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Abstract

Recent processor support for dynamic frequency and volt-
age scaling (DVS) allows software to affect power consump-
tion by varying execution frequency and supply voltage on
the fly. However, processors generally enter a sleep state
while transitioning between frequencies/voltages. In this pa-
per, we examine the merits of hardware/software co-design
for a feedback DVS algorithm and a novel processor capa-
ble of executing instructions during frequency/voltage tran-
sitions. We study several power-aware feedback schemes
based on earliest-deadline-first (EDF) scheduling that ad-
just the system behavior dynamically for different work-
load characteristics. An infrastructure for investigating sev-
eral hard real-time DVS schemes, including our feedback
DVS algorithm, is implemented on an IBM PowerPC 405LP
embedded board. Architecture and algorithm overhead is as-
sessed for different DVS schemes. Measurements on the ex-
perimentation board provide a quantitative assessment of the
potential of energy savings for DVS algorithms as opposed
to prior simulation work that could only provide trends.
Energy consumption, measured through a data acquisition
board, indicates a considerable potential for real-time DVS
scheduling algorithms to lower energy up to 64% over the
naive DVS scheme. Our feedback DVS algorithm saves at
least as much and often considerably more energy than pre-
vious DVS algorithms with peak savings of an additional
24% energy reduction. To the best of our knowledge, this
is the first comparative study of real-time DVS algorithms
on a concrete micro-architecture and the first evaluation of
asynchronous DVS switching.
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1. Introduction

Energy consumption has become a vital design constraint in
embedded systems. The demand for efficient energy man-
agement is increasing in hand-held and embedded devices,
where battery service life is usually critical to system perfor-
mance. For many non-battery powered systems, energy con-
sumption is also an important cost factor due to environment
issues. CPU is one of the most power-consuming devices of
a computer. In order to reduce the CPU energy consump-
tion, dynamic voltage scaling (DVS) technology is widely
supported in recent processor products for extending battery
life. DVS dynamically scales the processor core voltage de-
pending on the computational demand of the system. Reduc-
ing the supply voltage results in a lower transistor switching
speed, which also allows a lower clock frequency. Assum-
ing that voltage and frequency are linearly related, scaling
voltage and frequency results in cubic reduction of power
consumption (P o< V2 x f) [4]. While useful for simula-
tion, the formula ignores architectural details studied in this
paper.

DVS algorithms have been intensively studied for both
non real-time and real-time systems [20, 1, 13, 6, 8, 19, 24].
In the case of real-time systems, the DVS algorithm calcu-
lates a safe frequency that provides just enough processing
resources to finish a given task before its deadline. The goal
is to save the maximum possible amount of energy and still
guarantee the schedulability of hard real-time systems where
all tasks are required to meet their deadlines.

In this work, we develop several power-aware feedback
schemes for our feedback DVS algorithm based on earliest-
deadline-first (EDF) scheduling, which adjusts a real-time



system dynamically according to different workload char-
acteristics. A feedback DVS framework has been presented
and evaluated in simulation experiments in our previous
work [5, 25]. We refine those algorithms in this paper and
develop several feedback schemes considering practical de-
sign and implementation issues on a real embedded archi-
tecture. We focus on the performance of the DVS algorithm
in an embedded environment where the overhead and the
actual energy consumption can be measured quantitatively.
The DVS-enhanced real-time scheduler may itself execute
at several different CPU frequencies, which also requires
accurate modeling of the entire system. We examine all
these issues by implementing our feedback DVS algorithm
as well as several other DVS algorithms on an IBM Pow-
erPC 405LP embedded board, which was specially modi-
fied for power management research. A unique DVS feature
supported by the test board is that frequency switching can
be synchronous or asynchronous, both of which we evaluate
experimentally for different DVS algorithms. We show the
strength of our feedback DVS algorithm by comparing its
energy consumption with that of other DVS algorithms on
the test board.

This paper is organized as follows. Section 2 gives a
brief introduction of the DVS scheduling framework and
task model. Section 3 discusses our DVS algorithm and two
feedback mechanisms proposed for the practical environ-
ment. Detailed experimental results are presented in Section
4. Section 5 discusses some of the related work. Conclusions
are given in Section 6.

