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A GPU accelerated p-multigrid discontinuous Galerkin method is developed based on
the OpenACC directives for the solution of the compressible flows on 3-D unstructured
grids. The present design of GPU computing based on OpenACC is typically aimed to
upgrade a legacy CFD solver with the capability of GPU computing without significant
intrusion or algorithm alteration to the existing CPU code. In the present method, the
p-multigrid technique proves to be a cost-effective approach for convergence acceleration,
since the problem size would be seriously restricted if an implicit DG method with the use of
the higher-order Jacobian matrix involved, provided with the fact that the GPU memory is
still far from abundant for high-order methods even on a top-rank one. Specifically, a multi-
stage explicit time stepping scheme is used for advancing the higher-order approximation
in time, with the first-order implicit backward Euler scheme is applied to accelerate the
lower-order approximation. A variety of inviscid and viscous flow problems are presented to
verify and validate the developed solver. In each case, a strong scaling test is conducted on
an NVIDIA Tesla K20c GPU to assess the performance of the GPU code, and in addition,
the speedup factors are presented by performing a comparative study with the equivalent
CPU code running on a computed node that consists of two eight-core AMD Opteron-6128
CPUs. The numerical results indicate that the resulting p-multigrid discontinuous Galerkin
method is a competitive and accurate method for GPU computing.

I. Introduction

Computational Fluid Dynamics (CFD), a branch of mechanics that applies numerical way to solve fluid
dynamics problem, has been one of the most significant applications on supercomputers. However, the
capabilities of the traditional CPU(central processing unit) based parallel computing may not meet the
needs of solving complex simulation problems. Fortunately, the General-Purpose Graphics Processing Unit
(GPGPU26) technology offers a new opportunity to significantly accelerate CFD simulations by offloading
compute-intensive portions of the application to the GPU, while the remainder of the computer program
still runs on the CPU, which also make it expected to be a major compute unit in the near future.

NVIDIA’s CUDA application programming interface (API) and CUDA-enabled accelerators are regarded
as a popular parallel programming model and platform in GPGPU technology. Therefore, many researchers
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have put effort in the investigation and development GPU-accelerated CFD solvers with the CUDA tech-
nology1,5, 6, 9, 10,11,15,17,18,25,27,30 . As a matter of fact, the numerical methods range from the finite differ-
ence methods (FDMs), spectral difference methods (SDMs), finite volume methods (FVMs), discontinuous
Galerkin methods (DGMs) to Lattice Boltzmann method (LBMs). For instance, Elsen et al.13 reported a 3D
high-order FDM solver for large calculation on multi-block structured grids; Klöckner et al.20 developed a
3D unstructured high-order nodal DGM solver for the Maxwell’s equations; Corrigan et al.12 proposed a 3D
FVM solver for compressible inviscid flows on unstructured tetrahedral grids; Zimmerman et al.37 presented
an SDM solver for the Navier-Stokes equations on unstructured hexahedral grids.

In order to adopt the CUDA technology to develop GPU-accelerated CFD solver, people would either
need to start a brand new code design or extend an existing CPU code to GPU platform. The former one is
often the case of fundamental study of a numerical model on GPU computing while the latter one requires
applying NVIDIA CUDA model to a legacy CFD code, which is not an easy job since the developer has to
define an explicit layout of the threads on the GPU (numbers of blocks, numbers of threads) for each kernel
function.19 For either production level or research level, people would prefer to maintain multi-platform
compatibility at a minimum extra cost in time and effort. Nevertheless, adopting CUDA might spell almost
a brand new design and long-term project, and a constraint to the CUDA-enabled devices, thus to lose the
code portability on other platforms. Therefore, some alternatives come into play including OpenCL:29 the
currently dominant open GPGPU programming model (but dropped from further discussion since it does
not support Fortran); and OpenACC:31 a new open parallel programming standard based on directives.

