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ABSTRACT

CPU speeds have increased faster than the rate of improvement in

memory access latencies in the recent past. As a result, with pro-

grams that suffer excessive cache misses, the CPU will increasingly

be stalled waiting for the memory system to provide the requested

memory line. Prefetching is a latency hiding technique that tack-

les this problem. If the address of the memory line that misses in

cache can be predicted sufficiently in advance, it can be prefetched

into the cache before it is accessed, reducing the effective latency

of that access.

In this paper, we develop a novel software-only data prefetching

scheme that works at the instruction level and exploits predictabil-

ity in the access stream to prefetch memory lines accessed in the

future. Working at the instruction level gives us a global view of

memory access patterns across function, module and library bound-

aries. Conceptually, our scheme monitors the memory locations be-

ing accessed by loads and stores as well as their contents. It tries to

find instances of predictability such that the address of a load miss

can be pre-determined from a limited number of past accesses.

We make the following contributions in this work. First, we

present a novel prefetching strategy that unifies and generalizes a

number of past approaches that each target a specific source of ad-

dress predictability. Specifically, our scheme unifies all these past

approaches: next-line prefetching, self-stride prefetching, “intra-

iteration” stride prefetching and same-object prefetching. In addi-

tion, it extends and generalizes the SPAID scheme for pointer and

call-intensive programs. Second, we present a new threshold-based

approach that addresses the issues of prefetch accuracy, prefetch

timeliness and prefetch redundancy. Third, we assess our scheme

both with a cache simulator and on a real machine where we eval-

uate it with hardware performance counters.

Overall, we demonstrate that a significant reduction in L1 cache

misses can be achieved for several benchmarks on a real machine

with our approach.

1. INTRODUCTION
In the recent past, processor speeds have been increasing at a

much faster pace than improvements in memory access latencies.

As a result, the cost of a cache miss in terms of processor cycles

keeps increasing. Due to limited out-of-order window sizes of con-

temporary processors, a load miss in the second or further levels of

cache will typically stall the processor as it runs out of parallel in-

structions to process. Consequently, the overall wallclock time for

applications is often dominated by the efficiency of their memory

access patterns.

Prefetching is a latency hiding strategy that attacks this prob-

lem. If the address of a load that misses in cache can be pre-

dicted sufficiently early, then the corresponding memory line can
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be prefetched into the cache well in advance of its access. If the

prefetch completes before the load, then the erstwhile miss would

be transformed into a hit.

In this work, we focus on integer-intensive programs that typi-

cally contain few regular array accesses. Software prefetching al-

gorithms for arrays accesses are well established (e.g., [18]), and

we do not target these in our approach1 .

Conceptually, our scheme monitors the memory locations ac-

cessed by loads and stores, as well as their contents. It tries to

find instances of predictability such that the address of a load miss

can be pre-determined from a limited number of past accesses. Our

scheme is based on offline analysis using profile feedback. First,

the program is run with a small training data set, and an annotated

trace of memory accesses is extracted. This trace is analyzed of-

fline for detecting predictability, and a set of prefetch predictors is

generated. The prefetch predictors are used to place explicit soft-

ware prefetch instructions directly in the assembly code of the pro-

gram. In contrast to earlier hardware solutions [19,27], our scheme

operates completely in software, and we present results from an

implementation on a contemporary processor platform.

Our scheme has several advantages over past work. By examin-

ing the overall memory access streams of the executing program,

we get a global view of a program’s memory access pattern across

function and module boundaries. This is hard to achieve for a static

compiler, especially with irregular integer programs due to aliasing

and input-dependent control flow. At the same time, our analysis

is powerful and general enough to encompass and unify multiple

separate approaches from past work. Specifically, our scheme uni-

fies all these past approaches: next-line prefetching [13, 24], self-

stride prefetching [8, 17, 20, 25], “intra-iteration” stride prefetch-

ing [11] and same-object prefetching [26]. In addition, it ex-

tends and generalizes the SPAID scheme [15] for pointer and call-

intensive programs. A detailed discussion of related work is pre-

sented in Section 4. Examples of the access patterns targeted by

our scheme are shown in Figure 1, along with the past work that

addresses that pattern. The bold arrows depict the source and target

of prefetching. Our scheme does not target each pattern specif-

ically. Instead, all these patterns can be quite elegantly handled

by a standard approach to analyzing memory accesses. Figure1(a)

shows an example of self-striding that typically arises in pointer-

chasing code where consecutive instances of the data structure tend

to be placed at regular offsets from each other. Figure 1(b) shows

“same-object” prefetching, where different fields of an object are

frequently accessed close together in time. Since field layout is

statically determined, the address of any field can be computed if

the address of any other field of the same object is known. Fig-

ure 1(c) demonstrates “intra-iteration” stride prefetching. In many

cases, data structures are allocated at the same time as their chil-

dren. As a result, the address of the children fields can be predicted

1Our baseline executable for performance comparison has
compiler-inserted software prefetch instructions for array accesses.



for(...) {

....