2. EDF Scheduling with DVS Support

In this work, we consider the inter-task DVS scheduling
problem in hard real-time systems with the earliest deadline
first (EDF) policy. In order to assess DVS algorithms for
their suitability and energy saving performance, we regard
the entire system as consisting of two components: (1) an
EDF scheduler, and (2) a DVS scheduler. The EDF scheduler
always assigns the task with the earliest deadline the high-
est scheduling priority. The DVS scheduler then determines
the processor voltage and frequency during the execution of
a particular task. These two components are independent of
each other so that the EDF scheduler is capable of work-
ing with different DVS algorithms. Our DVS scheduler is
based on feedback control that incrementally adjusts system
behavior in order to reduce energy consumption. EDF is es-
pecially attractive to DVS algorithms because of its dynamic
assignment of task priority, which allows the DVS scheduler
to maximally exploit slack for each task.

A periodic, fully preemptive and independent task model
is used in the framework. Each task 7; is defined by a
triple (P;, D;, C;), where P; is the period of T}, D; is the
relative deadline of T;, and C; is the worst-case execution
time of 7;, measured at the maximal processor frequency.
We always assume D;=PF; in our model. The periodically

released instances of a task are called jobs. T;; is used to
denote the j*" job of task T;. Its release time is P; * (j — 1)
and its deadline is F; * j. We use c;; to represent the actual
execution time of job Tj;. The hyperperiod H of the task
set is the least common multiplier (LCM) among the tasks’
periods.

In the following, we describe in detail the feedback DVS
scheduler and several feedback schemes used in the frame-
work.

3. Feedback DVSAIlgorithm

Our feedback DVS algorithm anticipates an actual execution
time of each task instance based on the feedback information
from previous invocations. It splits the execution budget of
a task into two sub-tasks T4 and T'g, as depicted in Figure
1. Under the maximal frequency, the worst-case execution
time of these two subtasks under the maximal frequency are
represented as C'4 and Cp (Cp = WCET — Cj), respec-
tively. Feedback DVS tries to scale T'4 at the lowest possible

Frequency ;
_max

TA B

| —— cala— cB —

Figure 1. Task Splitting

frequency while T's is always scaled at the maximum fre-
quency to meet the deadline requirements of the real-time
task. @ = CACfsk is the scaling factor which determines the
corresponding processor frequency and voltage for the T4
subtask. s;. is the available amount of slack to the task de-
rived from the worst-case execution profile. Feedback DVS
keeps the total system utilization below 100% even with re-
duced processor frequency and voltage. This guarantees the
schedulability of the hard real-time task set (for algorith-
mic details, see [25]). The algorithm is capable of captur-
ing variations in actual execution times through the feed-
back scheme. Due to the even more greedy approach than
any of the previous schemes, the algorithm was reported to
exhibit additional energy savings in simulation experiments,
particularly for medium utilization systems, which are quite
common [5]. Even more substantial savings have been ob-
served for fluctuating execution times where PID-feedback
provides new opportunities for aggressive scaling. In the
implementation of the algorithm for the 405LP embedded
board, we refined the feedback scheme proposed in [25] and
developed the following feedback mechanisms.

3.1 Simple Feedback

If a periodic real-time workload exhibits a relatively stable
behavior during a certain interval of time, the actual execu-
tion time of different jobs remains nearly constant or varies



within a very small range. For such workloads, we use a
very simple feedback mechanism by computing the moving
average of previous jobs’ actual execution times and feed
it back to the DVS scheduler. We try to avoid the over-
head of more complicated feedback mechanisms, such as
the PID-feedback controller described in the next section,
because a simple feedback usually provides sufficiently ac-
curate predictions. The quantitative comparison of the over-
head between our PID-feedback DVS algorithm and several
other DVS algorithms also shows that a complicated feed-
back DVS scheme can degrade the energy saving potential
to some extent, as later discuss in the context of Table 3.

In this simple feedback mechanism, we choose the value
of C'4 as the controlled variable. Each job T7;’s actual execu-
tion time c;; is chosen as the set point. C'4 is assigned to be
50% WCET for the first job of each task, which means half
of the job’s execution is budgeted at a low frequency, and
half of it is reserved at the maximum frequency. The max-
imum frequency portion guarantees the deadline require-
ments, even if the worst-case execution time is exhibited.
Each time a job completes, its actual execution time is fed
back and aggregated to anticipate the next job’s C4. Let
C4;; denote the C'4 value for T;;. The (j + 1)*" job of the
task is assigned a C'y value according to:

Cai(j+1) = (Caij X N +ci5 — cij—n)) /N (1

where N is a constant representing the number of items
used in the moving average calculation. Our experiments
show significant energy savings for such a simple feedback
mechanism with very low scheduling overhead as long as
the workload’s actual execution time exhibits a stable be-
havior during some interval. When the workload’s behav-
ior keeps changing dynamically with highly fluctuating exe-
cution times, simple feedback becomes not enough to yield
the best energy savings. In those cases, a more sophisticated
feedback mechanism is required, as detailed in the next sec-
tion.

