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Abstract
Recent trends in CMOS fabrication have the demand to conserve
power of processors. While dynamic voltage scaling (DVS) is ef-
fective in reducing dynamic power, microprocessors produced in
ever smaller fabrication processes are increasingly dominated by
static power. For such processors, voltage/frequency pairs below a
critical speed result in higher energy per cycle than entering a pro-
cessor sleep mode. Yet, computational demand above this critical
speed is best met by DVS techniques while still conserving power.

We develop a novel combined leakage and DVS schedul-
ing algorithm for real-time systems, DVSleak, based on earliest-
deadline-first scheduling (EDF). Our method trades off DVS with
leakage, where the former slows down execution while the latter
intelligently defers dispatching of jobs when sleeping is benefi-
cial. We further capitalize on feedback knowledge about actual ex-
ecution times to anticipate computational demands without sacri-
ficing deadline guarantees. As such, we contribute a novel feed-
back delay policy for leakage awareness, which addresses struc-
tural limitations of prior approaches. Experiments show that this
combined DVS/leakage algorithm results in an average of (a) 50%
additional energy savings over a leakage-oblivious DVS algorithm,
(b) 20% more energy savings over a more simplistic combination
of DVS and sleep policies and (c) 8.5% or more over dynamic slack
reclamation with procrastination. Particularly task sets with periods
shorter than ten milliseconds profit from our approach with 15%
energy savings over best prior schemes. This makes DVSleak the
best combined DVS/leakage regulation approach for real-time sys-
tems that we know of.

Categories and Subject Descriptors D.4.1 [Operating Systems]:
Process Management—scheduling; D.4.7 [Operating Systems]:
Organization and Design—real-time systems and embedded sys-
tems

General Terms Algorithms, Experimentation

Keywords Real-Time Systems, Scheduling, Dynamic Voltage
Scaling, Leakage, Feedback Control
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1. Introduction
Power consumption in a CMOS-based processor consists of three
elements: dynamic, static, and short-circuit power [16]. Most of the
previous work on dynamic voltage scaling (DVS) only considers
dynamic power consumption of a CMOS circuit while ignoring the
static portion [23, 19, 4, 13, 7, 8, 18, 22, 21]. Static power consump-
tion stems from leakage current that exists even in the absence of
logic operations of a circuit. While both static and dynamic power
increase (at different rates) with the supply voltage and, hence,
processor frequencies, a better metric for the effectiveness of a
frequency/voltage setting is energy per cycles, which relates the
amount of work to energy. Jejurikar et al. found that as the supply
voltage is reduced below a certain threshold value, static energy
per cycle exceeds the dynamic energy per cycle, i.e., it becomes
the dominant cause of power consumption per se (see Figure 2 of
[12]). The processor frequency associated with this threshold volt-
age is called the critical speed. Above the threshold voltage (and
associated frequency), the total energy per cycle increases as the
processor voltage scales up and can operate at a higher frequency to
get more work done (instructions executed). But below the thresh-
old voltage, the total energy per cycle also increases as the voltage
scales down. This is because lower frequencies imply lower perfor-
mance, i.e., increased execution time for the same amount of work
during which leakage power is consumed. Instead of prolonged ex-
ecution below the critical speed, the processor should be suspended
in a shallow sleep mode during which only negligible power is con-
sumed, typically three orders of a magnitude less than during any
execution mode. This result leads us to re-consider two issues when
combining DVS and leakage awareness:

1. It is not energy-efficient to scale down processor voltage and
frequency to an extremely low level if that level is below the
threshold value and it is beneficial to enter a sleep mode instead.

2. Due to leakage power, forcing the processor into sleep mode
may be more energy-efficient than keeping the system idle at
a low frequency as long as the idle period is long enough to
compensate for the shutdown overhead.

Capitalizing on these observations, we devise a novel feedback
delay policy that, in contrast to structural limitations of any prior
work, makes online decisions about when to delay a task release
based on actual execution times without jeopardizing deadlines.

Of course, any combined DVS/leakage policy has to take into
account the above items and should make decisions according to
the actual power consumption characteristics. These issues have
been addressed in previous work where both static and dynamic
power consumption are reduced [10, 15, 12]. These approaches ei-
ther assume that all tasks are running at the same speed (to conserve
static power) or they use off-line schemes without fully exploiting
the power saving potentials. Lee et al. further use a greedy method
to locally maximize the duration of alternating idle and busy pe-
riods based on the worst-case execution time [14]. Jejurikar et al.
use static slack combined with deferring/delaying execution (pro-
crastination) [12]. Since actual execution times often diverge con-



siderably from the WCET, a conceptually busy period is actually
interspersed with dynamic slack due to early completion of jobs.
The potential of dynamic slack remains unused. An extension of
the latter work also exploits dynamic slack for suspension [11].
They promote a policy similar to our trade-off between scaling and
delaying for suspension in Section 4. However, they do not pro-
vide a look-ahead policy for deciding whether to delay early or
late, such as our novel feedback delay policy detailed in Section
5. They report between 0.3-16% energy savings over their static
procrastination algorithm with larger savings for higher utilizations
and actual execution times up to a tenth of their WCET. In contrast,
we uniformly outperform their most advanced dynamic slack recla-
mation scheme for varying utilizations, actual to WCET ratios and
execution patterns with an average of 8.5% additional savings. For
shorter periods, these savings increase to 15%. This shows that our
policy of delay now or later is crucial in achieving additional en-
ergy savings. Furthermore, the work by Jejurikar et al. assumes that
a power manager, implemented as a controller in hardware, handles
interrupts and sets timers when new tasks are released. In contrast,
our scheme does not require any special hardware support beyond
DVS and sleep modes, nor does it assume execution times equal to
their worst-case bounds.

