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Abstract

Increasing demands in processing power for real-time sys-
tems have been met by adding more cores to embedded ar-
chitectures. However, conventional programming languages
lack adequate support for parallelism with real-time con-
straints. To fill this gap, add-on design tools have been cre-
ated, often paired with real-time operating systems, to es-
tablish temporal guarantees, but they lack native language
support for expressing parallelism at a combination of coarse
and fine levels. OpenMP would be a good fit to specify such
parallelism as it comes with mature compiler and runtime
technology for mapping concurrency to execution units via
the operating system. However, OpenMP lacks real-time
support for scheduling and synchronization under deadline
constraints.

We analyze the suitability of existing OpenMP for coarse-
grained parallelism of real-time systems and identify key
points that prevent it from being used as-is. We develop a
framework, OpenMP-RT, which aims to address these short-
comings by creating a real-time task construct, with a focus
on periodic tasks, along with a robust specification for par-
allel real-time applications utilizing OpenMP-RT, including
support for time-predictable lock-free inter-task communi-
cation across priority levels. We implement OpenMP-RT in
the LLVM C compiler under OpenMP 5.1. We develop a test
suite based on a variety of benchmarks with real-time con-
straints and demonstrate the correctness and ease of use
of our OpenMP-RT implementation, as well as the perfor-
mance and predictability of multiple different paradigms for
inter-task communication.

CCS Concepts: -« Computer systems organization —
Real-time system specification; « Theory of compu-
tation — Parallel computing models.
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1 Introduction

Computer systems are a component of nearly every suffi-
ciently complex system in the modern world. A significant
number of these computer systems are so-called real-time
systems, or systems subject to timeliness constraints in ad-
dition to algorithmic correctness requirements. Often, real-
time applications are subject to tight timing bounds caused
by external factors, where a delay in processing could have
disastrous consequences, i.e., a cyberphysical system con-
trolling industrial equipment, where failure to respond to a
control signal in time could result in costly damages, injury,
or even loss of life. However, as powerful processors become
cheaper and more ubiquitous, we increasingly see real-time
software expected to share a processor with lower priority
non-real-time processes. The solution, in many cases, has
been to isolate the processes as much as possible to ensure
the timing guarantees for real-time processes are met.

Multi-core processors are another computing advance-
ment that is making inroads into the area of real-time sys-
tems, driven be the drop in cost that such devices have seen
as they have spread through the market [16]. However, while
scheduling real-time tasks in a single-core context is a well-
studied problem with known solutions, real-time scheduling
on multicore processors is still an open problem, with many
different frameworks and methods being actively researched.

Many frameworks for parallel processing have been
created to streamline the creation of multi-threaded pro-
grams [4, 12, 20]. The OpenMP standard, with its numer-
ous different implementations, is one of the most widely
used and influential paradigms in parallel programming. Cre-
ated initially for high-performance computing applications,
OpenMP has since seen expanded use cases, and is now be-
ing utilized in embedded and real-time areas. This trend has
been increasingly evident in recent years, as OpenMP has
received numerous updates and improvements to its func-
tionality [4, 11, 13].
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A key challenge in developing real-time systems is in
satisfying timing constraints as well as algorithmic correct-
ness. Frequently, such systems are subject to tight timing
bounds [6], not just in terms of speed, but predictability
as well. Timing bounds establish predictable execution but
necessitate special algorithms for scheduling the workload
on the processor. In addition, the existence of such timing
bounds imposes restrictions on synchronization between
threads; parallel frameworks operating in this space must
ensure that blocking caused by common synchronization
primitives (e.g., mutual exclusion locks) does not interfere
with timing guarantees of threads.

OpenMP, however, lacks a mechanism for periodic task
execution [2]. OpenMP does allow for an expression of de-
pendencies between tasks, represented as a directed acyclic
graph, but is entirely agnostic to the timing requirements
of the system. In addition, OpenMP’s scheduling focuses on
assigning tasks to threads (creating new threads where nec-
essary), but leaves the scheduling of threads onto cores up
to the scheduler of an operating system (OS) [1]. This limits
the usefulness of OpenMP in hard real-time to cases where
the OS itself can provide real-time guarantees to all threads,
but the OpenMP runtime lacks real-time OS awareness. This
prevents OpenMP programs from taking advantage of real-
time scheduling features, e.g., even for the widely-used Linux
kernel featuring real-time capabilities via the PREEMPT_RT
patch for earliest deadline first (EDF) and static priority (SP)
scheduling of threads. A complex and error-prone sequence
of system calls with the correct parameters is the only way
to create real-time tasks within such threads and to realize
periodic releases of their jobs. Furthermore, task synchro-
nization has to become real-time predictable, which is not
the case for OpenMP runtime systems.

The need for a system that can automatically execute
periodic real-time tasks in a parallel environment without
requiring extensive coding is well-established. Such a sys-
tem would reduce manual coding errors caused by API com-
plexity that easily lead to errors during task execution. Our
solution is to expand the existing OpenMP capabilities by
introducing the “OpenMP-RT” framework. OpenMP-RT pro-
vides novel pragma clauses for rttask construct and several
new clauses, which together introduce a model for periodic,
real-time tasks to run on multicore architectures using the
OpenMP API, constructs of lock-free reading and writing
to/from shared data between rttasks, and a syntax for a con-
figuration file to define the behavior of a real-time application
composed of rttasks. We have created an implementation of
the OpenMP-RT by enhancing the OpenMP 5.1 implemen-
tation in the LLVM compiler, including support for these
features in Clang and LLVM’s OpenMP runtime [8].