....
ptr = ptr−>next;

}

(a) Self-Stride
Prefetching [17, 25]

.... = ptr −> Y;

for(...) {

....

....

}

.... = ptr −> X;

(b) Same-
Object
Prefetch-
ing [26]

ptr = new ...;

ptr−>s = new ..;

...

for(...) {

.... = ptr −> field1;

}

... = ptr−>s−>field;

(c) Intra-Iteration Stride
Prefetching [11]

.... = ptr −> Y;

for(...) {

....

....

}

ptr = ....;

(d) (Enhanced)
SPAID [15]

Figure 1: Example Patterns

from the parent object’s address or the address of some other child.

Inagaki et. al demonstrate that this occurs frequently with Java

programs [11]. Finally, Figure 1(d) shows a generalized scenario

targeted by a SPAID-like scheme. If the field dereference (ptr→y)

is sufficiently distant from the pointer initialization, then the field

can be prefetched in advance. Lipasti et. al only target pointers

being passed as function arguments at call sites and also do not

consider offsets from the pointer, as typically occurs with the deref-

erencing of a field of an object or a structure. We have generalized

SPAID to consider any pointer load or store as a potential prefetch

source. In addition, we consider load misses to a contiguous region

of memory around the pointer as prefetch targets. This supports the

common case of field dereferences that the original SPAID scheme

did not consider.

We make the following contributions in this work:

• We present a novel software-only prefetch scheme that finds

miss address predictability by monitoring the memory ac-

cesses of the program at the instruction level.

• Our approach unifies and encompasses several separate past

efforts that each targeted different sources of predictability.

• We enhance and generalize the SPAID scheme that targets

pointer dereference misses at function call sites.

• We also present novel measures to filter prefetch predictors

based on prefetch accuracy, prefetch timeliness and prefetch

redundancy. We are not aware of any past work that uses this

approach.

• We implemented our scheme on a real machine and evaluate

its performance with hardware performance counters.

2. FRAMEWORK
We are looking to exploit the predictability of memory access

streams for reducing the number of load cache misses. We monitor

the effective address (EA) generated by load and store instructions.

In addition, we also monitor the contents of the memory location

being accessed (EA Contents) for loads/stores that might be ac-

cessing pointers.2 Conceptually, for each load miss, we consult the

recent history of memory accesses, constrained by a window size,

to see if the load miss address was predictable using the captured

EA, EA Contents information of a retired dynamic instruction P. If

so, then the load miss can be potentially transformed into a hit by

2Our experiments were performed on the Power architecture where
pointers are usually accessed using 32-bit lwz and stw instruc-
tions and their variants.

inserted prefetch instructions that use the EA/EA Contents value of

P to prefetch data into the cache. In addition, we also try to address

prefetch timeliness by checking whether the load miss is too close

temporally to the predictor instruction P. If the load miss is found

to be too close, the prefetch would not be useful.

For a target benchmark, we proceed through the following

stages. First, we generate the assembly source code for the bench-

mark and use an annotation tool that we developed in-house to in-

strument memory access instructions. In addition, we insert instru-

mentation to maintain a pseudo “instruction counter” that concep-

tually increments after every instruction is issued3. We call this

variable the instruction distance (Inst Dist) counter. The idea is to

tag each traced memory access with the Inst Dist counter value.

Later, during analysis, this helps in improving prefetch timeliness

by detecting if prefetch predictors may be issued too close (tem-

porally) with respect to the target load miss instruction, in which

case the prediction would not be useful. Our experiments were

performed on the Power architecture. We considered annotating

the memory accesses with the values from the hardware high-

precision timebase register in place of our software instruction dis-

tance counter. However, reading the timebase register is too expen-

sive (≈1000 cycles for back-to-back reads of the timebase register),

which significantly distorts the actual number of cycles between

memory accesses. On other architectures (e.g., Itanium2) the cost

of reading the high precision timer is much lower. This may make

it feasible to use the timebase register in place of the software in-

struction distance counter.