3.2 PID Feedback

The original PID-feedback DVS mechanism, as presented in
[25], requires the DVS scheduler to create and maintain mul-
tiple independent feedback controllers for each of the tasks
in the workload. Multiple inputs and multiple outputs need
to be manipulated simultaneously by the DVS scheduler.
Such a PID-feedback mechanism, albeit its potential for en-
ergy savings shown in our previous simulation experiments,
results in substantial execution overhead on an embedded
architecture. Given the difficulty of precisely characterizing
the behavior of a multiple-input multiple-output control sys-
tem, it also adds complexity to the theoretical analysis of the
algorithm. Therefore, we refine the original PID-feedback
DVS mechanism by the following simplified design.
Instead of using C'4;(i = 1...n) as the controlled variable
for each task T; and creating n different feedback controller

for n different tasks, we now define a single variable r as the
controlled variable for the entire system as:

1~ Caij — cij

D D )
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where j is the index of the latest job of task T; before the
sampling point. r; describes the average difference between
tasks’ actual execution times and their corresponding C'4
values. Our objective is to make r approximate O (i.e., the
set point). The system error becomes

e(r;) =r; — 0. 3

where ¢(r;) reflects the error of the entire task set and is not a
function of a particular task 7; any more. ¢(r;) is further fed
back to the PID scheduler to regulate the controlled variable
r. The PID feedback controller is now defined as:

Arj = Kpe(r;) + I% 2w €(ry) + de(rj)if)(;{DW)
rit1 = 1j+ Ar;

“)
where K,,K; and K are the PID parameters. IW and DW
are the integral and derivative window sizes.

When job T;; completes, we adjust the C'4 value for
Ti(j+1) bY Cai(j+1) = rjcij+cij, whichis used by the DVS
scheduler to calculate the scaling factor o and to determine
a processor frequency and voltage for the next job.

In order to analyze the performance of such a feed-
back control system, we compute its transfer function in the
Laplace domain. The transfer function of the PID controller
is defined as:

K;
Gpip(s) = K, + - + Kgs )]

The transfer function between r; and C'4 can be derived by
taking derivative of both sides of the equation 2:

G,(s)=Ms (6)

where M = 135" L Therefore, the transfer function of

the entire closed-loop feedback system can be computed as :

Gpip(s)Gr(s) B ]\4.[{;08-‘v-]WKvi-l-]W.KdS2
1+ Gpip(s)Gy(s) 1+ MKys+ MK; + MKys?
(N
According to control theory, a system is stable if and only
if all the poles (the denominator of its transfer function) are
in the negative half-plane of the s-domain. From Equation 7,
we infer the poles of our system as

~MK,+ MKZ — 4MK4 (MK, + 1)
2M K,

®)

Note that — M K, ++/M K2 — AM K4(M K; + 1) is always
less than O when MK — 4M Kq4(MK; + 1) > 0. Hence,



all the poles are in the negative half-plane of the s-domain.
Therefore, the stability of the above system is ensured.

Such a single controller mechanism is easy to implement
because one feedback controller suffices for the entire sys-
tem, which reduces the complexity and overhead of the feed-
back DVS algorithm. But it also has its drawback, i.e., it does
not provide direct feedback information of the C'4 value for
each individual task. When r equals zero, one cannot infer
that every task’s C'4 has approximated its actual execution
time. It is an imprecise description of the original schedul-
ing objective and may take longer to get the system into a
stable state. Nonetheless, our experiment shows significant
energy savings of this feedback DVS mechanism compared
to other DVS algorithms. In the next section, we present the
details of our experimental results.

4. Experimental Evaluation

By evaluating our feedback DVS algorithm on a real em-
bedded architecture, we assess the true potential of our algo-
rithm for energy savings in an actual system as opposed to
a simulation environment. Also, we compare the overhead
and energy consumption between our algorithm and several
other DVS algorithms, namely static DVS, cycle-conserving
DVS, look-ahead-1/2 DVS (all by Pillai and Shin [20]) as
well as DR-OTE and AGR-2 (by Aydin et al. [1]). Look-
ahead-1 and look-ahead-2 are the original and a modified
version of the look-ahead DVS algorithm in [20], respec-
tively. Look-ahead-1 updates each task’s absolute deadline
immediately when a task instance completes. Look-ahead-2
delays such update until the next task instance is released,
which results in additional energy savings. AGR-2 follows
the most aggressive scheme presented in [1] with an aggres-
siveness parameter k of 0.9. In these experiments, we also
wanted to determine if the lower frequencies and voltages
chosen by our feedback scheme outweigh the higher com-
putational overhead required to make scheduling decisions.
We use our PID feedback approach unless explicitly stated
that we use the simple scheme from Section 3.1.