For people who have experience with OpenMP, they would find OpenACC is much like OpenMP. What
developers need to do is simply annotate their code to identify the areas that should be accelerated by
wrapping with the OpenACC directives and some runtime library routines, instead of taking the huge effort
to change the original algorithms as to accommodate the code to a specific GPU architecture and compiler. In
that case, people benefit not only from easy implementation of the directives but also the freedom to compile
the very same code and conduct computations on either CPU or GPU from different vendors, e.g., NVIDIA,
AMD and Intel accelerators. Nevertheless, as for some cutting-edge features, OpenACC still lags behind
CUDA due to vendors’ distribution plan (note that Nvidia is among the OpenACC’s main supporters).
But still, OpenACC manages to offer a promising approach to minimize the effort to extend the existing
legacy CFD codes while maintaining multi-platform and multi-vendor compatibility, and thus to become an
attractive parallel programming model.

The objective of the effort discussed in the present work is to develop a GPU accelerated,p-multigrid dis-
continuous Galerkin method, for the solution of the compressible Navier-Stokes equations on 3D unstructured
grids. This work is based on a class of reconstruction-based RDG(PnPm) methods,23,24,32,34,35,36 which
are recently developed in order to improve the overall performance of the underlying standard DG(Pn)
methods without significant extra costs in terms of computing time and storage requirement. Due to the
fact that OpenACC could offer multi-platform/complier support with minor effort to code directives, it
has been employed to partially upgrade a legacy Navier-Stokes solver with the GPU computing capacity.
Part of the solution modules in a well verified and validated RDG flow solver have already been upgraded
with the capability of single-GPU computing based on the OpenACC directives in our prior work.33 As for
p-multigrid discontinuous Galerkin method,14,16,21,22 it would allow higher approximation level would use
explicit time integration while the lower approximation level applies implicit scheme, so that to accelerate
the convergence to the steady state. In addition, a face renumbering and grouping algorithm is used to
eliminate “race condition” in face-based flux calculation that takes place on GPU vectorization. The de-
veloped method is used to compute the compressible flows for a variety of test problems on unstructured
grids. Speed-up factors that achieved by comparing the computing time of the OpenACC program on an
NVIDIA Tesla K20c GPU and that of the equivalent MPI program on one single core and full sixteen cores
of an AMD Opteron-6128 CPU indicate that p-multigrid discontinuous Galerkin method is a cost-effective
high-order scheme on OpenACC-based GPU platform.

The outline of the rest of this abstract is organized as follows. The governing equations are briefly
introduced in Section II. In Section III, the discontinuous Galerkin spatial discretization is described. In
Section IV, the idea of p-multigrid method is given. In Section V, the keynotes of porting a p-multigrid
discontinuous Galerkin flow solver to GPU based on the OpenACC directives is discussed in detail. In
Section VI, a series of numerical test cases are presented. Finally the concluding remarks and plan of future
work are given in Section VII.
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II. Governing Equations

The Navier-Stokes equations governing the unsteady compressible viscous flows can be expressed as

∂U

∂t
+
∂Fk(U)

∂xk
= 0 (1)

where the summation convention has been used. The conservative variable vector U and advective flux
vector F, are defined by

U =

 ρ

ρui

ρe

 Fj =

 ρuj

ρuiuj + pδij

uj(ρe+ p)

 (2)

Here ρ, p, and e denote the density, pressure, and specific total energy of the fluid, respectively, and ui is
the velocity of the flow in the coordinate direction xi. The pressure can be computed from the equation of
state

p = (γ − 1)ρ

(
e− 1

2
uiui

)
(3)

which is valid for perfect gas. The ratio of the specific heats γ is assumed to be constant and equal to 1.4
for air or diatomic perfect gas.