In the second step, we run the instrumented program and collect

the memory access trace. Third, we analyze the trace using our

framework and generate prefetch predictors. Each prefetch predic-

tor is a tuple <IP, EA/EA Contents, Delta>.‘IP’ is the unique iden-

tifier for a load or store instruction. ‘EA/EA Contents’ describes

whether the effective memory address accessed by the instruction

or the contents of that memory address should be used for predic-

tion. Finally, ‘Delta’ is a constant value that denotes the offset from

EA/EA Contents to the memory line that needs to be prefetched.

In the final phase, we insert a prefetch snippet just after the tar-

get instruction indicated by the prefetch predictor IP. The prefetch

snippet issues a prefetch for the address EA/EA Contents + Delta

using the “Data Cache Block Touch” (dcbt) instruction. All these

steps are completely automated.

Even with train data sets, the number of loads and stores in the

full trace is very large. We therefore implemented bursty tracing to

reduce the number of samples in the trace. Bursty tracing used a

3We reduce the overhead by appropriately updating this counter
only at basic block boundaries and before memory access instruc-
tions.
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Figure 2: Overall Framework

duty cycle of 10%, each burst containing 2 million accesses 4.

We shall now describe our analysis in more detail. Figure 2

shows the steps in the analysis. We maintain a cache simulator

“filter” that models the first-level L1D cache. The filter tags each

memory access as a hit or a miss. Only load misses are targeted for

prefetch prediction. All memory accesses are considered as poten-

tial prediction sources. For each memory access described by <IP,

EA, EA Contents, Inst Dist>, we generate candidate predictors off

both EA and EA Contents. The idea is to keep track of a fixed con-

tiguous region of memory around the EA and EA Contents address

for a certain number of accesses in the future. If any of these future

accesses are load misses in this region, then those load misses can

be prefetched using the value of EA or EA Contents and a constant

offset value Delta, as described before. The size of the contiguous

region is configurable. We empirically determined that region sizes

of 10 and 20 cache lines in each direction (positive/negative) gave

good results for EA and EA Contents, respectively5. A smaller

region potentially reduces the number of load misses detected as

suitable for prefetching, but with the benefit of reduced analysis

overhead.

How long should we keep the predictors around? This is a

configurable parameter and is implemented by a sliding window

scheme. The length of the sliding window decides the number of

future accesses during which the predictors remain active. The

trace record (IP, EA, EA Contents) is put into the sliding win-

dow when the candidate predictions are generated. When the trace

4In other words, we captured 2 million accesses and then ignored
the next 18 million accesses.
5In Figure 2, C denotes the cache line size.

record pops out of the sliding window, the predictors are removed.

The candidate predictions are hashed by their memory line ad-

dresses and stored in the Memory Line Address Hash Map (MLA

map). For each load miss, the load miss address is checked in

the MLA map. If there are existing predictions for the load miss

address, each predictor is considered further for validity. The

Inst Dist values of the predictor and the load miss are checked. If

the difference in instruction distance is below a certain threshold,

the prediction is classified as “too late”. Otherwise the prediction

is considered useful (Non Redundant).

After the entire trace has been processed, we prune the predictors

using various thresholds. First, we consider the accuracy of pre-

dictions. Predictors are considered highly accurate if the predicted

cache line is either already in the cache or is accessed within the

sliding window before the predictor was removed (when popping

off accesses from the end of the sliding window). This is known as

the seen ratio.

seen ratio = (# predicted line seen in sliding window or already in

cache) / (# predictions)

The idea is to reduce the overhead of useless prefetches by only se-

lecting predictors with high accuracy. Useless prefetches are very

expensive because they cache data that is seldom accessed, they

may evict frequently accessed memory lines from the cache, and

they incur overhead for executing the prefetch snippet.

Our second threshold addresses the issue of prefetch timeliness.

The Inst Dist difference between a predictor and its target load miss

denotes the number of dynamic instructions issued between them.