4.1 Platform and Methodology

The embedded platform used in our experiment is a Pow-
erPC 495LP embedded board running on a diskless Mon-
taVista Embedded Linux variant, which is based on the
2.4.21 stock kernel but has been patched to support DVS on
the PPC 405LP. This board provides the hardware support
required for DVS and allows software to scale voltage and
frequency via user-defined operation points ranging from a
high end of 266 MHz at 1.8V to a low end of 33 MHz at
1V [18, 3, 9]. The board has also been modified for 50%
reduced capacitance, which allows DVS switches to occur
more rapidly, i.e., switches are bounded by at most a 200 mi-
croseconds duration from 1V to 1.8V. The DVS algorithms
(static, cycle-conserving, look-ahead [20] and our feedback
DVS) were exposed to the DVS capabilities of the 405LP

board. In our experiments, the frequency and voltage pairs
depicted in Table 1 were chosen.

Table 1. Valid Frequency/Voltage Pairs
Setting 0 1 2 3 4
CPU freq. (MHz) | 33 | 44 | 66 | 133 | 266
bus freq. (MHz) 33 | 44 | 66 | 133 | 133
CPU voltage (Volts) | 1.0 | 1.0 | 1.1 | 1.3 | 1.7

This set of pairs was constrained by a need to have a
common phase lock loop (PLL) multiplier of 16 relative to
the 33MHz base clock and a divider of two or any multiple
of 4. Changing the multiplier incurs additional overhead for
switching, which we wanted to eliminate in this study. A dy-
namic power management (DPM) facility [3] is developed
as an enhancement to the Linux kernel to support DVS fea-
tures. DPM operating point defines stable frequency/voltage
pairs (as well as related system parameters), which we ex-
perimentally determined.

In order to assess power consumption, we need to moni-
tor processor core voltage and current at a high rate. Hence,
we used a high-frequency analog data acquisition board to
gather data for (a) the processor core voltage and (b) the
processor current. The latter was measured as a voltage level
over a resistor with a 1V drop per 360mA. Power consump-
tion was computed by multiplying the CPU voltage with its
current. The data acquisition board allowed us to experiment
with longer-running applications to assess the energy con-
sumption of the processor, which is the integration of power
over time. We also employed an oscilloscope for visualizing
the voltages and currents with high precision in readings.

We implemented an EDF scheduler as a user-level thread
library under Linux on the 405LP board. A user-level library
was chosen over a kernel-level solution because of the sim-
plicity of its design and the fact that the operating system
background activity is minimal on the embedded board in-
frastructure. Different DVS scheduling schemes were inte-
grated into the EDF scheduler as independent modules.

4.2 Synchronousvs. Asynchronous Switch

We first assessed the overhead of different DVS techniques
supported by the test board and the dynamic power manage-
ment extensions of the operating system.

A unique DVS feature supported by the IBM PPC
405LP embedded board is that frequency switching can be
done either synchronously or asynchronously. Synchronous
switching is the traditional approach for processor fre-
quency/voltage transitions, where applications have to stop
execution during the transitional interval. Asynchronous
switching, on the contrary, allows application to continue
execution during the frequency/voltage transitions. Figure
2 depicts the changes in current (lower curve) and voltage
(upper curve) of the PPC 405LP processor core during an
asynchronous switch.
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Figure2. Current/Volt. for Async. Freq. Switch

This unique feature of asynchronous switching is
achieved by a system call that, when switching to a higher
voltage/frequency, first reprograms the voltage to ramp up
towards the maximum as fast as possible (the 30 degree volt-
age ramp on the upper curve of Figure 2). Meanwhile, the
time to reach a voltage level at least as high as required by
the new frequency is estimated. A high-resolution timer is
programmed to interrupt when this duration expires, prior
to which the application can still continue execution. Once
the timer interrupt triggers its handler (at the peak after the
30 degree ramp on the upper curve), the power management
unit is reprogrammed to settle at the target voltage level, and
the new processor frequency is activated before returning
from the handler. The voltage then settles (in case it over-
shot) in a controlled manner to the new operating point. The
current also settles in a controlled manner depending on pro-
cessing activity.

