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ABSTRACT 
In the design of real-time and embedded systems, it is important 
to establish a bound on the worst-case execution time (WCET) of 
programs to assure via schedulability analysis that deadlines are 
not missed.  Static WCET analysis is performed by a timing 
analysis tool.  This paper describes novel improvements to such a 
tool, allowing parametric timing analysis to be performed.  
Parametric timing analyzers receive an upper bound on the 
number of loop iterations in terms of an expression which is used 
to create a parametric formula.  This parametric formula is later 
evaluated to determine the WCET based on input values only 
known at runtime.  Effecting a transformation from a numeric to a 
parametric timing analyzer requires two innovations: 1) a 
summation solver capable of summation non-constant expressions 
and 2) a polynomial data structure which can replace integers as 
the basis for all calculations.  Both additions permit other methods 
of analysis (e.g. caching, pipeline, constraint) to occur 
simultaneously.  Combining these techniques allows our tool to 
statically bound the WCET for a larger class of benchmarks. 

Categories and Subject Descriptors 
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED 
SYSTEMS]: REAL-TIME AND EMBEDDED SYSTEMS 

General Terms 
Verification, Reliability 

Keywords 
Worst-case execution time (WCET) analysis, parametric timing 
analysis 

1. INTRODUCTION 
 Embedded systems, especially those in safety-critical or hard 
real-time environments, typically require that timing constraints 
be met.  To guarantee these systems will meet deadlines, the 
worst-case execution time (WCET) of each program must be 
known.  The process of determining the WCET of a program is 
known as timing analysis.  Knowledge of the WCET can be used 
to dynamically scale voltage when a scheduler detects future slack 
time [1, 6, 7].  This facilitates power savings, an especially 
important aspect in embedded systems.  Image processing 
provides another useful application for parametric timing analysis, 
since image dimensions may not be known a priori [10]. 

 Static timing analysis has traditionally required loops to 
contain a constant number of iterations so analyzers may produce 
constant worst case execution bounds.  Such constraints on input 
programs make this form of timing analysis numerical: the 
number of loop iterations is constant as is the final result from the 
timing analyzer.  Parametric timing analysis allows the number of 
loop iterations to be unknown at compilation as long as this value 
may be written as an expression.  Such flexibility expands the 
class of programs which may be analyzed.  Instead of providing a 
constant upper bound for a loop, a symbolic formula is created 
using the expression representing the number of loop iterations.  
The formula may be evaluated later to obtain the execution time 
for any given input [6, 9]. 
 We enhanced an existing timing analyzer [3, 5, 6, 9] to 
support generalized parametric analysis.  The conversion required 
a three-fold process.  First, a summation solver capable of 
summing non-constant numbers of iterations was written.  Next, 
an advanced polynomial data structure was developed to express 
parametric formulas.  Naturally, the polynomial data structure 
should not significantly slow numerical calculations.  Finally, the 
polynomial class was integrated into the timing analyzer to 
replace integers in calculations.  Constraint analysis – determining 
which paths in a loop can execute on certain iterations – can still 
take place with polynomial functionality. 
 Although these goals appear simple at first, parametric 
benchmarks present special problems to timing analyzers.  
Numerical timing analyzers receive a numerical upper bound on 
the maximum number of loop iterations that is either 
automatically determined by analyzing the program or is input by 
the user.  Parametric analyzers receive the maximum number of 
loop iterations as an expression whose value is unknown at 
compilation (e.g. for i = 0 .. n-1 contains n iterations). 
Because the expression must be evaluated at runtime, the loop 
may not execute even once (e.g. the value of n could be -1).  
Such uncertainty means every parametric benchmark implicitly 
contains control flow even when the numerical version does not. 
 In this paper, we describe a procedure for calculating the 
number of iterations of nested loops in terms of loop invariant 
parameters.  Secondly, the existing timing tool was enhanced so 
parametric formulas rather than scalar quantities could be used in 
all calculations.  Some details of our approach have been omitted 
for sake of brevity. 

2. COMPUTING ITERATIONS 
 A stand-alone software package called Emtadel was used to 
calculate integral solutions for nested triangular loops.  Triangular 
means that the induction variable of the inner loop depends on the 
induction variable of the outer loop.  Consider the code fragment 
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for (x = 0; x < 3; ++x) 
  for (y = 0; y <= x; ++y) 
    statement; 

. 