In this paper, we present an on-line combined DVS/leakage con-
trol scheme that minimizes both static and dynamic power con-
sumption. This scheme profits from our feedback-DVS algorithm
that exploits a modified earliest-deadline-first (EDF) scheduling
variant. It automatically chooses between voltage scaling and a pro-
cessor sleep mode according to the run-time execution scenario of
tasks. Voltage scaling is used when dynamic power dominates the
total power consumption. Conversely, a processor sleep mode is
entered when static power dominates the total power consumption.
Our scheme also locally adjusts the dispatch time of a task so that
adjacent tasks are either clustered together or scattered apart to in-
crease the opportunity of entering the sleep mode. It incorporates
preemption handling and models wakeup overhead. We also show
that the overhead in time for suspend/wakeup is 225 and 80 µs,
respectively, with actual measurements on a test platform. Hence,
sleep mode utilization in real-time systems is realistic for contem-
porary embedded architecture.

The rest of the paper is organized as follows. Section 2 intro-
duces the system model. Section 3 presents the motivation for com-
bined leakage reduction and DVS. Section 4 discusses the relation-
ship between speed reduction and task delaying. Section 5 details
the delay policy of our algorithm. Section 6 shows experimental
results based on simulation. Section 7 discusses related work, and
Section 8 summaries the paper.

2. System Model
This paper targets hard real-time systems with a periodic, pre-
emptive and independent task model. There are n periodic tasks
in the system. Each task Ti in the task set is defined by a triple
(Pi, Di, Ci), where Pi, Di and Ci are the period, relative dead-
line, and worst-case execution time (WCET) of Ti, respectively.
While a task can execute at different processor frequencies, Ci al-
ways refers to the execution time measured at the maximal proces-
sor frequency. We also assume that Di=Pi in our model, which is
the most common case in real-time systems. The periodically re-
leased instances of a task are called jobs. Tij is used to denote the
jth job of task Ti. Its release time is Pi ∗ (j − 1) and its deadline
is Pi ∗ j. We use cij to represent the actual execution time of job
Tij . The hyperperiod H of the task set is the least common multiple
(LCM) among the tasks’ periods.

To assess power consumption, we employ the power model of
a CMOS circuit due to Martin et al. [16]. The power consumed in
a processor consists of three portions: dynamic power PAC , static
power PDC , and short-circuit power. Short-circuit power is only

consumed during signal transitions and, in practice, is generally
negligible [16]. Hence, we consider static and dynamic power in
our model. Similar power models are also used in related work
[12, 20]. Dynamic power is given by:

PAC = CeffV 2
ddf (1)

where Ceff is the average switched capacitance per cycle, Vdd is
the supply voltage, and f is the processor clock frequency. Static
power is given by:

PDC = VddIsubn + |Vbs|(Ijn + Ibn) (2)

where Isubn is the sub-threshold leakage current, Vbs is the body
bias voltage, and Ijn and Ibn are the drain and source to body
junction leakage currents, respectively.

A DVS-enabled processor is capable of operating at multiple
frequency and voltage levels. Reducing the voltage also reduces
the highest stable frequency supported by the system. Since the
processor frequency determines the speed of the system, we use
these two terms interchangeably in this paper. Static and dynamic
power can be traded off against each other in practice. It has
been shown that there exists a threshold voltage Vth below which
execution is no longer energy efficient, i.e. the voltage should not be
scaled below this threshold value [12]. From the threshold voltage
Vth, one can derive a corresponding threshold frequency fth, the
critical speed. Instead of operating at a speed below the threshold
value, it is more power efficient to execute tasks at or above the
critical speed. The reason for this observation is that the leakage
power, which dominates below the critical speed, is incurred for
a longer period of time as frequency is scaled below the critical
speed. Thus, at extremely low speeds, longer execution results in
higher overall energy per cycle than shorter execution at a higher
frequency followed by a sleep interval since there is virtually no
leakage power consumed during sleeping.

Sleep modes are widely supported by contemporary processors
as a special state. However, the transition into and out of a sleep
mode does not come without cost. Such a transition incurs addi-
tional power consumption, termed sleep overhead from here on.
This overhead is mostly due to warm-up of resources (particularly
caches) when resuming execution. Hence, sleeping is only a viable
option when the energy saved by sleeping exceeds that of the sleep
overhead itself.

In the following, we assume a deep sleep mode during which
only the interrupt line of a processor remains receptive. Other parts
of the processor, including caches, are turned off and will lose their
state. In our model, we assume that the processor consumes a negli-
gible amount of energy when in sleep mode. Power consumption in
the sleep mode is documented as being three orders of a magnitude
lower than the power consumption in active mode [9]. Transition-
ing into and out of a sleep mode incurs, as a side-effect, cold misses
in cache among other resource refresh overheads. Let Esd be the
additional energy per wakeup. The overhead of entering and exit-
ing the sleep mode is also included in the sleep threshold derived
below.

Let pidle be the power consumption when the system is idle
plus the overhead due to cold misses upon wakeup. Then, tth =
Esd/pidle defines a sleep threshold. It is energy efficient to enter
sleep mode if and only if the slack time in the schedule exceeds tth.
Otherwise, the processor should remain idle at a power-efficient
DVS level. These parameters are platform dependent but are avail-
able to the operating system scheduler at system initialization.

In the following, we describe the DVSleak algorithm, which is
integrated into the task scheduler and contains policies for reducing
both static and dynamic power.