Table 2 reports the overhead for synchronous and asyn-
chronous switching in a time range bounded by two ex-
tremes: (a) Switching between adjacent frequency/voltage
levels and (b) switching between the lowest and highest fre-
quency/voltage levels. Furthermore, the overhead of the sub-
sequent signal handler associated with each asynchronous
switch is also measured for a range of the highest and the
lowest processor frequencies. In order to make a compari-
son, the execution time of a system call (using getpid()) is
also measured. The results indicate that a synchronous DVS
switch has about an order of a magnitude higher overhead
than an asynchronous switch. In contrast, the asynchronous
DVS switch is almost as efficient as a null system call.
The timer interrupt handler triggered at each asynchronous
switch has a negligibly small impact on the DVS switching
operation. Overall, triggering an asynchronous DVS switch
only has the cost of a light-weight system call.

Table 2. Frequency/Voltage Switch Overhead
sync. switch async. switch | signal handler | syscall
117-162 usec 8-20 psec 0.07-0.6 usec | 3-8 usec

4.3 DVS Scheduler Overhead

We compared the overhead of our feedback-DVS algorithm
with several other dynamic DVS algorithms. We first mea-
sured the execution time of these DVS scheduling algo-
rithms under different frequencies on the embedded board,
as depicted in Table 3. The overhead was obtained by mea-
suring the amount of time when a task issues a yield() system
call till another task was dispatched by the scheduler. It re-
flects the overall scheduling overhead when different DVS
algorithms are integrated into the scheduler.

Table 3. Overhead of DVS-EDF Scheduler

DVS scheduling overhead[usec]
CPU freq. | static | cc | look-ahead | PID-feedback
33 MHz 217 | 487 2296 3612
44 MHz 170 | 366 1714 2943
66 MHz 100 | 232 1112 1728
133 MHz 52 120 546 801
266 MHz 36 76 229 472

The table shows that static DVS has the lowest overhead
among the four while our PID-feedback DVS has the high-
est one. This is not surprising since static DVS selects a uni-
fied frequency and voltage setting for the entire task set. No
dynamic voltage and frequency modulation takes place dur-
ing task context switches. But the static scheme also falls
short in finding the best energy saving opportunities. Cycle-
conserving DVS, look-ahead DVS and our PID-feedback
DVS use more sophisticated and aggressive algorithms for
lower energy consumption, albeit at higher overheads. The
trade-off between overhead and performance always needs
to be examined carefully.

Next, we assessed if our feedback-DVS algorithm, al-
though incurring the largest overhead among the four, gives
the best energy saving results in the real embedded envi-
ronment. We measured the actual energy consumption of
these DVS algorithms when executing three medium utiliza-
tion task sets depicted in Table 4 using both synchronous
and asynchronous DVS switchings. As a baseline for com-
parison, we also implemented a naive DVS scheme where
the maximum frequency is always chosen whenever a task
is scheduled, and the minimum frequency is always chosen
whenever the system is idle.

The first task set in Table 4 is harmonic, i.e., all periods
are integer multiples of the smallest period, which facilitates
scheduling. This often allows scheduling algorithms to ex-
hibit an extreme behavior, typically outperforming any other
choice of periods. The second and third task sets are non-
harmonic with longer and shorter periods, respectively. Ac-
tual execution times were half that of the WCET for each
task for this experiment.

Table 5 depicts the energy consumption of different DVS
algorithms in mWatt-hours. The naive DVS algorithm serves
as a base of comparison for each of the subsequent DVS al-
gorithms. The absolute energy consumption value, as well
as the percentage of energy savings over the naive DVS,



Table 4. Task Set, times in msec

Task Set 1 Task Set 2 Task Set 3
task || Period (P;) | WCET (C;) || Period (P;) | WCET (C;) || Period (P;) | WCET (C})
1 2,400 400 600 80 90 12
2 2,400 600 320 120 48 18
3 1,200 200 400 40 60 6
Table 5. Energy [mW — hrs] consumption per RT-DVS algorithm
algorithm | naive | static(savings) | cycle-cons.(savings) | look-ahead(savings) | our feedback(savings)
Task Set 1
synchronous 4.47 3.2 (28.41%) 2.38 (46.61%) 2.21 (50.56%) 2.04 (54.21%)
asynchronous 443 | 3.13(29.35%) 2.327 (47.51%) 2.12 (52.07%) 2.00 (54.70%)
sync/async savings || 0.89% 2.19% 2.51% 3.92% 1.95%
Task Set 2
synchronous 0.544 | 0.5056 (7.06% ) 0.4713 (13.36%) 0.424 (22.06%) 0.4089 (24.83%)
asynchronous 0.5276 | 0.5025 (4.76%) 0.4622 (12.40%) 0.4218 (20.05%) 0.4064 (22.97%)
sync/async savings || 3.01% 0.61% 1.93% 0.52% 0.61%
Task Set 3
synchronous 0.595 | 0.5616 (5.61%) 0.4799 (19.34%) 0.4043 (32.05%) 0.3708 (37.68%)
asynchronous 0.5802 | 0.5496 (5.27%) |  0.4547 (21.63%) |  0.3912 (32.57%) 0.3671 (36.73%)
sync/async savings || 2.49% 2.14% 5.25% 3.24% 1.00%
Task Set 2 vs. Task Set 3
change [9.07% | 8.57% | 1.65% | 7.82% | 10.71%