The key contributions of the work are:

® OpenMP-RT is proposed, which provides novel capabili-
ties to the OpenMP specification by creating the foundation
for developing periodic real-time applications supporting
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coarse- and fine-grained parallelism, hierarchical scheduling,
and inter-task communication.

e An implementation of OpenMP-RT targeting the C/C++
languages in the LLVM compiler implementation of OpenMP
5.1 is created.

e The correctness of OpenMP-RT is assessed through
an automated task generator, which incorporates task sets
from multiple OpenMP benchmarks, including the EPCC
and BOTS benchmarks [3, 5], as well as a comparison of
different paradigms for lock-free and lock-based inter-task
communication.

2 Related Work

Significant interest has been raised in utilizing the benefits
of multicore architectures in real-time systems, despite the
difficulties inherent to real-time scheduling in multi-core
systems [7, 9, 14, 17]. In this context, a number of studies
have explored the potential of OpenMP for parallel process-
ing and specifically for in real-time systems with a focus on
the assessment of timing constraints guaranteed by exist-
ing OpenMP implementations [17, 18]. However, the results
of these studies indicate limitations in predictability rooted
within OpenMP, which was not designed with real-time con-
straints in mind but was instead using a best-effort model [4].
In contrast to prior work, OpenMP-RT contributes not only
novel functionality to OpenMP via new pragma and clause
support but also have a well defined semantic in support
of real-time requirements for predictable timing, prioritized
scheduling and bounded synchronization costs. We have
also provided a full implementation and empirical evalua-
tion to accompany these developments, whereas prior work
was constrained to conceptual studies into the addition of
syntactical constructs to the OpenMP runtime [15] without
implementation.

Serrano et al. [13] discuss the suitability of OpenMP for
developing multi-core real-time applications and propose a
number of extensions to the OpenMP specification that im-
prove support for real-time systems. They note the relative
ease of fine grained, within-task parallelism using OpenMP,
with their changes focusing on support for coarse-grained
parallelism. Serrano addresses the lack of recurrent tasks
in OpenMP by extending the task construct with an event
clause, which accepts an expression argument. A new job
from the associated task is released whenever the expres-
sion in the task’s associated event clause evaluates to true.
The paper notes that there are multiple ways to implement
the mechanism behind recurrent tasks, but leaves a full ex-
ploration of this implementation outside its scope. They
further extend the OpenMP task construct with deadline
and priority clauses, which specify those features of the
real-time task to the scheduler. The paper describes the re-
quirements for the OpenMP specification to incorporate a
static priority or EDF scheduler. OpenMP-RT also focuses
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on adding coarse-grained parallelism in real-time systems
by extending OpenMP. However, OpenMP-RT incorporates
an entirely new construct, rttask, rather than extend the
functionality of the task construct. In addition, OpenMP-
RT explicitly denotes the period in each rttask through the
period clause, rather than using Serrano’s event model. This
frees the user from needing to manually write the code to
produce periodic events and allows them to instead rely on
OpenMP to enforce task periodicity. OpenMP-RT also explic-
itly defines how multiple tasks using different scheduling
algorithms may coexist as part of the same system via hierar-
chical scheduling. Our work includes an implementation of
our proposed extension, along with sample applications de-
veloped using this framework. The sample implementation
maps real-time behavior onto the Linux scheduler, making
use of real-time support given by PREEMPT_RT patch as well
as static priority and EDF real-time scheduling. OpenMP-RT
is, to our knowledge, the first integration of PREEMPT_RT
features with OpenMP, and thus the first to provide hard
real-time guarantees using OpenMP under Linux.

Sun et al. [15] analyze the timing bounds of OpenMP’s
tied tasks, which are required to execute on the same thread
throughout its life cycle. They determine that the existing
scheduling method used in OpenMP for tied tasks is not
suitable for fine-grained parallelism in real-time work, as
it may lead to effectively sequential execution by tying all
OpenMP tasks to a single thread. To solve this, they de-
velop a novel scheduling algorithm for tied tasks and derive
methods of computing response time bounds for task sets
using this scheduling method, assuming a one-to-one equiva-
lence between threads and cores. Their scheduling algorithm
forces a more even spread of tasks across available threads,
reducing the number of cases where all tasks are assigned
to a single thread and executed sequentially. OpenMP-RT
differs from the Sun method in that it focuses on coarse-
grained parallelism between periodic real-time tasks (we
recall that the OpenMP task model is not a sufficient ab-
straction for periodic real-time tasks [2]), with support for
fine-grained parallelism within real-time tasks. In addition,
OpenMP-RT permits multiple scheduling paradigms to co-
exist (even including lower-priority non-real-time threads)
within the same system, allowing for the development of
hybrid scheduling systems.

3 Design of OpenMP-RT

The objective of this work is to provide a framework that
enhances the development of multi-threaded real-time appli-
cations using OpenMP. This reduces the need for developers
to program error-prone sequences of runtime API and sys-
tem calls for defining real-time threads, and to eliminate the
time-consuming task of creating a method for parallel real-
time components to communicate in a way that minimizes
contention, reduces latency, and prevents deadlocks. This

framework also eliminates the need to manually manage the
notion of absolute time in periodic invocations, which can
lead to unwanted jitter. Developers should not have to con-
cern themselves with low-level details, which vary between
operating systems, and are distractions from focusing on
the core application logic. Instead, real-time properties will
be guaranteed automatically by the generated code derived
from high-level specifications, OpenMP-RT pragmas, and
their runtime extensions. OpenMP is a powerful program-
ming model, but currently lacks real-time guarantees, par-
ticularly the ability to define periodic behavior for threads,
or for real-time scheduling paradigms (such as EDF or static
priority), to be enforced on threads. OpenMP-RT provides
developers with an effective tool for easily creating parallel,
time-sensitive applications, while reducing the development
overhead required to achieve these goals.