3. Motivation
Our leakage-aware DVS algorithm is based on a feedback-DVS
algorithm adopted from Zhu at al. [25, 26]. Their approach handles
of preemptions, simultaneous task releases and provides a proof for
correctness in terms of never missing deadlines. We provide a brief
description of this algorithm in the following. Instead of executing
each task at a uniform speed, a task’s worst-case execution time is
divided into two sub-tasks, TA and TB , as shown in Figure 1. Their

TBTA

CB

t

f_max
Frequency

f_A

CA/a_A

Figure 1. Task Splitting

worst-case execution time under the maximal frequency is CA and
CB , respectively. These two subtasks are allowed to execute at
different frequency and voltage levels. TB always executes at the
maximum frequency level fmax, which allows TA to execute at a
lower frequency level fA than it could without task splitting. Based
on this frequency,

αA = fA/fmax (3)
is the so-called scaling factor by which execution speed is reduced.
By splitting each task into at most two subtasks, at most one speed
change is incurred for every task. This keeps the impact of voltage
and frequency switching overhead to a minimum.

A task is split in such a way that its anticipated execution
can complete within the TA portion. If its execution exceeds the
anticipated value, there is still enough time reserved in TB to meet
its deadline (see their paper [26] for a proof). With this scheme,
the frequency of TA can be safely scaled exploiting the available
slack while TB executes at the maximum frequency following a
last-chance approach [6]. In addition, feedback is used to collect
each task’s previous execution history for the scheduler to assist
in making scheduling decisions for future tasks. A task’s expected
actual execution time is used to determine the length of the TA

subtask of the next instance. In the following, a task’s expected
actual execution time is also used in our delay policy to decide
when to delay the task’s release time.

To make the DVS algorithm leakage aware, our feedback-DVS
scheme takes into account the impact of dynamic power as well
as the threshold voltage to consider the effect of static power. A
naı̈ve scheme is to mark all voltage and frequency levels below the
threshold as invalid, so that whenever the DVS algorithm wants
to assign a speed below that threshold, it uses the threshold value
instead. A task then runs at a higher speed than its original assign-
ment. It completes earlier providing more dynamic slack prior to
its deadline. As long as the slack is long enough to compensate for
the shutdown overhead, the DVS scheduler can put the processor
into a sleep mode during that interval to further reduce the impact
of static power consumption.

Unfortunately, such a naı̈ve scheme does not fully exploit the
energy saving potential. Consider the three tasks depicted in Figure
2(a). Task T1 completes at time t1. Task T2 is released at time t2
and completes at time t3. Task T3 is released at time t4. Let the
lengths of both idle intervals [t1, t2] and [t3, t4] be less than the
threshold tth. Hence, the processor is kept in an idle state during
the above intervals instead of entering a sleep mode. Both static
and dynamic power consumption exist in the idle state. The energy
cost for an idle state, although lower than the energy for a non-idle
running state, is still significantly higher than the energy for a sleep
duration of the same length of time.

T1 T2 T3

t1 t2 t3 t4

idle

t

idle

(a) DVS without Delay Policy

T1 T3

t1 t2 t3 t4

T2

sleeping

T2

t2’ t

(b) DVS with Delay Policy, WCET

T1 T3

t1 t2 t3 t4

T2

t2’ t

sleeping idle

T2

t3’

(c) DVS with Delay Policy, Actual Execution Time

Figure 2. Combining DVS and Leakage Savings

To further exploit the savings for both static and dynamic power,
we adapt the schedule of the system to reduce static leakage as
much as possible. Consider shifting task T2 to line up with the
release time of T3 as depicted in Figure 2(b). T2 is now activated
at time t2′. The interval [t1, t

′

2] then exceeds the sleep threshold
value tth so that the processor enters a sleep state during that
interval. Static power is almost eliminated while sleeping. The
only consumption the processor pays is dynamic power as well
as the wakeup overhead. Figure 2(b) is the ideal case where T2

completes exactly before the release of T3, thus maximizing the
processor sleep period. Even if T2 takes less cycles than expected
and completes earlier, delaying the activation time of T2 costs less
energy than the non-delay policy. As shown in Figure 2(c), if T2

completes earlier, the processor enters the idle state till the release
time of T3. The energy saved in [t1, t

′

2] due to sleeping makes the
delay policy superior to the non-delay schedule, as shown in Figure
2(a).

The above example illustrates the benefit of the delay policy in
terms of reduced leakage in a DVS-aware system. In the follow-
ing, we present an algorithm that combines this delay policy with
dynamic slack reclamation and feedback of actual execution times.

4. Speed Reduction vs. Task Delaying
DVS technology modulates the processor speed according to the
amount of slack in the schedule. The existence of slack is due (1)
either to the under-utilization of system workload, which can be
determined statically, (2) or to the early completion of tasks, which
is determined dynamically. A dynamic voltage scaling algorithm,
when integrated with leakage saving schemes, needs to address two
issues. First, it needs to determine how to distribute the amount of
slack between speed reduction and task delaying. Second, it needs
to decide if the release time of a job should be delayed. This section
focuses on the first challenge while the next section addresses the
second one.