is presented for each DVS algorithms. For task set one,
static DVS reduces energy consumption by about 29% over
the naive scheme. Cycle-conserving DVS saves 47% en-
ergy. Look-ahead RT-DVS saves over 50%, and our feed-
back method saves about 54% energy compared to naive
DVS. This clearly shows the tremendous potential in energy
savings for real-time scheduling. The savings for each algo-
rithm are lower for task set two peaking at about 23% for
our feedback scheme. As mentioned before, task set one is
harmonic, which typically results in the best scheduling (and
energy) results since execution is more predictable. Task set
three lies in between the other two with peak savings of 37%
for our feedback scheme. The results also demonstrate that
the overhead for calculations inherent to scheduling algo-
rithms is outweighed by the potential for energy savings.
This is underlined by the increasing overhead in execution
time for each of the scheduling algorithms (from left to right
in Table 5) while energy consumption decreases.

Another noteworthy result is the comparison between
synchronous and asynchronous DVS switching depicted in
the last row labeled “sync/async savings” for each task set
in Table 5. For each of the scheduling algorithms, we see
additional savings of 1-5% on asynchronous switching due
to the ability to commence with a task’s execution during
frequency and voltage transitions. We also ran experiments
with task sets that had an order of a magnitude smaller
periods and execution times. Surprisingly, the synchronous
Vvs. asynchronous savings remained approximately the same,

even though DVS switches occur ten times as often. We
believe that the periods and execution time settings used in
our experimental environment are still large compared to the
execution time of a synchronous or asynchronous switching.
If we only save about 100 usec at each frequency switch (as
has been shown in Table 2) but later on spend more then 10-
100 msec in running a task, the benefit of the asynchronous
DVS switching becomes insignificant. These results seem to
indicate that the benefit of continuous execution during DVS
switching, although not negligible, is secondary to trying to
minimize the overhead of DVS scheduling itself.

We also compared task sets two and three in terms of their
absolute energy readings, which is valid since they executed
for the same amount of time (ten seconds), the same actual
to worst-case execution time ration and the same utilization,
albeit at seven times more context switches. This change is
depicted in the very last row of Table 5 for the asynchronous
case. Not surprisingly, the energy with naive DVS is about
9% higher for task set three than for set two due to the higher
context switch overhead of the latter. Quite interestingly, this
overhead turns into a reduction in energy as DVS schemes
become more aggressive.

4.4

We now examine the behavior of our DVS algorithm on dif-
ferent workloads in more detail. A suite of task sets with
synthetic CPU workloads was created. Each task set con-
tains three independent periodic tasks whose worst-case ex-
ecution time varies from 0.1 to 0.9 with an increment of 0.1.

Impact of Different Workloads



The actual execution time of a task is determined by timing
the body of each task plus the scheduler overhead (see Ta-
ble 3) of the corresponding DVS algorithm under the lowest
CPU frequency. We dynamically changed the number of in-
structions inside each task body among different invocations
(jobs) to approximate the workload fluctuation behavior of
actual real-time applications.

Altogether, four synthesized execution patterns were cre-
ated. In the first pattern, a task’s actual execution time is
always 50% WCET. In the second pattern, the actual exe-
cution time of a task drops exponentially from a peak value
cm to 50%WCET among its consecutive jobs, modeled as
ci =1/ 2(t=cm) The peak value c,, is randomly generated
for each spike from a uniform distribution between 50% of
WCET and 100% of WCET. This pattern simulates event-
triggered activities that result in sudden, yet short-term com-
putational demands due to complex inputs often observed
in interrupt-driven systems. The third pattern is similar to
the second one except that it drops more gradually, modeled
as ¢; = cpsin(t + m/2). This pattern simulates events re-
sulting in computational demands in a phase of subsequent
complex inputs with a decaying tendency. In the fourth pat-
tern, the actual execution time of a task increases and de-
creases gradually around 50% WCET with either a posi-
tive or negative amplitude, modeled as ¢; = ¢, sin(t) and
¢i = —cmsin(t). This pattern represents periodically fluc-
tuating activities with gradually increasing and decreasing
computational needs around peaks. We used simple feed-
back on pattern 1 because of its nearly constant execution
time pattern among different jobs. The number of items to
compute the moving average was set as N = 10. PID-
feedback was used on patterns 2, 3, and 4 to exploit fluc-
tuating execution time characteristics. The PID parameters
were chosen by manual tuning as K, = 0.9, K; = 0.08,
K4 = 0.1. The derivative and integral window size were 1
and 10, respectively. Asynchronous switching was used in
the experiment. We executed multiple runs for each setting
and report the average energy consumption.