Chiefly, we accomplish these goals with the inclusion of
three new pragmas: the rttask construct, to enclose the
code of a periodic real-time task, and two pragmas rtread
and rtwrite, which enclose access to shared memory be-
tween parallel tasks in the application (we note that rtread
and rtwrite need not be invoked solely within an rttask
context, i.e., communication with non real time tasks is possi-
ble in a well-defined manner). Alongside this, a specification
of real-time properties for all rttasks is given, along with
place mappings and dependency clauses for each one, via a
configuration file with a concise syntactic notation.

3.1 Design Overview

At a high level, the design of OpenMP-RT can be broken
down into two distinct parts: (1) A framework governing
specifications for the scheduling of real-time tasks and their
assignment to cores; and (2) a framework for establishing
data channels for communication between tasks, including
an API (implemented as a set of pragmas) supporting both
real-time and non-real time producers and consumers. Spe-
cific information on each of these components is discussed
in subsequent subsections.

We define each rttask, in addition to the standard real-time
properties of period, deadline, phase, and wcet, to have
a non-null set of cores on which it is allowed to execute,
dubbed the places set. Further explanation of how these
properties of each rttask are passed to the compiler is detailed
in Subsection 3.3.

3.2 Execution Model

OpenMP-RT’s execution model supports both coarse-grained
inter-task parallelism through the rttask pragma, as well as
fine-grained intra-task parallelism (syntactically through the
use of OpenMP parallel sections within an rttask context).
Our execution model features a single periodic thread for
each real-time task, along with a static pool of threads per
priority level (see Figure 1). The size of this pool is deter-
mined at compile time, based on the upper bound of the
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number of possible threads that may execute simultaneously
at a given priority level. This upper bound can be determined
by analyzing the configuration file defined below.

/"'// T
Kernel Scheduler
— _—

_/

EDF Priority Band

T1 Master Thread

Static Priority Band

T2 Master Thread
T3 Master Thread

Low-priority,

non-real-time
processes

Figure 1. Hybrid scheduling system, showing the ordering
between the priority bands.

Each periodic rttask thread has a defined subset of cores in
which it is permitted to run. Upon entering a parallel section,
the rttask will attempt to wake up a number of available
threads from the pool for its associated priority required to
execute the parallel section and assign a workload to each
thread to execute following the fork-join model. An example
of this is shown in the upper portion of Figure 2, where 2
periodic tasks in a 4-core system each encounter a parallel
section requiring 2 threads. Upon section entry, each periodic
task acquires a thread from the thread pool with matching
priority level and assigns it to an available idle core.

We note, at this point, that it is possible for an rttask to
not receive the number of threads it has requested, if, e.g.,
another rttask of the same priority is executing its own par-
allel section and has already acquired threads from the pool.
This will result, in the worst case, in one rttask executing
its parallel section sequentially (see example in the lower
half of Figure 2). This problem can be mitigated by either
incorporating pessimistic assumptions about sequential exe-
cution into worst case execution time analysis, or through
isolating rttasks of the same priority to different subsets of
cores, such that there will be no competition between them.

Consider the case of two rttasks, A and B (indicated as
blue and red respectively in Figure 2, of the same priority
running in parallel, where each contains a parallel section
that requests 3 threads with a places set containing 3 cores.
With 4 total cores available, by the pigeonhole principle,
there is a minimum of 2 cores available to both A and B.
In this case, the idle cores available to both tasks. In this
scenario, it is possible for A to reach its parallel section
first and acquire the two remaining idle cores, leaving B to
execute sequentially, as seen in the lower half of Figure 2.
It is equally possible for B to be first and starve A. As a
result, both tasks must have their WCETs calculated as if
they were sequential; a very pessimistic outcome. This can
be avoided by isolating A and B such that there is minimal
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Figure 2. Periodic task threads, mapped to available threads
from the thread subpool with matching priority level upon
entering a parallel section. Top half: balanced load, with red
& blue tasks isolated on separate pairs of cores. Lower half:
potential result from red & blue tasks sharing cores: blue
acquires both cores reducing red to sequential execution.
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overlap in their sets of available cores. With cores divided
into isolated pairs, we can guarantee 2 threads per task, a
marked improvement over the previous WCET (depicted in
the upper portion of Figure 2).

3.3 Real-Time Specifications via a Configuration File

The configuration file includes specifications for all rttasks,
along with place mappings and dependency clauses for each
one. Each rttask is associated with a name string, which
identifies it within rttask pragmas in the application code.
The configuration file is passed to the tool chain at com-
pile time along with the source file. Passing this set of task
specifications and environment variables contained within
the configuration file allows for compile-time static analy-
sis of the application task set to be performed, which will
be elaborated upon below. We assume an equivalency be-
tween cores and places in this paper; such an equivalency is
well-supported by the OpenMP specification.