Consider the example in Figure 3(a). Lowering the processor
voltage and frequency, i.e., reducing the application speed, de-



creases the amount of slack available in the schedule, as depicted
in Figure 3(b). Similarly, delaying the activation time of a task by

t

Ti

Ti
t

Ti
t

slack

(a) Schedule without DVS

(b) Speed Reduction

(c) Task Delaying

sleeping

Figure 3. Speed Reduction vs. Task Delaying

putting the processor into a sleep mode also decreases the amount
of slack, as depicted in Figure 3(c). During execution, the amount
of slack is always a shared resource between these two compet-
ing operations. The DVS algorithm has to define a policy to dis-
tribute the slack between these two schemes. This dilemma can be
solved based on the critical speed (frequency). We prefer a lower
frequency over task-delaying as long as the resulting frequency is
higher than the critical speed, i.e., if such a choice results in lower
energy. Conversely, when our frequency scaling scheme suggests a
speed lower than the critical speed, we default to the critical speed
and activate the delay policy. This scheme reflects a best effort to
reduce power. According to the above analysis, whenever a task
completes and a new task Ti is released, the DVS algorithm uses a
feedback-EDF scheme (adopted from [25]) to calculate a frequency
level fi. The actual frequency f assigned to task Ti is defined by:

f = min(fi, fth) (4)

Given the actual frequency of task Ti, a corresponding voltage
can be derived. But before task Ti is released, the DVS scheduler
has to decide whether or not the release time of the task needs to be
delayed. This issue is detailed in the following section.

5. Feedback Delay Policy
The example in Section 3 seems to imply that a task should always
be delayed (procrastinated) as much as possible against its dead-
line. This is also the strategy used in previous work [12, 20, 11].
Such an intuitive approach, however, is not always the best solu-
tion. This is due to the variability of the actual execution time of
tasks. Figure 2(b) shows the case where the execution time of task
T2 equals its worst-case execution time. In reality, the actual execu-
tion time of a task is generally shorter than its worst-case execution
time.

A schedule without delay of Ti’s release time leaves the proces-
sor idle in the beginning. Some time later, the processor enters a
sleep mode, as shown in Figure 4(a). Figure 4(b) depicts the effect
of a delayed schedule, where the processor enters the sleep mode
first and later on incurs a potentially longer idle period, thereby
consuming more power than in case (a). This effect is due to the
delay policy, which relies on the WCET instead of the actual ex-
ecution time of Ti to determine the delay. When a task completes
earlier than expected, it produces additional dynamic slack, which
significantly reduces the benefit of the delay policy.

Taking this short-coming into consideration, we present the fol-
lowing delay policy as part of our DVSleak algorithm. We observe

t
(a) Non Delay

Ti

idle

idle

Ti
t

(b) Delay
WCET

sleeping

sleeping

Figure 4. Delay vs. Non-delay

that at any time t, the DVS algorithm can infer the amount of slack
st in the schedule. If the ready queue of the scheduler is not empty,
the delay policy remains inactive. As shown in Figure 5, the next
task Ti will be released at time tr (tr ≥ t) according to the EDF
scheduling. With the knowledge of st, the feedback-DVS algorithm
assigns a processor frequency fA and a scaling factor αA, as de-
fined in Equation 3, for TA, which is the first subtask of Ti in the
task splitting scheme. Since the number of execution cycles of Ti

is also split into two parts, we have

CA

αA

+ CB =
Ci

αi

(5)

where αi is a unified scaling factor of the entire task (as if the
task had not been split). By introducing αi, the delay policy of
the following task can be easily integrated into any DVS algorithm.
From Equation 5, we derive αi:

αi =
CiαA

CA + CBαA

(6)

Let ci be the expected actual execution time of Ti provided
by a feedback scheme based on the execution times of previous
instances of task Ti. The latest time that Ti can complete without
missing its deadline is given by:

td = t + st + Ci (7)

where Ci is the WCET of Ti. Time td can also be represented as
the minimum of the absolute deadline of the task and the release
time of the next task in the EDF schedule after Ti, i.e.,

td = min(di, tri+1
) (8)

Notice that if the next task is released together with Ti, there will
only be one idle period prior to Ti.

t td

frequency

Ti
f_i

tr

s1 s2C_i /   _iα

Figure 5. Rules for Task Delaying

We use the following rules, based on feedback of actual execu-
tion time, ci, to determine the modified release time of Ti.

1. Task Ti is released at time tr (as under standard EDF) if and
only if

(a) td − t − Ci/αi ≤ tth, or,
(b) td − t − Ci/αi > tth and tr − t < tth and Ci/αi − ci ≥

tr − t.



2. Task Ti is released at time td−Ci/αi (later than under standard
EDF) if and only if

(a) td − t − Ci/αi > tth and tr − t ≥ tth, or,
(b) td − t − Ci/αi > tth and tr − t < tth and Ci/αi − ci <

tr − t.

Rule 1 covers the cases where the release time of task Ti is
not delayed. Conversely, Rule 2 captures the cases where it should
be delayed. Rule 1(a) applies when the total amount of slack time
in [t, td] (equivalent to s1 + s2 in Figure 5) is less than the sleep
threshold tth. Task Ti is not delayed since there is not enough slack
to benefit from sleeping, regardless of whether or not the task is
delayed. Rule 2(a) applies when the total amount of slack is greater
than the sleep threshold tth and the initial slack s1 is at least as large
as this threshold, which ensures that sleeping will be beneficial. By
delaying Ti’s release time to td − Ci/αi, we increase the amount
of slack prior to T’s execution as much as possible to prolong the
initial sleep duration.