III. Discontinuous Galerkin Spatial Discretization

The governing equations in Eq. 1 can be discretized using a discontinuous Galerkin finite element
formulation. We assume that the domain Ω is subdivided into a collection of non-overlapping arbitrary
elements Ωe in 3D, and then introduce the following broken Sobolev space V ph

V ph =
{
vh ∈

[
L2(Ω)

]m
: vh|Ωe

∈
[
V mp
]
∀Ωe ∈ Ω

}
(4)

which consists of discontinuous vector polynomial functions of degree p, and where m is the dimension of
the unknown vector and Vp is the space of all polynomials of degree ≤ p. To formulate the discontinuous
Galerkin method, we introduce the following weak formulation, which is obtained by multiplying Eq. 1
by a test function Wh, integrating over an element Ωe, and then performing an integration by parts: find
Uh ∈ V ph such as

d

dt

∫
Ωe

UhWhdΩ +

∫
Γe

FknkWhdΓ−
∫

Ωe

Fk
∂Wh

∂xk
dΩ = 0, ∀Wh ∈ V ph (5)

where Uh and Wh are represented by piecewise polynomial functions of degrees p, which are discontinuous
between the cell interfaces, and nk the unit outward normal vector to the Γe: the boundary of Ωe. Assume
that Bi is the basis of polynomial function of degrees p, this is then equivalent to the following system of N
equations,

d

dt

∫
Ωe

UhBidΩ +

∫
Γe

FknkBidΓ−
∫

Ωe

Fk
∂Bi
∂xk

dΩ = 0, 1 ≤ i ≤ N (6)

where N is the dimension of the polynomial space. Since the numerical solution Uh is discontinuous between
element interfaces, the interface fluxes are not uniquely defined. This scheme is called discontinuous Galerkin
method of degree p, or in short notation DG(p) method. By simply increasing the degree p of the polynomials,
the DG methods of corresponding higher order are obtained. In the present work, the HLLC scheme4 is
used for evaluating the inviscid fluxes.

By moving the second and third terms to the right-hand-side (r.h.s.) in Eq. 6, we will arrive at a system
of ordinary differential equations (ODEs) in time, which can be written in semi-discrete form as

M
dU

dt
= R(U) (7)

where M is the mass matrix and R is the residual vector. The present work employs a p-multigrid method,
which uses explicit RDG(P1P2), a third-order, WENO reconstructed scheme to improve the overall perfor-
mance of the underlying second-order DG(P1) method, as high order approximation and implicit DG(P0)
as low order approximation, to accelerate the convergence rate.
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IV. p-Multigrid Method

Nowadays, geometric multigrid methods are very popular among CFD filed to accelerate the convergence
of Euler and Navier-Stokes equations to a steady state on unstructured grids. Analysis of geometric multigrid
indicates mesh that independent results are possible, which leads to drastically reduction of the computational
cost. p-Multigrid method is a natural extension of geometric multigrid methods to high-order finite element
formulation, such as spectral-hp or discontinuous Galerkin methods, where systems of equations are solved
by recursively iterating on solution approximations of different polynomial order.

The basic idea of a p-multigrid method is to perform time steps on the lower order approximation levels
to obtain the corrections to a solution on a higher order approximation level. Here in the present work, we
would only consider RDG(P1P2) method. A two level V-cycle p-multigrid method has been used to drive
the iterations. More specifically, this two level p-multigrid method consists of the following steps at each
p-multigrid cycle:

(1) Perform a time-step at the high approximation order, that is RDG(P1P2), which yields the initial
solution Un+1

P1P2
.

(2) Transfer the flow solution and residual to the low approximation level, that is, DG(P0). This can be
readily obtained using the shape function as

UP0
(Ωe) =

N∑
i=1

Un+1
P1P2

Bi(xc) (8)

RP0
(Ωe) =

N∑
i=1

Rn+1
P1P2

Bi(xc) (9)

where xc is the coordinates of the center of element Ωe.
(3) Compute the force terms on the lower approximation level

FP0
= RP0

−R(UP0
) (10)

(4) Perform a time-step at the lower approximation level where the residual is given by

R = R(UP0) + FP0 (11)

which yields the solution at the lower level Un+1
P0

.
(5) Interpolate the correction CP0 back from the lower level to update the higher level solution

CP0 = Un+1
P0
−UP0 (12)

Ũ
n+1

P1P2
= Un+1

P1P2
+ CP0

(13)

As for time integration, p-multigrid method allows different schemes for different level approximation.
In the present work, we would employ three-stage TVD-Runta explicit method due to the consideration of
storage limitation. As a matter of fact, the storage limitation is one of the most important consideration when
it comes to GPU computing. As for the lower level approximation, DG(P0), where the storage requirement
is not as demanding as in the higher level, first order backward implicit Euler time integration is utilized.