. . 

. . . 
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loop for each value of x.  Because the number of iterations is non-
constant, the minimum, maximum, and average number of 
iterations must be calculated.  The software package could handle 
any level of loop nesting and could determine if the number of 
loop iterations is zero even when it is not immediately apparent by 
examining the original loops. 
 For the example presented above, the equivalent summation 
would be 

  (1) ∑ ∑
= =

=
2

0 0

))1((_
x

x

y

iterationstotal

which equals 6.  The minimum number of iterations of the inner 
loop is 1, the maximum is 3, and the average is 2.  The average 
number of iterations of the inner loop is calculated by dividing the 
sum (6) by the total number of iterations of the outer loop (3).  
The concept of representing the number of loop iterations as a 
summation was motivated by the work of Sakellariou [8]. 
 Averaging the number of iterations considers the possibility 
of the inner loop being zero-trip or partially zero-trip.  A zero-trip 
loop derives its name from the fact that a summation whose lower 
bound exceeds its upper bound evaluates to zero.  Hence, a zero-
trip loop does not execute the loop body.  A partially zero-trip 
loop fails to execute the loop body on some iterations.  If the 
condition of the inner loop in the example presented above was y 
< x (instead of y ≤ x), the inner loop would be partially zero-trip.  
On the first iteration of the outer loop, x would be zero and the 
inner loop would not execute.  On the second and later iterations, 
the inner loop would execute.  Hence, the inner loop would be 
partially zero-trip in the modified example.  Using the average 
number of iterations for triangular loops achieves tight WCET 
bounds. 
 Using rational numbers in the calculations allows even more 
accuracy when averaging the number of iterations of triangular 
loop nests.  In the previous example, changing the conditional 
expression of the outer loop to x ≤ 3 (instead of x < 3) would 
mean that the total number of iterations would be 10.  Dividing by 
the total number of iterations of just the outer loop (4) provides 
the average number of iterations (2 ½).  Representing the number 
of iterations as an integral quantity would mean that the inner 
loop’s average number of iterations would be 3.  Hence, a rational 
representation further tightens WCET bounds. 
 We use a C compiler called vpo, which creates a control flow 
information file during compilation [2].  The timing analyzer 
obtains loop specific information from this control flow file.  This 
data includes the iterating (induction) variable and iteration 
information consisting of the minimum and maximum number of 
iterations (provided these are scalar quantities) or the initial, limit, 
and increment value of the induction variable [4].  If a parametric 
loop is nested within another parametric loop, the outer loop's 
iteration information is also reported.  This allows a group of 
summations representing the loop structure to be generated.  
Emtadel handles the evaluation of the loop summations. 
 By means of an example, we can illustrate some of the 
complexities of calculating symbolic solutions when loops may be 
zero-trip.  One example that requires a condition to be placed on 
the final answer is 

for (i = 1; i <= z; i++) 
  for (j = 7; j <= i; j++) 
    for (k = 5; k <= i; k++) 
      sum++; 

where z is once again a function parameter.  Emtadel generates a 

summation equivalent to the sigma notation 
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The innermost summation will evaluate to zero on all iterations 
where i < 5.  Similarly, the middle summation will also be 
partially zero-trip.  Emtadel is able to store such conditions on its 
intermediate calculations, and final answer is 
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if z ≥ 7.  If z is less than 7, the summation evaluates to zero. 
 This symbolic approach allows the timing analyzer to input 
loop variable information directly instead of having to form 
equations independently.  The improvement replaces a significant 
portion of code contained within the timing analyzer and 
improves encapsulation.  Additionally, any condition(s) placed on 
the final solution allows the timing analyzer itself to place 
conditions on the validity of its final answer. 