Figures 3 and 4 present the energy consumption of our
feedback-DVS as well as four other dynamic DVS algo-
rithms. The number of tasks in the task set varies between
3 and 30 tasks, and the tasks’ actual execution times follow
the dynamic execution pattern 2. All energy values are nor-
malized to the naive DVS results. AGR-2 dynamically re-
claims unused slack up to the next arrival time of any task
instance (NTA), hence saving about 50% extra energy than
naive DVS. AGR-2 is not as good as Look-ahead-1/2 DVS
for 3 tasks since it considers slack only up to the next task
instance’s deadline, while Look-ahead DVS collects slack
up to the largest deadline among all tasks. But AGR-2 bene-
fits from smaller task granularity in 30-task sets and outper-
forms Look-ahead-1 and Look-ahead-2 in some utilization
cases. Look-ahead-1/2 is aggressive in frequency scaling,
but it has to overcome the fact that the frequency is occa-
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sionally lowered too aggressively so that it has to be subse-
quently raised to a high level. We avoid such behavior in our
algorithm via feedback. Feedback-DVS saves another 5%-
20% energy over look-ahead DVS and AGR-2 due to the
algorithm’s self-adaptation to jobs’ actual execution times.
In cases of extremely low utilization, feedback-DVS, Look-
ahead DVS and AGR-2 are observed to result in virtually the
same energy savings because every task has enough slack to
run at the minimum speed, resulting in the same frequen-
cies for a schedule irrespective of the DVS algorithm. Since
look-ahead-2 DVS results in the lowest energy consumption
on average among all other algorithms, we now focus on
the comparison of our feedback-DVS algorithm with look-
ahead-2 DVS for task sets which contain three tasks. We
want to evaluate in detail the behavior of our algorithm with
different execution time patterns. Figure 5 shows the aver-
age energy savings of our algorithm among the four patterns
as well as the maximum and the minimum savings, which
are represented as the upper bound and the lower bound on
each error bar. When the variation of tasks’ actual execu-
tion time follows the four different patterns, feedback-DVS
still exhibits stable energy saving performance in all utiliza-
tion cases. It saves up to 21% and 65% more energy than
look-ahead-2 and naive DVS. The largest savings again oc-
cur in median utilization cases where there is considerable



dynamic slack for speed reduction. Variations of energy sav-
ings never exceed 10% of the average savings among differ-
ent execution time patterns.
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To better assess the scalability of our feedback-DVS al-
gorithm, we further fixed the execution time pattern of the
task set, while varying the baseline of its actual execution
times. Figure 6 shows the energy consumption on a task
set with execution time pattern 4, whose average execu-
tion time changes from 0.75WCET to 0.3WCET. All en-
ergy values are normalized to the naive DVS values. We see
from the figure that our algorithm scales equally well for
loose (0.3WCET case) and tight (0.75WCET case) actual
execution-times. In all three cases, 14% to 24% additional
energy is saved over look-ahead DVS. Our PID-feedback
mechanism shows even better strength for median execu-
tion times than the loose or tight ones. In this range, there is
enough slack to distinguish itself from the other algorithms.

Figure 7 depicts the screen-shots of voltage and cur-
rent obtained from the oscilloscope for the phase just af-
ter a simultaneous release of all tasks at the beginning of
a hyperperiod. Static DVS shows two levels of voltages
(busy/idle time) whereas cycle-conserving DVS differenti-
ates three levels on a dynamic base. Even lower voltage and
current readings are given by look-ahead DVS, which not
only distinguishes more levels but also exhibits much lower
power levels during load. The lowest results were obtained
by our feedback DVS, which defers execution even more
aggressively than any of the other methods. However, our
feedback scheme can only further reduce power consump-
tion occasionally as sufficient slack exists to be recovered
by the algorithms of the previous schemes. Dynamic slack is
recovered in increasing levels by the latter three schemes.