V. OpenACC Implementation

The computation-intensive portion of this reconstructed discontinuous Galerkin method is a time march-
ing loop which repeatedly computes the time derivatives of the conservative variable vector as shown in
Eq. 7. In the present work, the conservative variable vector in high approximation level is updated using
the explicit, three-stage, TVD Runge-Kutta time stepping scheme7,8 (TVDRK3) within each time iteration
while the lower approximation level uses first order backward Euler implicit time integration to compute the
correction. To enable GPU computing, all the required arrays are first allocated on the CPU memory and
initialized before the computation enters the main loop. These arrays are then copied to the GPU memory,
most of which will not need to be copied back the CPU memory. In fact, the data copy between the CPUs
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Table 1: Workflow for the main loop over the time loop.

!! loop over time steps
DO itime = 1, ntime

<ACC> Predict time-step size on higher level

!! loop over TVDRK stages for RDG(P1P2)
DO istage = 1, nstage

<ACC> P1P2 least-squares reconstruction

<ACC> R.H.S. residual from diffusion

<ACC> WENO reconstruction

<ACC> residual from convection

<ACC> update solution vector

ENDDO

!!p-multigrid
<ACC> Transfer P1->P0

<ACC> Predict time-step size on lower level

<ACC> Compute R.H.S. vector R

<ACC> Compute L.H.S. matirx A=M/dt-dR/dU

<ACC> Solve the linear system Au=R
!!Linear solver + Preconditioner

! Option 1: GMRES + LU-SGS
! Option 2: LU-SGS + Jacobi
! Option 3: Jacobi
! Option 4: ...

<ACC> Transfer P0->P1 and update

ENDDO

and GPUs, usually considered to be one of the major overheads in GPU computing, needs to be minimized
in order to improve the efficiency. The workflow of time iterations is outlined in Table 1.

For higher approximation level, the most expensive workload when computing the time derivatives of
solutions dU/dt includes both the reconstruction of the second derivatives and the accumulation of the right
hand side residual vector in Eq. 7. Thus these procedures need to be properly ported to acceleration kernels
by using the OpenACC parallel construct directives. In fact , the way to add OpenACC directives in a legacy
code is very similar to that of OpenMP. The example shown in Table 2 demonstrates the parallelization of a
loop over the elements for collecting contribution to the residual vector rhsel(1:Ndegr,1:Netot,1:Nelem),
where Ndegr is the number of degree of the approximation polynomial (= 1 for P0, 3 for P1 and 6 for P2
in 2D; = 1 for P0, 4 for P1 and 10 for P2 in 3D), Netot the number of governing equations of the perfect
gas (= 4 in 2D, 5 in 3D), Nelem the number of elements, and Ngp the number of Gauss quadrature points
over an element. Both the OpenMP and OpenACC parallel construct directives can be applied to a readily
vectorizable loop like in Table 2 without the need to modify the original code.

As for DG(P0) level, one would need to compute R.H.S. and L.H.S. and thus to apply the linear solver
like GMRES2,28 to solve the linear system. And here the preconditioning matrix P is the approximation
of L.H.S. matrix A. However, for unstructured grid, P at least need to be the block-diagonal of A for
efficiently preconditioning. For computing the inverse of the preconditioning matrix P , one could only use
direct method since the iterative methods are not able to invert the non-diagonal-dominant matrix, which is
indeed the common case for unstructured grid. Due to the fact that GMRES involves too many local arrays,
which would bring extra data transfer between the host and device, we would not consider porting GMRES
algorithm onto the GPU platform for now. As for LU-SGS solver, we would face the memory contention issue
for unstructured grids. An elemental based renumbering algorithm would be required to properly thread the
LU-SGS onto GPU platform. And since DG(P0) has small degrees of freedom, we would port the simplest
Jacobi solver to GPU platform to solve the linear system in lower level approximation for now.
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Table 2: An example of loop over the elements.

