the modular stage exceeds the traditional time caus-
ing the total time to be larger for the new approach. This is eas-
ily explained since the modular stage performs 4 different analyses
on each module, hence, this overhead increases with larger cache
sizes. Absolute analysis times are .1 to 26 seconds.

Let us compare traditional computation time overhead with just
the compositional stage overhead (upper portion of even bars). For
adpcm, the compositional approach takes less time than the tradi-
tional approach for all the cache configurations. Additional results
for adpcm also indicate that for larger programs the compositional
approach scales slightly better than the traditional approach (see
[23] for details). For instance, the increase in traditional time for a
change from 256 to 512 lines is about twice, whereas the increase
for the compositional time is only about 1.5 times.

For mm (Figure 7), the total time for the new approach is greater
than the traditional time for all cache configurations. mm is a small
benchmark (around 130 instructions). Its calling structure and the
control structure are fairly simple. Hence, it does not provide
enough opportunity for the compositional approach to exploit any
complexity in the program structure. Even when comparing just
traditional times to the compositional times for fewer cache lines
(less than 128), the traditional approach outperforms the new one.
Absolute analysis times are .001 to 3.4 seconds.

In summary, results for larger benchmarks (adpcm and mad)
show that the compositional approach, even when applied just once
for all the modules in a program, performs much better than the
traditional approach. This is significant because it indicates that
for such large programs, the new approach can result in savings in
excess of an order of magnitude in computation time.

Next, we compare the resulting WCEC of the two analysis meth-
ods. For all benchmarks (except for adpcm) and for all cache
configurations ranging from 4 cache lines to 512 cache lines, the

WCEC were exactly the same. For adpcm and ndes, the results
of timing analysis are summarized in Tables 2 and 3, respectively.

Number of cache Traditional Compositional %
lines WCEC WCEC change
512 9,227,240 9,227,240 0
256 9,227,240 9,227,240 0
128 18,590,441 18,590,441 0
64 23,751,141 23,651,041 -0.42

Table 2: Timing Analysis of Adpcm

For adpcm, results for a cache size of 64 lines show a tighter
WCEC prediction by the new approach. This is the only differ-
ence observed between WCEC for the two approaches. In this case,
the traditional approach categorizes one instruction of adpcm pes-
simistically as an always-miss in a loop. The new approach predicts
categories of this instruction more accurately as a first-miss. This is
due to the analysis scope where data-flow is retained both consid-
ering and ignoring backedges. Comparing the data-flow, one can
detect that a conflicting line is absent along the backedge, which
indicates a first miss. The traditional analysis does take advantage
of such information since it would be computationally intensive,
albeit possible, to calculate it. The compositional approach leads
to a tighter and still safe WCEC bound using the compositional ap-
proach. It is also interesting to note that as adpcm occupies around
230 program lines in memory, it entirely fits in caches with 256 and
512 lines. I.e., once a program line is brought in cache, it will not
be evicted later. Hence, the WCEC for these two cache sizes are
the same for this benchmark.

For ndes, as can be seen from the table, the estimated WCECs
are exactly the same for the two approaches.

Finally, we compare the WCEC with cycles reported by Sim-
pleScalar for a simulated execution under worst-case input. As
shown in the above section, WCECs for the six benchmarks were
obtained using the timing analyzer for the various cache configura-
tions. These numbers were compared to the number of cycles ob-
tained from the architectural simulator for the SimpleScalar toolset.
The benchmarks were executed for worst-case input data on the
simulator.

Table 4 shows the WCEC comparison for a direct-mapped cache
with 64 lines and a line size of 16 bytes. For other cache configu-
rations, similar results are observed. As already illustrated by the
comparison between traditional vs. compositional cache analysis,
by maintaining the same level of accuracy, differences between the
predicted WCECs of our toolset and the observed WCECs under
SimpleScalar, such as for adpcm and ndes, stem from data de-
pendencies. Our path analysis operates at static time and considers
combinations of paths that, due to infeasible data value combina-
tions, cannot be executed in sequence. These infeasibilities are only
known at runtime and cannot be captured by static analysis (unless
manually specified, which is tedious).

The adpcm benchmark has several instructions within condi-
tional execution. Some of these constructs contain loops or are em-
bedded in one. The timing analysis will choose the longest path that

Number of cache Traditional Compositional %
lines WCEC WCEC change
512 131,514 131,514 0
64 146,583 146,583 0
16 347,523 347,523 0
8 839,551 839,551 0

Table 3: Timing Analysis of Ndes



is found for every iteration of the loops. In the architectural simula-
tor, the longest path need not be the path that is always taken inside
the loops resulting in a difference between the WCEC and observed
number of cycles (due to data dependencies). Since the WCEC al-
ways uses the longest path, it is a safe bound of the execution time.
Similarly, the ndes benchmark has several instructions within con-
ditional execution. These instructions may not be executed in the
architectural simulator but are always considered in timing analy-
sis since they contribute to the longest path. The WCEC of mad
could not be obtained due to constraints of path analysis within the
timing analysis tool, a problem beyond compositional static cache
simulation that we are currently addressing.

Benchmark Predicted WCEC Observed WCEC Ratio
adpcm 23,740,141 17,549,967 1.35
ndes 146,298 95,147 1.54
fft 381,091 369,671 1.03
cnt 72,240 71,411 1.01
mm 2,037,588 2,034,313 1.01

Table 4: Predicted vs. Observed WCEC

In summary, the validity of the new approach is dependent on
two metrics:

� the improvement in the computation time required to perform
static cache analysis and

� the accuracy of the predicted categorizations.