3. ANALYSIS USING SYMBOLIC 
FORMULAS 
 The summation solver Emtadel requires a polynomial data 
structure to calculate and represent the symbolic solution of a 
summation.  The timing analyzer also uses polynomials to 
compute parametric results.  We adopt the following definition of 
polynomials: a polynomial contains one or more terms combined 
using addition.  A term consists of zero or more variables each 
raised to a power.  Each term is multiplied by either a constant 
(any rational number) or a polynomial chain.  A polynomial chain 
allows the timing analyzer to express a parametric formula as the 
maximum (or minimum) of two or more polynomials.  This 
functionality is required when the largest (or smallest) of a group 
of polynomials cannot be known until the values of variables are 
substituted into the expressions. 
 A polynomial chain allows both Min and Max expressions.  
One reason for this functionality is completeness – the polynomial 
class as a whole was designed to be stand-alone.  But the primary 
reason is actually the timing analysis algorithm.  Although one 
normally thinks of WCET as a maximum of several possible 
values (see Table 1), intermediate steps may require calculating a 
minimum.  Thus, it is possible to find a Min(…) expression as 
part of the WCET. 
 As the polynomial class was written, classes from C++ 
standard template library – namely vectors – were used to 
maximize performance.  The additional overhead of the 
polynomial class does not degrade the performance of the timing 
analyzer.  Even timing the benchmark Matmult (see Table 1) 
which has fifteen timing nodes still completes in less than three 
seconds on a Sun Ultra 10 workstation.  (The Sun Ultra 10 
workstation used during the test contains an UltraSPARC IIi 
processor running at 440 MHz and 256 MB of memory.)  
Polynomials may be simplified after each operation which means 
successive operations complete more quickly. 

4. RESULTS 
 We selected several test programs to demonstrate the 
effectiveness of Emtadel and the enhanced timing analyzer.  For 
sake of brevity, only a few benchmarks are shown in this paper.  
Parametric benchmarks are identical to scalar ones except that the 
limit values of loops are parameters passed into the function.  The 
main function receives a different command line argument for 



   
each different loop limit.  The argument is a left shift amount 
which means 20, 21, …, 29 are all valid numbers of maximum 
iterations.  This approach introduces the minimum amount of 
extra code into the benchmark’s source.  We chose these numbers 
for convenience in testing; the timing analyzer is not limited to 
benchmarks which contain an unknown number of iterations 
which are powers of two. 
 Table 1 shows the results some benchmark programs.  The 
column estimated cycles gives the execution time predicted by the 
timing analyzer.  Observed cycles was obtained by using the 
integrated instruction cache and pipeline simulator which received 
worst case input data. 
 All of the benchmarks implicitly contain control flow 

information because they have been parameterized.  The timing 
analyzer performs additional control flow constraint analysis as 
previous described in [3].  Had this analysis not been performed, 
the benchmark Summinmax (which contains an infeasible path) 
would have an additional overestimation of 5 percent.  Although 
multiple paths exist in each timing node, only the benchmark 
Integral reports its final answer as the Max of two distinct 
polynomials.  In the intermediate steps, the other benchmarks also 
calculated a symbolic solution using Max expression.  
Nonetheless, the polynomial data structure was able to determine 
in these other cases that one of the polynomials was always larger 
than the other.  Hence, the smaller polynomial expression has 
been subsumed by the larger. 

Table 1: Results for Parametric Test Programs 

Program Formula n iterations Observed Cycles
Estimated 

Cycles Ratio 

16 20,026 20,066 1.002Integral Max((153/2)n2 – n + (193/2),  
(153/2)n2 + (49/2)n + 90) 128 1,256,562 1,256,602 1.000

16 175,399 175,929 1.003
Matmult 31n3 + 186n2 + 61n + 361 

64 8,891,095 8,892,585 1.000

16 9,702 9,929 1.023
Sprsin 36n2 + 33n + 185 

128 592,774 594,233 1.002

16 318 329 1.035
Summinmax 16n + 73 

128 2,110 2,121 1.005

5. CONCLUSION 
The contributions of this paper are twofold.  First, we describe a 
generalized procedure for computing summations that represent 
the number of iterations of nested loops.  This approach can 
handle scalar as well as multi-variate quantities and express the 
number of iterations in terms of loop invariant parameters.  
Second, we significantly enhanced an existing timing tool so that 
it represent both the number of iterations as well as the WCET of 
code segments in terms of generalized polynomial expressions 
rather than simply a scalar number of cycles.  We then enhanced 
its loop analysis algorithm to take advantage of our new 
polynomial representation and accurate loop iteration 
computations.  The result is that we are now able to statically 
bound the WCET for a larger class of benchmarks. 
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