!! OpenMP for CPUs:

!! loop over the elements
!$omp parallel
!$omp do
do ie = 1, Nelem

!! loop over the Gauss quadrature points
do ig = 1, Ngp

!! contribution to this element
rhsel(*,*,ie) = rhsel(*,*,ie) + flux

enddo

enddo
!$omp end parallel

!! OpenACC for GPUs:

!! loop over the elements
!$acc parallel
!$acc loop
do ie = 1, Nelem

!! loop over the Gauss quadrature points
do ig = 1, Ngp

!! contribution to this element
rhsel(*,*,ie) = rhsel(*,*,ie) + flux

enddo

enddo
!$acc end parallel

However due to the unstructured grid topology, the attempt to directly wrap a loop over the dual-edges
for collecting contribution to the residual vector with either the OpenMP or OpenACC directives can lead
to the so-called “race condition”, that is, multiple writes to the same elemental residual vector, and thus
result in the incorrect values. The “race condition” can be eliminated with a moderate amount of work by
adopting a mature algorithm of face renumbering and grouping. This algorithm is designed to divide all the
faces into a number of groups by ensuring that any two faces that belong to a common element never fall in
the same group, so that the face loop in each group can be vectorized without “race condition”. An example
is shown in Table 3, where an extra do-construct that loops over these groups is nested on top of the original
loop over the internal faces, and executed sequentially. The inner do-construct that loops over the internal
faces is vectorized without the “race condition” issue.

Table 3: An example of loop over the edges.

!! OpenMP for CPUs (without race condition):

!! loop over the groups
Nfac1 = Njfac
do ipass = 1, Npass_ift

Nfac0 = Nfac1 + 1
Nfac1 = fpass_ift(ipass)

!! loop over the edges
!$omp parallel
!$omp do
do ifa = Nfac0, Nfac1

!! left element
iel = intfac(1,ifa)

!! right element
ier = intfac(2,ifa)

!! loop over Gauss quadrature points
do ig = 1, Ngp

!! contribution to the left element
rhsel(*,*,iel) = rhsel(*,*,iel) - flux

!! contribution to the right element
rhsel(*,*,ier) = rhsel(*,*,ier) + flux

enddo

enddo
!$omp end parallel

enddo

!! OpenACC for GPUs (without race condition):

!! loop over the groups
Nfac1 = Njfac
do ipass = 1, Npass_ift

Nfac0 = Nfac1 + 1
Nfac1 = fpass_ift(ipass)

!! loop over the edges
!$acc parallel
!$acc do
do ifa = Nfac0, Nfac1

!! left element
iel = intfac(1,ifa)

!! right element
ier = intfac(2,ifa)

!! loop over Gauss quadrature points
do ig = 1, Ngp

!! contribution to the left element
rhsel(*,*,iel) = rhsel(*,*,iel) - flux

!! contribution to the right element
rhsel(*,*,ier) = rhsel(*,*,ier) + flux

enddo

enddo
!$acc end parallel

enddo

In fact, this kind of algorithm is widely used for vectorized computing on unstructured grids with
OpenMP. The implementation details can be found in an abundance of literature. The number of groups
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for each subdomain grid is usually between 6 and 8 according to a wide range of test cases, indicating some
overheads in repeatedly launching and terminating the OpenACC acceleration kernels for the loop over the
face groups. This kind of overheads is typically associated to GPU computing, but not for the code if par-
allelized by OpenMP for CPU computing. Nevertheless, the most favorable feature in this design approach
is that it allows the original CPU code to be recovered when the OpenACC directives are dismissed in the
pre-processing stage of compilation. Therefore, the use of this face renumbering and grouping algorithm will
result in a unified source code for both the CPU and GPU computing on unstructured grids.

In a word, the face renumbering and grouping method can suit well in the present work, for its simplicity
and portability to quickly adapt into the original source code without any major change in the legacy
programming structures. It is applied for the face integrals as well as some other procedures that require
the loop over faces like P1P2 least-squares reconstruction and evaluation of the local time-step sizes.