Rule 1(b) and Rule 2(b) capture cases where the length of
the first slack s1 is less than the threshold tth while the overall
slack s1 + s2 exceeds this threshold. In these cases, delaying the
release time of task Ti does not always result in the longest sleep
duration. Figures 4(a) and (b) illustrate the best efforts reflected by
Rules 1(b) and 2(b), respectively. The decision is, in fact, based on
the anticipated portion of unused execution time (WCET - actual
execution time). If this portion is equal or larger than slack s1, it
is beneficial to accumulate more slack (due to early completion
within Ci/αi − ci) with s2, which does not require the task to be
delayed, as reflected in Rule 1(b). Conversely, if the unused portion
is less than slack s1, late slack (s2) is merged with early slack (s1)
by shifting the execution of T to the latest possible point in time,
which lengthens the beneficial sleep duration prior to the shifted
task, as reflected in Rule 2(b). This heuristic approach is relatively
simple but yields promising results, as will be shown. Notice that
ci, the expected actual execution time of task Ti, is provided by the
feedback controller according to previous execution history (based
on related work, see [25, 26] for details).

We combine this task delay policy with the existing DVS algo-
rithm. By enhancing the algorithm with the delay policy, we still
guarantee the feasibility of the schedule for the task set, as stated
by the following theorem.

THEOREM 1. If a feasible schedule exists for a task set under EDF
scheduling, the modified schedule after applying the delay Rules 1
and 2 is guaranteed to be feasible as well.

PROOF. For any task Ti in the task set, let di be its absolute
deadline. If T meets its deadline under EDF, then its release time tr

satisfies:
tr + Ci + st ≤ di (9)

According to the above relationship and Equation 7, we know that
td ≤ di. Delay Rules 1 and 2 either release Ti at its original EDF
time tr or at time t′r = td − Ci/αi. In the former case, Ti will not
miss its deadline since Ti is scheduled as in conventional EDF. In
the later case, let Ti’s worst-case execution time after frequency
scaling be C′

i . Then, C′

i = Ci/αi. In the worst case, Ti will
complete before

t′r + C′

i = td − Ci/ft + Ci/αi = td ≤ di (10)

since it will be activated at its new release time t′r and no other tasks
are ready in [t, td] due to Equation 8. Hence, Ti again completes be-
fore its deadline and the task set can still be feasibly scheduled.

6. Execution at Sub-Critical Speed
The critical speed result was originally derived in a pure DVS
environment [12]. When considering the option to enter a sleep

mode to reduce leakage, the above argument that one should never
scale down below the critical speed no longer holds. The reason
for this lies in the overhead for sleeping, which requires one to
decide on whether to sleep or not. If it is not beneficial to sleep
(due to the energy cost when entering/exiting the sleep mode), the
processor will for one part execute jobs and for the other part be
idle. Hence, the lowest possible energy results when scaling at the
lowest possible frequency to still meet deadlines, even below the
critical speed, since the processor will be awake in any case.

We incorporate this technique in DVSleak by allowing jobs to
scale below fth if and only if a sleep mode is not entered for a
given period of time (and only for this period). Thus, Equation 4 is
constrained to only be applicable prior or after sleeping, as depicted
in Figure 5 for Ti’s execution and the sleep duration but not for any
idle intervals. Instead, slack due to idle can be greedily exploited
for DVS by jobs prior and after Ti. For those jobs, the original
feedback DVS technique based on task splitting with Equation 3
applies at any frequency.

7. Framework
Our experimental framework is based on extensions of a simula-
tor [26] that has proved to reliably model energy at the granularity
of tasks. In addition, we assessed the overhead of dynamic sleep-
ing for suspend and wakeup operations on a IBM PowerPC 405LP
test board [17]. This 32-bit processor contains split caches and a
TLB, all of which are volatile during suspension while the RAM
remains refreshed in this so-called suspend mode. We used the Pro-
grammable Interrupt Timer (PIT) to assess the sleep overhead and
verified these results using a wall-clock based skewing technique.
In both experiments, we observed overheads of suspend/wakeup
operations as 225 and 80 µs, respectively, with variations of ±5µs.
This shows that sleep modes can be quickly entered, and execution
can swiftly resume on contemporary microprocessors if properly
designed for power awareness. These results and related work [26]
show that such small overheads can be safely ignored in simulation
frameworks and that Equation 1 is sufficient to accurately compare
policies for task-level power consumption of real-time systems.

We subsequently implemented our leakage-aware DVSleak al-
gorithm in a simulation environment obtained from [26] using the
power model described in Section 2. We assume the processor has
four discrete frequency levels, which are 25%, 50%, 75% and 100%
of fm. fm is the maximal frequency supported by the processor.
The corresponding power consumption at these four frequency lev-
els are 550mW , 650mW , 990mW and 1480mW , which are cal-
culated using the approach described elsewhere [12]. The processor
enters an idle state when no ready tasks are available.

From this, we derive the shutdown energy overhead, Esd, as
483µJ . The idle power, pidle, is 240mW , and the sleep threshold,
tth, is 2ms for a deep sleep mode that looses cache content and
only keeps a processor’s interrupt line active. The critical speed,
i.e., the threshold frequency, fth, is 41% of fm, which means
that jobs execute at the next-higher frequency level of 50% in
the presence of sleeping while a level of 25% remains valid in
intervals without sleeping (see Section 6). These overhead settings
are consistent with prior work, which facilitates a direct comparison
[12, 11, 20].

In order to assess the energy saving potential of our combined
leakage-aware DVSleak algorithm, the following four algorithms
are implemented in the simulator.