The compositional approach certainly leads to a significant im-
provement in execution time of static cache analysis. It also pro-
vides worst-case categorization predictions at least as accurate as
those provided by the traditional approach. In some cases, it pro-
vides more accurate predictions than the traditional approach that
are still safe.

7. RELATED WORK
The purpose of static cache simulation is to bound the WCET of

a program. Bounding WCET estimations is important as schedu-
lability analysis for hard real-time systems requires that WCETs
be known in order to ensure feasibility of scheduling a task set
for a given scheduling policy, such as rate-monotone and earliest-
deadline-first scheduling [16].

Many different approaches have been used to obtain the WCET
for a program. The combined use of the static cache analysis
(Arnold et al. [2]) and the static timing analysis (Healy et al.
[11]) provide fairly accurate WCET bounds. Our approach splits
the static cache analysis into two stages, reusing the results from
the first (module-level analysis) stage in the second (compositional
analysis) stage, thus addressing the issue of computation overhead
of cache analysis.

Harmon et al. [9] describe a retargetable framework for pre-
dicting execution time that transforms machine-level instructions
into a sequence of primitive operations, which express the func-
tionality of each instruction in fine-grain detail. This framework,
along with Puschner et al. [24] and Park [22], proposes ideas for
timing analysis of unoptimized programs on simple CISC proces-
sors. Zhang et al. [31] introduce an analyzable pipeline model
considering the effect of pipelined execution on timing analysis.
The combined framework of [2] and [11] described above takes in-
struction cache effects into account. These ideas and the WCET
analysis framework in [15] introduce timing analysis for pipelined
RISC processors. Li et al. [13] use an Integer Linear Programming

(ILP) formulation for capturing structural functionality and cache
constraints and solve it to bound the WCET. The ILP approach is
extended to take cache timing effects into account. Rawat [25],
Kim et al. [12], Li et al. [14] and White et al. [30] extend the
conventional static timing analysis to data caches.

Some instruction-level dynamic timing analysis methods assume
the knowledge of an input set that would trigger the worst-case
path during the actual program execution [28]. Finding such an
input set can be a non-trivial problem involving very high compu-
tational complexity. Even if such an input set is found, the actual
execution-time effects of architectural features onto timing analysis
might cause a different input set to determine the WCET.

The integrated path and timing analysis method in Lundqvist
et al. [19] combines dynamic cache analysis and dynamic tim-
ing analysis using an instruction-level cycle-accurate simulation
technique. The cache state at various points in the timing anal-
ysis is calculated on the basis of the actual memory references
made. The worst-case state is obtained by analyzing the cache state
that will trigger worst-case response time in the remaining execu-
tion sequence. Thus, the cache calculations are integrated in the
instruction-level simulation. Such approaches would suffer a sig-
nificant computational overhead involved in cache calculations for
fairly large programs that consist of a large number of possible ex-
ecution paths.

Vera et al. [27] describe a technique of data cache locking to
achieve predictable worst-case execution time for a program even
when the execution environment has data caches. Unpredictability
in WCET estimations is eliminated by locking those regions in the
code that cannot be analyzed statically. Performance degradation
possible due to cache locking is reduced by loading the cache with
data likely to be accessed, but some overhead prevails.

From this review of prior work, it is evident that all these ideas
deal with the problem of accurately estimating WCET for a pro-
gram in the presence of architectural features, such as data and in-
struction caches and instruction pipelines. Our work is different
from these as it focuses on the computational overhead involved in
static cache analysis (performed separately from timing analysis),
while preserving the accuracy of the predicted categorizations.

Rubin et al. [26] discusses a profile-analysis framework for data-
layout optimizations. It uses the concept of deriving a data objects
trace to save the re-execution of programs to assess the perfor-
mance of a newly computed data layout. Each entry in the data
objects trace contains a symbolic address as well as a unique iden-
tifier of the referenced data object. To evaluate a candidate data lay-
out, each data object is assigned its new memory location obtained
from the layout. Then, the original data trace is simulated using the
data objects trace and the new memory addresses to measure the
new memory behavior. Thus, the data objects trace parameterizes
the actual memory address trace, making its reuse possible. Since
the data objects trace is address-independent, it can be reused in
the new memory layout evaluation. In this way, the idea of address
parameterization is utilized here, but it addresses the orthogonal
problem of optimizing data layout. Our work also parameterizes
the data-flow information obtained in the first stage (module-level
analysis) as the absolute address information is not available during
this stage, and the inter-procedural analysis on modules belonging
to a program can be performed irrespective of the actual absolute
addresses the modules are mapped to.

8. CONCLUSION
This paper contributes an approach to reduce the computational

overhead involved in obtaining cache hit/miss information from
static cache simulation for direct-mapped instruction caches. Cat-



egorizations obtained in module-level analysis are reused in com-
positional analysis, which performs the necessary inter-procedural
analysis and derives the final categorizations. Thus, for any con-
crete cache configuration and for any module, the module-level
analysis is performed only once. The compositional stage reuses
such analysis for any program containing pre-analyzed modules.

The experimental results show that the compositional approach
outperforms the traditional approach by one to two orders of magni-
tude for large cache sizes and larger benchmarks. For smaller cache
sizes and smaller programs, the computational overhead is compa-
rable to the traditional approach. The compositional approach also
gives predictions as accurate as the traditional static cache simu-
lation approach. This was evident from the worst-case execution
cycles obtained for the benchmarks for the two approaches. This
work provides an efficient way for analyzing direct-mapped in-
struction caches statically, especially for large cache sizes and for
programs with complex loop structures as well as complex calling
structures.
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