VI. Numerical examples

Performance of the developed GPU code based on OpenACC was measured on the North Carolina State
University’s research-oriented cluster ARC, which has 1728 CPU cores on 108 compute nodes integrated by
Advanced HPC. All machines are 2-way SMPs with AMD Opteron 6128 (Magny Core) processors with
8 cores per socket (16 cores per node). The GPGPU card used in the present work is a NVIDIA Tesla
K20c GPU containing 2496 multiprocessors. The performance of the equivalent MPI-based parallel CPU
program was measured on an AMD Opteron 6128 CPU containing 16 cores. The source code was written
in Fortran 90 and compiled with the PGI Accelerator with OpenACC (version 13.9) + OpenMPI (version
1.5.1) development suite. The unit time Tunit is calculated as

Tunit =
Trun

Ntime× Nelem
× 106 (microsecond)

where Trun refers to the time recorded for completing the entire time marching loop with a given number
of time steps Ntime, not including the start-up procedures, initial/end data translation, and solution file
dumping.

A. Inviscid flow past a sphere

In the first test case, an inviscid subsonic flow past a sphere at a free-stream Mach number of M∞ = 0.5 is
considered in order to assess the performance of OpenACC-based GPU acceleration on implicit DG method.
The explicit part can be found in authors’ previous work.33 A sequence of four successively refined tetrahedral
grids are displayed in Figs. 1(a) – 1(d). And the surface pressure contours by explicit RDG(P1P2) are shown
in Figs. 1(e) – 1(h). The cell size is halved between two consecutive grids. Note that only a quarter of the
configuration is modeled due to symmetry of the problem.

The following L2 norm of the entropy production is used as the error measurement for the steady-state
inviscid flow problems:

‖ε‖L2(Ω) =

√∫
Ω

ε2 dΩ =

√√√√Nelem∑
i=1

∫
Ωi

ε2 dΩ

where the entropy production ε is defined as

ε =
S − S∞
S∞

=
p

p∞

(
ρ∞
ρ

)γ
− 1

Note that the entropy production, where the entropy is defined as S = (p/ρ)γ , is a very good criterion to
measure accuracy of the numerical solutions, since the flow under consideration is isentropic. The quantitative
measurement of the discretization errors has been done in the authors’ previous work, which indicates that
explicit RDG(P1P2) method achieved a formal order of accuracy of convergence, convincingly demonstrating
the benefits of using the RDG method over its underlying baseline DG method.

Secondly a strong scaling timing test is carried out on same sequence of four successively refined tetrahe-
dral grids. The simulations are done by GPU-accelerated DG(P1) or RDG(P1P2) with p-multigrid method
and original CPU code, so that we can see the efficiency of the GPU computing. The detailed timing mea-
surements are presented in Table 4, showing the statistics of unit running time. Note that the reason we
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Figure 1: Subsonic flow past a sphere at a free-stream Mach number of M∞ = 0.5: (a) – (d) Surface
triangular meshes of the three successively refined tetrahedral grids; (e) – (h) Computed pressure contours
obtained by p-multigrid RDG(P1P2) on the surface meshes.

do not present the data for the p-multigrid RDG(P1P2) for the most fine mesh is that it would exceed the
K20c GPU card memory. From the results we can see that GPU performs better when it comes to larger
Nelem, and can achieve higher speedup factor when we use DGP1.

Table 4: Timing measurements of using p-multigrid DG methods for subsonic flow past a sphere.

Tunit by p-multigrid DG(P1) Tunit by p-multigrid RDG(P1P2)

Nelem GPU CPU Speedup GPU CPU Speedup

2,426 12.53 16.31 1.30 25.93 39.95 1.54

16,467 5.15 19.40 3.77 16.36 49.28 3.01

124,706 3.01 27.15 9.00 13.50 53.24 3.94

966,497 2.02 21.37 10.58 - - -

To show the effect of the p-multigrid, we would show the convergence history of the next fine mesh, thus
we can include RDG(P1P2) with p-multigrid on GPU platform without the memory issue. The results are
shown on Figs. 2(a)-2(b). Clearly, the p-multigrid shows its effect on accelerating the convergence procedure.
This case shows that the GPU accelerated p-multigrid DG method is effective and the speed up is promising.