Pure DVS: A pure feedback-DVS algorithm with preemption han-
dling but without any leakage power saving technologies (from
[25]). The algorithm does not observe trade-offs due to the
threshold frequency, i.e., the processor frequency can be scaled
below this threshold.
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(a) c=25%WCET
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(b) c=50%WCET
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(c) c=75%WCET

Figure 6. 3 Tasks, Pattern 1, under Different Actual Execution Times (Constant) and Utilization

DVS+sleep: The feedback-DVS algorithm with a sleep policy.
This algorithm puts the processor into sleep mode whenever an
idle period is longer than the sleep threshold. The algorithm dis-
ables any frequency levels lower than the threshold frequency
(41% of fm). Hence, 25% of fm is never used. However, this al-
gorithm does not implement a delay policy to further postpone
the release of a task.

DSR-DP: The dynamic procrastination algorithm with dynamic
slack reclamation (DSR-DP). This is an algorithm proposed
in previous work [11], which also considers leakage energy in
the processor model. Their algorithm reclaims slack from both
dynamic slowdown and dynamic procrastination.

DVSleak: Our algorithm presented in this paper. This is the hybrid
algorithm based on feedback-DVS with (a) DVS/sleep policy
(similar to [11]) and (b) a “delay now or later” policy described
in the last sections. This algorithm is the most aggressive one.
Besides putting the processor into sleep mode, it also delays
the release time of tasks according to our delay rules. The
delay rules increase the length of the sleep durations, which
saves more energy than other algorithms. DVSleak also exploits
knowledge about the threshold frequency.

A suite of task sets with synthetic CPU workloads was used
in the experiment. Depending on the experiments, each task set
contains three or ten independent periodic tasks whose worst-case
execution time (WCET) is in the range of 1ms to 100ms. The actual
execution time of a task follows four different patterns. Energy is
used as a metric for comparison as is valid in real-time systems
since we measure the power consumption over the same amount
of time (hyperperiod) and require the same amount of work to be
performed for a given utilization level and task set.

1. In pattern one, a task’s actual execution time remains constant
between different jobs.

2. In the second pattern, the actual execution time of a job starts at
50% of the task’s WCET before spiking to a peak value cm ev-
ery 10th job and then receding with a decay of ci = 1/2(t−cm)

again. This pattern simulates event-triggered activities that re-
sult in sudden, yet short-term computational demands due to
complex inputs often observed in interrupt-driven systems.

3. The third pattern differs from the second in its more gradual
decay function ci = cmsin(t + π/2). This pattern simulates
events resulting in computational demands in a phase of subse-
quent complex inputs (with a decaying tendency).

4. In the fourth execution pattern, the actual execution time of
the jobs alternates between two random extremes every 10 jobs
with an average execution time of ci = ±cmsin(t). This pat-
tern represents periodically fluctuating activities with gradu-
ally increasing and decreasing computational needs around ex-
tremes.

For each execution pattern, the task sets’ WCETs were uni-
formly distributed in the range of 1ms to 100ms. Each task’s period
was chosen so that the worst case utilization of the task set varies
from 0.1 to 1.0 in increments of 0.1.

In order to assess the performance of our algorithm, we also
calculate a lower bound on energy for each utilization case. We
construct an ideal schedule where each task runs at either the ideal
optimal speed or the critical speed, whichever the greater. Such
a schedule is used to approximate the minimum lower bound on
energy. Deadline misses are not considered in this schedule. The
number of times the processor enters a sleep or idle state is also
minimized by dividing the hyperperiod with the longest task period
in the task set. This ratio multiplied with the energy cost for wake-
ups, Esd, comprises the overhead considered for the lower bound.

8. Experiments
We conducted a set of experiments with task sets of three and ten
tasks assessing all of the above DVS policies under four differ-
ent patterns. We further assessed the affect of harmonic vs. non-
harmonic periods and short vs. long periods.
8.1 Energy for Set of Three Tasks
Figure 6 depicts the energy for three tasks of the different algo-
rithms with execution pattern one, as well as the lower bound en-
ergy for each utilization case. Putting the processor into sleep mode
saves as much as 80% more energy than the pure DVS algorithm,
which leaves the processor running in idle mode, sacrificing both
dynamic and static energy. When the utilization increases to 0.4
and larger, the sleep policy alone is not attractive since there is not
enough static slack in the schedule anymore. The DSR-DP pro-
crastination algorithm saves more energy than the DVS+sleep algo-
rithm at most utilization levels. But it also loses to the DVS+sleep
algorithm at one of the low and one of the high utilization cases.
Our DVSleak algorithm produces the lowest energy among all al-
gorithms, close to the optimal level. The biggest energy savings
are observed for medium-level utilizations, which are common in
practice.

On average, DVSleak shows its strength by saving 10% more
energy than the dynamic DSR-DP algorithm. This is because DSR-
DP uses a less aggressive slack reclamation scheme where only the
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(a) Avg. c=25%WCET
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(b) Avg. c=50%WCET
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(c) Avg. c=75%WCET

Figure 7. 3 Tasks, Pattern 2, under Different Actual Execution Times (Variable) and Utilization

slack from higher priority tasks can be reclaimed for either task
slowdown or procrastination. Our experiments revealed that this
limitation often results in tasks running at higher frequencies than
necessary. As long as a low-priority job has finished its execution,
assigning its dynamic slack for other high priority tasks is still safe
for meeting deadlines. Our DVSleak exploits that feature and uses
a more flexible slack reclamation and task delaying scheme. Our
experiments show that DVSleak outperforms the best prior scheme,
to the best of our knowledge.

DVSleak also saves 20% more energy than the DVS+sleep
algorithm and 50% more energy than the pure DVS algorithm. The
energy cost of DVSleak is often close to the lower energy bound,
never exceeding it by more than 25%.