The configuration file starts with a line defining the ex-
pected value of the OMP_PLACES environment variable.
Subsequently, a second line indicates the subset of places
(i.e., cores) on which any non-real-time code in the applica-
tion will be permitted to run. Each subsequent line in the
configuration file defines one rttask. The specification of an
rttask is composed of the following parameters:

e name (required): Specifies the name which will identify
the rttask pragma associated with this definition.
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Listing 1. Sample configuration file.

ompplaces "{0,1,2,3,4,5,6,7}"
nonrtplaces "6,7"
task name(taskbench_SP)

task name (fft_SP)

period (400) wcet (200)
depend(in: din) depend(out: dout) period(600) wcet (200)

priority(30) threads(2) place(4,5)
priority(40) threads(1) place(4,5)

task name(fft_inv_SP) depend(in: dout) depend(out: din) period(600) wcet(200) phase(300) priority(40) threads(1) place(4,5)

task name(fib_1_EDF) depend(in: N1)
task name(fib_2_EDF) depend(in: N2)
task name(T1)
task name(T2)
task name(T3)

e period (required): Specifies the period of the rttask
via a positive integer expression.

e deadline: Specifies the relative deadline of the rttask
via a positive integer. If omitted, it defaults to the pe-
riod.

e phase: Specifies the phase (non-negative integer) of
the rttask, i.e., how long to delay the first execution.
If omitted, it defaults to a zero phase and the task
launches immediately upon encountering the associ-
ated rttask construct.

o wcet: Specifies the expected worst-case execution time
of the rttask via a positive integer expression.

e depend: Establishes a task’s connection to a communi-
cation channel involving shared memory. Uses a subset
of the syntax for existing depend clause.

e priority: Specifies the static priority of the rttask via
a positive integer. Required for static priority tasks. If
omitted, the task is scheduled under EDF.

e threads: Specifies the number of threads requested
by the task.

e place (required): Specifies the set of places (cores) to
which this task is restricted. In the case of intra-task
parallelism, (such as an rttask containing a parallel
section), the each individual thread associated with
the task will be restricted to this set.

In our work, the time units associated with the period,
deadline, wcet and phase clauses are defined in microsec-
onds. Minimally, any rttask scheduled under EDF must have
a defined period plus WCET, and any rttask scheduled under
static priority must have both its period and priority defined.
Thus, inclusion or exclusion of the priority value also serves
to define the scheduling behavior (i.e., either EDF or static pri-
ority) of the rttask. An example configuration file for a 7-task
OpenMP-RT parallel application is presented in Listing 1.
The first line indicates the value of the OMP_PLACES envi-
ronment variable the application should expect at runtime,
in this case an 8-core system with cores labeled 0 though 7.
In the event that, at application runtime, the OMP_PLACES
environment variable is different, the application will return
an error and terminate. The real-time guarantees provided

period (300) wcet(250)
period(300) wcet(250) phase(800)
period (100) wcet(20)
period (200) wcet(40) phase(50) priority(10) threads(1) place(0,1)
period(200) wcet(40) phase(100) priority(20) threads(1) place(0,1)

threads (1) place(2,3)
threads (1) place(2,3)
threads (2) place(0,1)

by OpenMP-RT cannot be guaranteed if the OMP_PLACES
variable is incompatible with the specification given in the
configuration file; this would invalidate core bindings for
rttasks, resulting in undefined mapping of threads to cores,
i.e., a problem that was not accounted for in the scheduling
analysis during development. The second line provides a
whitelist of cores that non-real-time processes will be re-
stricted to. In this case, cores 6 and 7 (and thus, by extension,
cores 0-5 are reserved exclusively for real-time tasks).

Each subsequent line defines one rttask. For example, line
five defines the rttask fft_inv_SP. It has two dependencies,
reading from shared variable dout and writing to shared
variable din with a period of 600us, a phase delay of 300us
(half the period), and its worst case execution time has an
upper bound of 200us. As it has a defined priority, it is sched-
uled under static priority scheduling, placing it below the
taskbench_SP task in priority, and below all of the EDF-
scheduled tasks in terms of priority. It is indicated as having
only one thread (i.e., it does not feature any intra-task par-
allelism), and is restricted such that it may only execute on
cores 4 or 5, as indicated by the places parameter.

3.4 The rttask Construct

Our framework introduces the rttask construct, which en-
closes the code for a periodic task. The rttask pragma takes
only a single string-value clause, name. This is because the
necessary information to compose a real-time periodic task
(period, phase, deadline, scheduling behavior, priority, etc.)
have already been associated with a name string within
the configuration file. Therefore, merely invoking the name
within the rttask pragma provides the compiler with all
the required information for the task.

All required threads (both periodic master threads and
the pools of helper threads used for intra-task parallelism)
are created up front to avoid the high overhead of dynamic
thread creation. Thus, execution of all rttasks is delayed until
this setup is complete, with a further delay for each task as
defined by its phase property.

The rttask pragma works only outside the context of
other OpenMP pragmas. As rttasks use dedicated, real-time
periodic threads, they are incompatible with the way that
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Listing 2. Sample program using rttasks communicating over shared variables din and dout via the retry method.

#pragma omp rttask name(FFT_SP)
{

float * local_cpy;

int flg;

#pragma omp rtread source(din) dest(local_cpy) size(10000) numtries(2) flag(flg)

fft(local_cpy);

#pragma omp rtwrite source(local_cpy) dest(dout) size(10000)

}
#pragma omp rttask name(FFT_inv_SP)

{
float * local_cpy;

#pragma omp rtread source(dout) dest(local_cpy) size(10000) numtries(2) flag(flg)

fft(local_cpy);

#pragma omp rtwrite source(local_cpy) dest(din) size(10000)

ordinary OpenMP parallel sections are implemented. The
presence of an rttask declaration inside of a parallel for
would result in undefined behavior. However, a subset of
existing OpenMP constructs are usable within an rttask con-
struct. This is how intra-task parallelism is supported in
OpenMP-RT.