4.5 Comparison with Simulation Results

When we compare the energy saving results obtained from
the IBM 405LP embedded board with our previous simu-
lation results presented in [25], we clearly see the advan-
tage and disadvantage of simulation for power-aware stud-
ies. The advantage of simulation lies in its ease of imple-
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mentation and predictability of performance trends. The en-
ergy consumption of different DVS algorithms show a con-
sistent trend under both simulation and the actual embedded
platform. But quantitative results differ. Our previous simu-
lation results reported 5%-10% higher savings on average.
For example, the best energy saving of our feedback DVS
over look-ahead DVS was report as 29% in simulation while
the best result we measured from the test board is around
24%. 1t is non-trivial to model the actual power/energy con-
sumption in simulation without considering actual hardware
details. This is also the case when evaluating the overhead.
Since the overhead of DVS algorithms was not included in
our previous simulation experiment, we still observed 7%-
10% energy savings over look-ahead DVS even at high uti-
lization cases. But the actual energy measurement from the
test board show only 3%-6% savings for these cases.

Overall, our experiments on the embedded platform
quantitatively show the potential of our feedback DVS algo-
rithm and its ability to scale power even more aggressively
than previous DVS algorithms.

5. Rdated Work

Dynamic voltage scaling for real-time systems has received
considerable attention in recent years. Pillai and Shin present
a suite of DVS algorithms integrated with hard real-time
EDF and RM scheduling [20]. Processor speed for each task
is adjusted dynamically while the schedulability of the sys-
tem is still reserved. Look-ahead DVS is the most aggressive
DVS scheme among the suite of algorithms proposed. Aydin
et al. discuss a series of algorithms, which dynamically re-
claim unused computation time of real-time tasks to reduce
the processor speed [1]. Energy-aware scheduling of hy-
brid workloads, including both periodic and aperiodic tasks,
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are further investigated by Aydin and Yang in [2]. Gruian
analyzes a dual-speed DVS schedule based on stochastic
data derived from past task execution traces [7]. Jejurikar
and Gupta investigate static and dynamic slowdown fac-
tors for periodic tasks [11] and combine it with procrasti-
nation scheduling [12] and preemption threshold scheduling
[10] for DVS. Several of these algorithms were compared
in a unified simulation environment, SimDVS [21]. In con-
trast, we measure power consumption on a concrete micro-
architecture for several EDF-based algorithms.

Feedback control for real-time scheduling was first in-
vestigated by Stankovic et al. [22]. Real-time system per-
formance specifications are analyzed systematically through
a control-theoretical methodology by Lu et al. [14]. A
feedback-control real-time scheduling framework for unpre-
dictable dynamic real-time systems is further proposed by
Lu et al. where execution times diverge from their worst

case [15]. Our work extends feedback to power-aware EDF
scheduling.

Feedback control was also proposed for energy-aware
computing in previous work. Varma et al. present a
feedback-control algorithm where the previous workload ex-
ecution history is used to predict the future workload be-
havior by a discrete-time PID function [23]. The combina-
tion of the proportional, integral and derivative part of the
PID function provides good estimation across different ap-
plications insensitive of the change of their parameters. Lu
et al. describe a formal feedback-control algorithm com-
bined with dynamic voltage/frequency scaling technologies
[16]. A general energy management scheme with feedback
control is proposed by Minerick et al. [17]. Average en-
ergy usage is achieved by continuously adjusting the volt-
age/frequency of a processor to meet the energy consump-
tion goal. While Varma and Lu’s work targets soft real-time
systems and Minerick’s work targets general purpose sys-
tems, our feedback DVS scheme focuses on hard real-time
systems where timing constraints must not be violated.

6. Conclusion

In this paper, we presented feedback DVS algorithm consid-
ering practical design and implementation issues. We evalu-
ated it as well as several other real-time DVS algorithms on
an IBM 405LP embedded platform. A unique DVS feature
of this platform is asynchronous frequency switching, which
supports continued execution during voltage/frequency tran-
sitions. We have shown up to 5% energy savings of asyn-
chronous switching for fast DVS modulation without en-
tering sleep modes as opposed to traditional synchronous
switching. We assessed the benefits of our feedback DVS al-
gorithm by measuring the energy consumption over the hy-
perperiod of real-time tasks. Energy consumption as well as
scheduling overhead between different DVS schemes were
compared with each other. The experimental results indi-
cate that our aggressive feedback DVS scheduling algorithm
achieves up to 24% savings in energy consumption best
competitors, i.e., over the look-ahead DVS and AGR-2 al-
gorithms, and up to 64% energy savings over the naive DVS
scheme when considering scheduling overheads. To the best
of our knowledge, this is the first comparative study of real-
time DVS algorithms on a concrete micro-architecture and
the first evaluation of asynchronous DVS switching.
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