Figure 7 depicts the energy of these DVS algorithms under
dynamic execution pattern two. In contrast to pattern one, dynamic
execution patterns exhibit a variable task execution time among
different jobs, which results in higher energy than pattern one
in corresponding cases. When considering the energy savings of
these DVS algorithms, we observe that DVSleak again shows its
advantage, particularly for medium and high utilization scenarios.
Even with varying workloads, the delay policy generates more
opportunities for sleeping than any of the other policies. It saves
40% more energy on average than the pure DVS algorithm. For all
execution patterns, the energy produced by DVSleak is also very
close to the lower bound in most of the utilization cases.

Patterns three and four are omitted since their energy is only
insignificantly higher (< 1%) than that of pattern two. While the
three patterns (patterns 2, 3, and 4) follow different fluctuations
in execution time, DVSleak works equally well for all patterns. It
saves 5-10% more energy on average than the DSR-DP algorithm
and 40% more energy on average than the pure DVS algorithm.
Overall, the combined sleep and delay scheme, DVSleak, exhibits
stable performance under different patterns due to the feedback
control scheme used in our DVS algorithm, which adjusts auto-
matically according to workload variations.

Occasionally, DSR-DP performs worse than DVS+sleep. While
the former utilizes a dynamic procrastination scheme, the latter
sometimes benefits from early delay decisions that result in smaller
remaining slack than any procrastination scheme with its heuristic
nature for energy savings. This behavior is more dominant for very
high utilizations.

8.2 Factors Affecting Energy
In a second set of experiments, we assessed the affect of task
periods. Each experiment is based on a different task set with

a utilization of about 60% and energy values normalized to the
hyperperiod of task set two (even if measured for a longer/shorter
hyperperiod). Actual task execution times are 50% of their WCET
under pattern one (constant between jobs). The results are depicted
in Table 1.

First, we contrast harmonic vs. non-harmonic periods in task
sets one and two, respectively. We observe that non-harmonic peri-
ods (task set two) result in higher energy for the same policy, vary-
ing between 10-27% depending on the policy. This is caused by
simultaneous releases of jobs, which are effectively folded under
DVS policies to one longer execution period before choosing an
appropriate frequency or sleeping. The savings of DVSleak over
DSR-DP are around 2% for the harmonic and 2.7% for the non-
harmonic case.

Second, we compare the effect of short vs. long periods for task
sets two and three. Shorter periods again result in higher energy
for the same policies, varying between 2-28% depending on the
policies. More frequent releases result in less opportunities to sleep,
which increases the overall energy requirements. The savings of
DVSleak over DSR-DP are around 15% for shorter non-harmonic
periods, which is larger than in the earlier experiments. Hence, the
length of periods is a significant contributor to the effectiveness
of different policies. Our DVSleak particularly excels over others
when periods are short. DSR-DP, in contrast, performs worse than
even a simple DVS+sleep policy.
8.3 Energy for Set of Ten Tasks
Figures 8 and 9 depict the energy for ten tasks of the different
algorithms with execution patterns one and two, respectively. They
also include the lower bound energy for each utilization case. We
observe that ten tasks result in 5-10% higher energy depending on
the policy than for three task. Similarly, the energy cost increases
by about 5% when the utilization under WCET is increased from
0.25 to 0.5 and again from 0.5 to 0.75. The overall trends are
similar to the 3-task experiments. Hence, we only summarize the
observations. Sleep modes result in significant savings (up to 80%)
over sleep-oblivious pure DVS. DVSleak outperforms DSR-DP

Task Period WCET Energy [mJ]
Set T1 T2 T3 T1 T2 T3 DVS DVS+sleep DSR-DP DVSleak
1 240 240 120 40 60 20 131.8 93.0 93.3 91.4
2 60 32 40 8 1 4 145.8 109.2 105.9 103.1
3 9 4.8 6 1.2 1 6 148.9 126.4 135.8 115.9

Table 1. Vary Periods/Overheads, U=50%, Pattern 1
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(a) c=25%WCET
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(b) c=50%WCET
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(c) c=75%WCET

Figure 8. 10 Tasks, Pattern 1, under Different Actual Execution Times (Constant) and Utilization
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(a) Avg. c=25%WCET
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(b) Avg. c=50%WCET
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(c) Avg. c=75%WCET

Figure 9. 10 Tasks, Pattern 2, under Different Actual Execution Times (Variable) and Utilization

while DVS+sleep provides the least amount of savings of the three
sleep policies. In fact, DVSleak is close to the lower bound in most
cases.

8.4 Summary of Results
These experiments provide a better understanding of the benefits
of each policy. The DVS+sleep algorithm, the DSR-DP algorithm
and the DVSleak algorithm show only insignificant differences
under extremely low utilization cases. In such cases, there is al-
ways enough slack for suspending processor execution, no matter
whether the release time of a task is delayed or not. For high uti-
lizations, in contrast, hardly any slack exists at all, irrespective of
delayed release times. Using the sleep policy alone in low utiliza-
tion case is sufficient by itself to achieve virtually the same reduc-
tion in energy as the combined policy, albeit at a lower algorithmic
complexity. At medium utilization levels, DVSleak excels due to
its combined sleep and delay policy and shows its true potential of
energy savings.

Scaling below the critical speed, as described in Section 6, did
not provide additional benefits in the experiments due to a chosen
shutdown overhead of 2ms. Given the shortest WCET of 1ms in
our task set and an actual execution time of 0.5ms, scaling of TA at
25% would result in 1.5ms execution plus the TB part of 0.5ms at
100%, which adds up to 2ms. Hence, choosing a lower than critical
speed is only beneficial for short jobs. This was demonstrated
by significantly lower energy results of 15% under DVSlead than
under DSR-DP (task set three in Table 1).