In particular, the OpenMP task and parallel pragmas
retain the same syntax when invoked inside an rttask con-
text. The implementation and behavior of these pragmas
are slightly modified to account for OpenMP-RT’s real-time
guarantees. Specifically, parallel regions inside of an rttask
construct will never create (or destroy) native threads. When
assembling a thread team to execute a parallel region, threads
must be pulled from the pre-existing pool of threads for the
enclosing rttask’s priority level. Similarly, threads are never
destroyed upon reaching the end of a parallel section. In-
stead, they are returned to the pool of available threads. We
note that, although the existence of the requested number
of threads is guaranteed (as they must have already been
created before any rttask is allowed to launch), availability
is not. It is possible that a concurrently-executing task of
the same priority and place bindings has already acquired
them. Availability of threads can be guaranteed, however, if
there is no overlap between the place bindings of tasks at a
given priority level. This property may be statically checked
by analyzing the configuration file. Note that the threads
involved in this process do not need to inherit the priority of
the rttask’s main thread. They already have the same priority
and are simply idle awaiting assignment to a job.

Within a parallel section, OpenMP-RT also supports task
pragmas. OpenMP tasks within rttasks feature the same
syntax and similar behavior to OpenMP tasks in non-real-
time sections, including synchronization constructs such as
taskwait or critical sections. As each rttask establishes its
own context for parallel operations, synchronization direc-
tives (such as critical sections) only take effect with respect

to that rttask. It is perfectly valid to have two threads execute
critical sections simultaneously, provided they are each part
of teams corresponding to different rttasks.

3.5 Inter-task Communication Framework

Communication between rttasks is handled through a lock-
free framework for sharing data between rttasks, as well as
between real-time and non-real-time threads. Two frame-
works with different semantics are developed in this paper
for comparison: (1) aretry-based framework (implemented as
pragmas rtread and rtwrite), and (2) a double-buffer based
one (implemented as rtreadbuffer and rtwritebuffer).
Both are built upon simple atomic primitives. Lock freedom
is critical for communication between non-rt and real-time
threads, as allowing a non-rt thread to hold a resource relied
upon by a real-time thread (and thus block that real-time
thread), would violate real-time requirements. (Notice that
priority inheritance is not a solution since non real-time tasks
cannot inherit real-time privileges under Linux). However,
there are use cases for non-real-time tasks to communicate
in a two-way channel with real-time tasks. This is to support,
for instance, the user interface of a self-driving vehicle. An
sample application of rtread and rtwrite is featured in
Listing 2.

A simpler, lock-based setup using Priority Ceiling Emu-
lation Protocol is also provided (pragmas rtreadlock and
rtwritelock), featuring per-channel mutex locks for diag-
nostic purposes and this work’s experimental evaluation.
Deadlock avoidance is ensured by creating a total order over
all shared data, and ensuring that lock and unlock operations
follow this order in the automatically generated code (with
unlocks done in reverse). This is a sufficient condition for
deadlocks to not occur [19].

The dependency clauses for each rttask defined in the
configuration file provide the names of the identifiers, but
also indicate the relation each rttask has to the relevant



OpenMP-RT: Native Pragma Support for Real-Time Tasks and Synchronization with LLVM under Linux LCTES 24, June 24, 2024, Copenhagen, Denmark

shared data. An “in” dependency indicates that a task only
reads from but never writes to that shared memory (i.e. a
consumer), and an “out” dependency indicates write only
without any reads (i.e., a producer).

3.5.1 Retry-based method. For communication channels
under the retry-based method, each dependency variable
has two associated timestamp registers in addition to the
data value held. These timestamp registers are used to verify
the integrity of the data, which supports single-producer,
multi-consumer lock-free setups.

The rtread pragma accepts the following clauses:

e source (required): Specifies the shared memory vari-
able to read from. Identifier must be listed as an in
dependency in the configuration, or the application
will not compile.

e dest (required): Specifies the address where the val-
ues from source should be written. Identifier must be
private to the executing thread (thus, cannot be a task
dependency), or will throw a compile-time error.

e size (required): Specifies the length, in bytes, of the
data to be copied.

e numtries: Specifies number of times to attempt read-
ing from source if timestamps do not match. If this
many reads are attempted with no success (i.e., times-
tamps never match), then the no further attempts will
be made to read from source, and the value of flag
will be set to 1. If unspecified, defaults to 1.

e flag (required): points to a flag, which will be zero
after a successful read and 1 if there was no successful
read within the allotted retries.

And the rtwrite pragma accepts the following clauses:

e source (required): Specifies the local variable to read
from. Must be private to the executing thread (thus,
cannot be a task dependency), or will throw a compile-
time error.

e dest (required): Specifies the shared variable the val-
ues from source should be written. Identifier must be
listed as an out dependency in the configuration, or
the application will not compile.

e size (required): Specifies the length, in bytes, of the
data to be copied.

During an rtwrite to a given shared variable, the current
timestamp is copied into the first timestamp field, then the
data is written from source (local) to destination (shared).
Once this copy is complete, the timestamp written to the
first timestamp register will be copied over to the second
register. This ensures that during the writing process, when
the data is invalid, the timestamp registers will not match.