B. Transonic Flow over a Boeing 747 Aircraft

In the second test case, we choose a transonic flow pasting a Boeing 747 aircraft at a free stream Mach number
of M∞ = 0.85, and an angle of attack of α = 2◦. This case could test the ability of computing complex
geometric configurations by a OpenACC-based GPU program. The configuration of Boeing 747 includes the
fuselage, wing, horizontal and vertical tails, under-wing pylons, and flow-through engine nacelle. The grids
we are using here are both tetrahedron grid with 253,577 and 1,025,170 grids respectively. Similarly, we only
model half of the aircraft because of the symmetry of the problem. The grid is shown in Fig. 3(a). The
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(a) (b)

Figure 2: Subsonic flow past a sphere at a free-stream Mach number of M∞ = 0.5: (a) Comparison of
convergence history versus CPU time between TVDRK and p-multigrid methods for DG(P1); (b) Comparison
of convergence history versus CPU time between TVDRK and p-multigrid methods for RDG(P1P2)

computed Mach number contours obtained by p-multigrid DG(P1) solution in the flow field are shown in
Figs.3(b). Again, the explicit part can be found in authors’ previous work.33

(a) (b)

Figure 3: Transonic flow past a at a free-stream Mach number of M∞ = 0.85 and a angle of attack of
α = 2◦: (a) Unstructured mesh used for computation; (b) Computed pressure contours obtained by p-
multigrid DG(P1)

The strong scaling test is carried out on the same grids, which can be found in Table 5. Clearly, we
can see that the GPU achieves higher speed up factor with p-multigrid DG(P1). Again, we do not have
the data for p -multigrid RDG(P1P2) for the fine mesh due the memory limitation of the available GPU
cards. Figs.4(a)-4(b) display a comparison of convergence histories versus CPU time between TVDRKDG
on CPU and p-multigrid DG method on GPU platform. The p-multigrid method is much faster than its
explicit TVDRK counterpart for this test case. The excellent acceleration of the p-multigrid method is again
demonstrated for this flow problem.

VII. Conclusions and Outlook

A GPU accelerated, p-multigrid discontinuous Galerkin method has been developed based on the Ope-
nACC directives for the solution of compressible flows on 3D unstructured grids. A remarkable design feature
in the present scheme is that it requires minimum intrusion and algorithm alteration to an existing CPU
code, and renders an efficient approach to upgrading a legacy solver with the GPU-computing capability
without compromising its cross-platform portability and compatibility with the mainstream compilers. The
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Table 5: Timing measurements of using p-multigrid DG methods for transonic flow past a Boeing 747 aircraft.

Tunit by p-multigrid DG(P1) Tunit by p-multigrid RDG(P1P2)

Nelem GPU CPU Speedup GPU CPU Speedup

253,577 3.47 21.49 6.19 32.94 81.43 2.47

1,025,170 2.61 22.71 8.70 - - -
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Figure 4: Transonic flow past a Boeing 747 aircraft at a free-stream Mach number of M∞ = 0.85 and a
angle of attack of α = 2◦: (a) Comparison of convergence history versus CPU time between TVDRK and
p-multigrid methods for DG(P1); (b) Comparison of convergence history versus CPU time between TVDRK
and p-multigrid methods for RDG(P1P2)

p-multigrid method employes explicit three-stage Runge-Kutta RDG(P1P2) scheme as higher approximation
level and first order backward implicit Euler DG(P0) as lower approximation level to accelerate the solver to
converge to steady state. A face renumbering and grouping algorithm is used to eliminate memory contention
of vectorized computing over the face loops on GPU platform. A series of inviscid flow problems have been
presented for the verification the original CPU code for both explicit RDG(P1P2) and p-multigrid method.
Further work should be focused on properly extending the current solver to viscous terms so that the scaling
test could be taken on both inviscid and viscous flow problems. Additionally, porting the LU-SGS and finally
GMRES + LU-SGS solver on the p-multigrid first could be good start to threading the fully implicit DG
method on GPU platform.
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