9. Related Work
Static power consumption caused by leakage current has attracted
much attention in recent years. Conventional scheduling strategies
are modified to be leakage-aware, which saves energy when com-
bined with dynamic voltage scaling algorithms. Lee et al. [15] pro-
posed greedy methods to locally maximize the duration of alternat-
ing idle and busy periods based on the worst-case execution time
[15]. Algorithms are integrated into conventional dynamic priority
scheduling and fixed priority scheduling policies. Their algorithm
is most effective when many relatively short inter-task idle periods
can be grouped together. But since actual execution times often di-
verge considerably from the WCET, a conceptual busy period will
actually be interspersed with idle due to dynamic slack inflicted
by early completion of tasks. The potential of such dynamic slack
remains unused.

Quan et al. described an enhanced DVS algorithm to reduce
both dynamic and static power consumption [20]. A latest release
time of each job in the task set is computed off-line and subse-
quently used by an on-line scheduler. Their approach is based on
fixed-priority scheduling while ours is based on dynamic priority
EDF scheduling. Their online scheduler always delays the release
time of a task to its latest start time (last chance) as long as the pro-
cessor is idle. Such an aggressive scheme, as shown in this paper,
is not always the most energy efficient solution. In our algorithm,
we make delay decisions based upon the actual execution time of
tasks via feedback, which is more energy efficient on average.



Jejurikar at al. enhanced EDF scheduling with a procrastina-
tion algorithm [12]. A delay interval is calculated for each task,
which only considers static task set information and may result in a
pessimistic schedule. An extension of the latter work also exploits
dynamic slack for suspension [11]. They promote a policy simi-
lar to our trade-off between scaling and delaying for suspension in
Section 4. However, they do not provide a look-ahead policy for
deciding whether to delay early or late as detailed in Section 5.
Hence, they report less than 1.5% energy savings over their static
procrastination algorithm. In contrast, we observe up to 15% sav-
ings over static procrastination, which shows that the latter policy
(“delay now or later”) is crucial in achieving additional energy sav-
ings. Our approach benefits from the knowledge about actual exe-
cution times obtain by the feedback approach to make such delay
decisions. It further capitalizes on dynamic variations in execution
time due to feedback DVS while their scheme is more limited in
that respect.

Aydin et al. developed a system-wide approach to energy man-
agement of real-time tasks and devices under EDF by non-linear
constrained solving [3]. They incorporate the concept of a critical
speed [12], albeit reformulated as energy relative to CPU speed.
Their design allows for sleep modes, yet their evaluation does not
cover sleep modes while our work does.

Chen and Kuo addressed procrastination in the context of rate-
monotone scheduling [5]. Our work, in contrast, builds on EDF
scheduling, which does not allow a direct comparison. But past
work on DVS indicates advantages of dynamic priority schedul-
ing, such as EDF, over static schemes [19]. Zhang et al. presented
a compiler-supported solution to reduce leakage energy [24]. Data-
flow analysis is employed to identify basic blocks that do not uti-
lize a given functional unit, which is temporarily deactivated by
compiler-generated software instructions. While their solution tar-
gets micro-architectural effects within a processor, our approach
takes a macro-level view that temporarily puts the processor, in-
cluding all of its resources, into sleep mode.

Andrei et al. presented an optimal algorithm for combined DVS
and leakage control to reduce energy for time-constrained systems
with dependent tasks represented in a precedence task graph as-
suming a continuous voltage range [1]. Their work combines DVS
with adaptive body biasing (ABB) to reduce leakage based on ei-
ther repeaters or fat wires for on-chip buses. They also show that
discrete voltage levels make the problem NP-hard and develop a
heuristic approach in later work that tries to reduce the number of
voltage transitions [2]. Our work does not consider the effect on
buses and assumes independent tasks under EDF. Since we con-
sider discrete voltage ranges, as seen in actual hardware, we also
use a heuristic approach but based on feedback of actual execution
times (in contrast to their variation of WCET). Most of all, ABB
reduces leakage in a manner orthogonal to our work, i.e., during
our DVS modulations, ABB can further reduce leakage power but
during sleep intervals our method goes beyond this by practically
eliminating leakage altogether.

10. Conclusion
Static power consumption has shown to be a crucial concern for
ever-smaller fabrication sizes of processors. Static power is caused
by leakage current, which even exists in the absence of logic oper-
ations in a CMOS circuit. In this paper, we presented a combined
leakage reduction and DVS algorithm, DVSleak. We pointed out
that greedily delaying the release time of a task to put the processor
into sleep mode does not necessarily yield the most energy-efficient
solution. The delay decision has to be made considering a task’s dy-
namic execution behavior. Hence, a static delay policy does not suf-
fice. DVSleak uses on-line information to derive a combined DVS
and leakage-aware schedule. After the DVS scheme has assigned
a speed for a job, a novel feedback delay policy determines the

job’s release time according to its expected actual execution time,
which is provided by a feedback controller. It incorporates pre-
emption handling and models wakeup overhead in terms of power
and time. Our experiments show that our combined algorithm saves
50% more energy on average than a pure DVS algorithm. DVSleak
further saves 20% more energy on average than a more simplistic
DVS+sleep approach and 8.5% or more than dynamic slack recla-
mation with procrastination. For shorter periods, these savings in-
crease to 15%. Furthermore, some prior schemes require special
hardware support beyond DVS and sleep modes while DVSleak
does not. This makes DVSleak the best combined DVS/leakage
regulation approach for real-time systems that we know of.
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