During an rtread, the value of flag is set to 1, the value
of the first timestamp register is recorded, then data from
the shared source is copied to the local destination. Once the
copy completes, the second timestamp register is checked

against the recorded first one. Upon match, a read is consid-
ered successful, data is accepted as valid, the flag is set to 0,
and execution resumes on the calling thread.

Upon mismatching timestamps, the data must have been
overwritten to during the time that it was being read. This
invalidates the read data, and we must read again or proceed
without the data (e.g., using old data from the last successful
read, which is left to the user to decide). The read operation
described above will be repeated until either the timestamp
registers match, or the total number of reads attempted ex-
ceeds the numtries parameter. If this occurs, the flag value
will remain as 1 when execution returns to the calling thread,
indicating to the user that the read failed.

The number of retries of lock-free reads can be upper
bounded by design. Consider a rttask A that can be pre-
empted by h higher priority rttasks. If the number of higher
priority jobs in the longest busy interval is b, then b + 1 is a
safe upper bound for the number of reads required before
timestamps match assuming that the time required for the
reads does not exceed the smallest idle time between busy
intervals. In practice, the bound may be much smaller. If
rttasks are in phase, then only the number of out-of-phase
rttasks with higher priority jobs in the busy interval need
to be considered for b (as in-phase ones do not yield to the
lock-free read of a lower priority task). In general, lock-free
communication is preferable for small data as it avoids ex-
cessive lock/unlock protocol overhead whereas lock-based
should be used for large data, e.g., large images or matrices.
However, communication with non-real-time tasks requires
lock-free protocols in OpenMP-RT. This should not be a prob-
lem if either prior data (i.e., the last image frame) is used
upon an unsuccessful rtread or if partial updates to a frame
are simply tolerated (e.g., line fragmentation during videos
tolerated by the human eye).

3.5.2 Double-Buffer method. An alternative to lock-free
data was also developed. It is implemented using pramas
rtreadbuffer and rtwritebuffer. Notice that the pragma
rtreadbuffer uses the same source/dest/size clauses as
rtread but ignores numtries and flag as it does not rely
on retrying reads. Similarly, rtwritebuffer has identical
syntax to rtwrite. Only the implementation is changed.

The Double-Buffer method works by establishing two
buffers for each dependency (the addresses of which are held
by the producer, as indicated by the depend(out:) clause
in the configuration file), and a single shared pointer field.
Conceptually, one buffer (indicated by the shared pointer
field) is considered 'readable’ at a time, and the other buffer
is thus 'writable’. Upon the completion of a write operation,
the buffers are swapped by overwriting the shared pointer
field with the address of the most-recently written to buffer.
This action (performed atomically) makes the previously-
writable buffer readable and the old readable buffer available
to be written to.
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Note that read operations under the double-buffer method
have no retry requirements as there is no chance of failure.
Even in the event that the producer performs a write opera-
tion while the consumer is reading, this does not invalidate
the data read by the consumer, as the new data was written
to a separate buffer.

We compare the performance and advantages of the Retry
and Double-Buffer methods in the experimental section.

3.5.3 Lock-based benchmark method. The lock-based
communication method is included as a baseline for compar-
ing the two lock-free communication methods. It is based
on a total ordering of locks and strict adherence to this total
ordering, which guarantees deadlock freedom [19].

The rtreadlock pragma has the same arrangement of
clauses and syntax as the rtread pragma, except it has no
need (or support) for the numtries and flag clauses, as
rtreadlock simply waits to acquire a lock, rather than try
again. The rtwritelock pragma has a syntax and use iden-
tical to the lock-free rtwrite, (i.e., source, dest, and size
clauses). The only difference between the two is in behavior
and implementation, as, naturally, rtwritelock is imple-
mented using locks, rather than timestamp checking.

4 Implementation

This work includes an implementation of OpenMP-RT via ex-
tending the LLVM compiler’s OpenMP language and runtime
support. The OpenMP-RT implementation supports only the
C language running on Linux with the PREEMPT_RT patch
and static priority plus EDF scheduling. Further language
support (e.g., C++) is an engineering effort, whereas the
objective of this implementation is to provide a working pro-
totype of OpenMP-RT as a proof-of-concept for its feasibility
and to support experimental evaluations of the OpenMP-
RT design using a benchmark test suite. Similarly, support
was limited to the Linux kernel, as it is a widely-used, well-
understood operating system that is enjoying wide adoption
(for soft real-time systems and even some hard real-time sys-
tems, e.g., by Tesla, with all its current shortcomings). With
the PREEMPT_RT patch and subsequent real-time exten-
sions, Linux now provides the required OS functionality for
OpenMP-RT, specifically for EDF and static priority sched-
uling support in higher priority bands than used by con-
ventional non real-time tasks (threads and processes alike,
know as Linux tasks). In addition, as the Linux kernel sup-
ports non-real-time tasks, this gives the implementation the
opportunity to demonstrate hybrid scheduling support.

As seen in Section 3, OpenMP-RT provides multiple frame-
works for safe data transfer between rttasks, as well as across
the real-time boundary. Listing 3 features a pseudocode ex-
ample of the retry-based process (see Section 3), which is
executed upon reaching the rtread and rtwrite pragmas,
represented there as functions.

McDonald & Mueller

Listing 3. Pseudocode of lock-free communication.

rtread(src, dest, size, numtries, flag){

flag = 1
i=0;
for(i <= numtries){
timestamp = src.timeRegl
copy(src.data, dest, size)
if(timestamp == src.timeReg2) {
flag = @
break
}
3

}

rtwrite(src, dest, size){
dest.timeRegl = clock_gettime ()
copy(src, dest.data, size)
dest.timeReg2 = dest.timeRegl

5 Experimental Analysis

The primary goal of the OpenMP-RT project has been to
create a foundation for developing periodic real-time ap-
plications supporting coarse- and fine-grained parallelism,
hierarchical scheduling, and inter-task communication. In
order to examine the effectiveness of OpenMP-RT, it was
necessary to analyze a large set of applications featuring a
variety of behaviors. However, manually creating the set of
dozens of applications required for such testing would take
an extremely long time. To this end, an automatic bench-
mark application generator was created, which composes
a parallel OpenMP-RT application from individual bench-
mark tasks drawn from two OpenMP benchmark task sets:
the Barcelona OpenMP Task Set (BOTS) [5], and the EPCC
Microbenchmark suite [3]. Table 1 shows the experimentally-
determined WCETs for each of the tasks that make up the
BOTS and EPCC benchmark suites.

Experiments were conducted on a 16-core x86 machine
with 8GB of DRAM at 2133 MHz under Ubuntu version 21.04
and Linux kernel 5.13 with the PREEMPT_RT patch enabled.
Worst-case execution time (WCET) values were extracted
experimentally for purposes of these demonstrations as the
maximum observed execution time for a given task over a
1,000 run test.

5.1 Automatic Task Set Generation

The automatic benchmark application generator composes a
synthetic task set by taking pre-written single tasks (in this
case drawn from BOTS and EPCC benchmarks), composing
these pre-written tasks together into a single application,
where each benchmark represents a single rttask, and then
generating a randomized OpenMP-RT configuration file to
define the synthetic application.
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Table 1. WCET estimation for BOTS and EPCC benchmark
tasks for sequential and 2-threaded versions.

WCET (us) | WCET (us)
Task .

(sequential) | (2-core)
alignment 1237 652
fft 212 117
fib 248 130
floorplan 507 262
health 957 503
NQueens 610 319
knapsack 752 411
sort 227 142
sparselu 833 456
strassen 451 273
uts 489 251
TaskBench | 197 113
ArrayBench | 143 82
SyncBench | 205 117
SchedBench | 151 96

Generated applications may incorporate exclusively
single-threaded tasks (and thereby only express inter-task
parallelism), or multithreaded tasks (i.e., adding intra-task
parallelism), as all benchmarks from which tasks are drawn
feature parallel for sections with configurable thread
counts. For purposes of these experiments, intra-task paral-
lelism was limited to 1-2 threads per task.

The generator further composes applications demonstrat-
ing inter-task dependencies and data sharing. Pairs of tasks
sharing dependency references in their code were created,
and the generator selects both of them to be included in the
application.

Particular factors of the final application can be selected
(such as total utilization, presence and type of inter-task com-
munication, intra-task parallelism, number of cores to utilize,
etc.) such that a set of randomized applications meeting this
specification is generated. The same randomized set of ap-
plications is subsequently adjusted around that particular
variable. 100 random applications were created for each of
the following tests:

o Tests on increasing utilization until we observe dead-
line misses.
o Comparison of lock-based and lock-free data sharing.

5.2 Utilization Stress Test

In this experiment, 100 random applications were generated,
initially with the stipulation that every core would have a
utilization of 0.6, and that all tasks would be scheduled under
EDF scheduling. The reason for requiring EDF scheduling
is that, in theory, the EDF scheduler is optimal for single-
core scheduling and is capable of scheduling any task set
with utilization of 1 or below [10]. While this experiment

Table 2. Per-core utilization and number of observed dead-
line misses.

Utilization | deadline misses
OpenMP-RT(EDF) | OpenMP

0.6 0 347

0.7 0 751

0.8 0 11,374

0.9 0 54,133

0.93 0 92,806

0.95 4 107,942

0.99 5,138 162,237

involves multiple cores, restricting scheduling to EDF still
limits the likelihood of a deadline miss due to an unscheduled
task set being generated by the benchmark generator. No
other limitations were placed, and so the set of applications
includes those with and without intra-task parallelism and
inter-task communication of both types or neither. In all
experiments, applications were run for 60 seconds.

For comparison, a version of each application was cre-
ated using OpenMP’s task framework (using loops & delays
for periodicity) rather than the rttask. This was used to
compare the number of observed deadline misses as follows:
OpenMP tasks do not take the same real-time execution in-
formation as RT-Tasks, however, deadline misses can still
be measured by checking the completion time of each task.
Deadlines for the OpenMP tasks were assumed to be the
same as those for the corresponding RT-Task.

The numbers shown below refer to the total number of
observed deadline misses across all 100 applications in their
60 second runs.

As can be seen in Table 2, RT-Tasks show a complete
lack of deadline misses in any applications with a per-core
utilization below 0.93, avoiding the large spike in deadline
misses observed with OpenMP tasks at 0.8. Inspection of
the RT-Tasks with observed deadline misses at 0.95 revealed
that all of them featured inter-task communication with
locks. At a per-core utilization of 0.99, deadline misses are
relatively frequent. The large number of missed deadlines for
OpenMP tasks does not indicate failed tasks, merely tasks
which complete after the specified relative deadline for the
corresponding RT-Task version. This reinforces previous
findings on the unsuitability of OpenMP tasks for real-time
use cases [17, 18].

5.3 Comparison of Inter-Task Communication
Methods

OpenMP-RT implements 3 separate frameworks for inter-
task communication: (1) a simple deadlock-free locking
method based on a total ordering of locks, (2) a lock-free
retry based method, and (3) a lock-free double-buffer method,
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as described in Section 3. We refer to these as Lock, Retry,
and DoubleBuffer, respectively, in the following section.
A suite of experiments was devised to analyze the be-
haviors of these communication frameworks, specifically
focusing on the overhead incurred by each method. We ana-
lyze the response time of tasks using each framework under
a variety of conditions. We also pay attention to communica-
tion across the real-time barrier, i.e., between real-time and
non-real-time tasks. For a producer/consumer layout (as all
OpenMP-RT communication frameworks are defined), this
gives 3 cases to study (written as producer — consumer):

e real-time — real-time (RT—RT)
e real-time — non real-time (RT—nRT)
e non real-time — real-time (nRT—RT)

We note the existence of non real-time — non real-time
communication as another option. However, such communi-
cation, by definition, does not involve any real-time tasks,
and as OpenMP-RT is a framework focused on real-time
application development, it is outside the scope of this paper
(and not subject to deadlines).

An application was developed containing 4 tasks on 2
available cores arranged in 2 producer/consumer pairs. Pro-
ducer tasks generated two 64x64 integer matrices, which
were passed to consumer tasks, then multiplied together us-
ing a single-threaded implementation of the strassen method
employed in the strassen benchmark. All real-time tasks
were scheduled using static priority scheduling, with pro-
ducers and consumers occupying the same priority band. To
examine the RT—=nRT and nRT—RT cases, the appropri-
ate tasks (either producers or consumers) were run in the
non real-time priority band. Experiments using the Retry
method were conducted with the numtries argument set
to 2. We note that the Lock method is incompatible with
communication across the non real-time barrier as having a
non real-time task block a real-time task violates real-time
guarantees (and would elevate non real-time tasks temporar-
ily into higher priority bands via inheritance). This is not
the case for the lock-free methods, and so these experiments
are included.

Figure 3 displays the average response time of the con-
sumer tasks across all 3 inter-task communication methods
for the 3 cases involving real-time tasks. Similar results were
observed for the average response time of producer tasks
with data collected during the same runs. We omit these
results due to space and similarity.

As the figure shows, the response times are similar across
all cases under lower utilization. At utilizations above 1.8
(corresponding to a per-core utilization of 0.9), consumer
response time climbs much more rapidly than under the lock-
free methods. At a per-core utilization of 0.95 (the highest
value for which we do not observe deadline misses under
lock-free communication), the tasks under lock free commu-
nication had between 26% (Retry) and 37% (DoubleBuffer)
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Figure 3. Average response time of a consumer vs. total
utilization over 1000 runs. Notice that total utilization is
across 2 cores.

lower response times than in an identical application using
Lock. We further note that response times were not signif-
icantly different in cases where data crossed the real-time
barrier in either direction.

5.4 Frequency of Re-Read for Retry-Based
Communication

Another experiment was conducted to better analyze the
behavior of the Retry method, in particular the bound on
the number of retries required for a consumer to successfully
read from shared data, such that its data is read repeatedly
without being invalidated by the producer. As retries are
prompted by the producer commencing a write operation
before the consumer can finish reading, the frequency of re-
tries is determined by the ratio of the periods of the producer
and consumer, as well as the worst-case time spent reading
the shared data.

A test application was developed consisting of 2 tasks
arranged in a producer-consumer model under EDF schedul-
ing. The producer loaded a 1MB image into shared memory,
where it was then read by the consumer. This replicates the
activity of a system receiving image data from a sensor or
from a download. With the large transfer size and lack of
other operations, nearly all of the execution time of the pro-
ducer and consumer in this example are spent on accessing
shared data.

Figure 4 shows the percentage of failed initial reads of
shared data (averaged over 1000 runs) versus the ratio of
the periods of the producer and consumer tasks. We de-
note the producer’s period as P,, and the consumer’s as P.
Data is shown for all three cases, RT—=RT, RT—nRT, and
nRT—RT, demonstrating little variation between them. We
note here that the expected increase in number of failed
initial reads as the ratio becomes more lopsided, i.e., when
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Figure 4. Failed initial reads [%] vs. ratio of P, over P..

producer executes significantly more frequently than the
consumer. However, this graph only depicts failed initial
reads; with a numtries parameter of 2, the second read at-
tempt always succeeded in these tests, which confirms that
this is a safe retry bound.

6 Conclusion

We presented OpenMP-RT, a framework built upon OpenMP,
targeting the development of parallel processing real-time
applications, along with an implementation of this frame-
work targeting the C language (via the LLVM compiler
framework), making use of the Linux real-time schedul-
ing features. Our implementation includes a framework
for coarse-grained parallel execution of real-time periodic
tasks with support for core isolation, hybrid scheduling,
and multiple lock-free inter-task communication paradigms.
This implementation was subsequently analyzed by using
automatically-generated synthetic parallel real-time applica-
tions and tests analyzing the behavior of applications incor-
porating OpenMP-RT’s inter-task communications.
Overall, our OpenMP-RT framework provides a simple,
robust model and its implementation for developing multi-
core real-time systems with particular advantages in coarse-
grained parallelism between periodic tasks while still sup-
porting fine-grained intra-task parallelism. Future work in-
cludes the expansion of the inter-task communication prag-
mas to cover additional methods, support for scheduling
paradigms beyond EDF and static priority, and tools to assist
with development, e.g., to optimize core bindings of rttasks.
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