This is a conservative lower bound on the number of processor cy-

cles between these two events since it does not account for multi-

cycle instructions, such as loads that miss in cache. If this differ-



Table 1: Benchmarks and data sets

Benchmark Suite Train Data Set Arguments Ref Data Set Arguments

181.mcf SPEC CPU2000 train/inp.in ref/inp.in

300.twolf SPEC CPU2000 train ref

255.vortex SPEC CPU2000 bendian.raw bendian1.raw

175.vpr SPEC CPU2000 net.in arch.in place.out net.in arch.in place.out
dum.out -nodisp -place only dum.out -nodisp -place only
-init t 5 -exit t 0.005 -init t 5 -exit t 0.005
-alpha t 0.9412 -inner num 2 -alpha t 0.9412 -inner num 2

197.parser SPEC CPU2000 2.1.dict -batch < train.in 2.1.dict -batch < ref.in

boxedsim - -n 500 -t 0.75 -n 1000 -t 1.0

ft PtrDist 10000 40000 10000 40000

bh Olden 8192 1 65536 1

bisort Olden 10000000 1 20000000 1

em3d Olden 10000 100 75 1 1000000 100 75 1

health Olden 5 3000 1 5 4000 1

mst Olden 4096 1 8192 1

treeadd Olden 24 1 26 1

tsp Olden 2000000 1 3000000 1

voronoi Olden 500000 1 10000000 1

ence is lower than a certain threshold, we consider the predictor to

be “too close” temporally to the target load instruction that missed.

Hence, the prediction is not useful. The too late ratio is calculated

as:

too late ratio = (# predictions classified as too late/ # predictions)

If the too late ratio is above a certain value, the predictor is pruned.

Finally, we attempt to reduce the number of redundant

prefetches. Consider, for example, a structure S with three ele-

ments, A, B and C, that reside in different cache lines with the

fields always accessed in the order S.A, S.B and S.C. If S.C is a

miss, then the load miss address can be predicted using both S.A

and S.B. However, the second predictor (off S.B’s EA) is redundant

and should be pruned. The redundant predictors are pruned as fol-

lows. First, the set of predictors pruned using the other thresholds

discussed above is generated. Then, the trace is re-processed from

the start and passed through a new cache filter. At the end, the re-

dundancy ratio for each predictor is calculated as follows:

redundancy ratio = (# predicted line already in cache / # predic-

tions)

If the redundancy ratio is above a certain threshold, then the pre-

dictor is pruned.

At the end of the analysis, we have obtained a set of predictors

that are highly accurate, have good timeliness and are highly rele-

vant. These predictors are inserted back into the assembly source

code as described earlier. Our current scheme is based on annotat-

ing assembly code, though our framework can be implemented in

the back-end of a compiler as well. The prefetch snippets as well as

the instrumentation snippets need at least two free registers. In our

current implementation, we reserve two registers using a compiler

flag6 when generating the target program’s assembly source. This

requirement can be removed by selecting dead registers using live

variable analysis [17].

Our scheme is not targeting load misses incurred by regular array

accesses. Prefetching algorithms for such accesses are well estab-

lished. Our compiler (gcc) is able to generate prefetches for such

array accesses. Our analysis takes into account the effect of this

compiler-generated prefetching in the following way. When trac-

ing memory accesses, we also trace the prefetch instructions in-

serted by the compiler. During analysis, the effect of these prefetch

6We used gcc for our experiments. The corresponding flags for gcc
are -ffixed-r15 -ffixed-r16

instructions is simulated by the cache filter. It is important to do

this because, otherwise, our analysis might generate prefetch pre-

dictors for array accesses that are also targeted by the compiler-

generated prefetch instruction. Our predictors would be redundant

in this case.

3. EXPERIMENTS
We evaluated our framework for a set of memory-intensive

benchmarks shown in Table 1. The benchmarks have been selected

from the SPEC CPU 2000 [9], Ptrdist [1] and Olden [3] suites, ex-

cept for boxedsim [4]. We selected benchmarks that had significant

L1D cache miss rates. Smaller data sets were used for the training

phase, while larger data sets were used for measuring execution

benefits. For the boxedsim benchmark and the benchmarks from

the Olden and PtrDist suites, we increased the data set sizes from

their default values to make the programs run sufficiently long.

3.1 Procedure
All experiments were conducted on a multi-user p655 Power4

SMP system. The system has 8 processors but we used only one

of them since our programs are single-threaded. Each Power4 pro-

cessor has a 16 KB 2-way associative L1D cache, 1.5 MB 8-way

associative unified L2 cache and a 32 MB 8-way associative L3

cache. The L1D and L2 cache lines are 128 bytes wide.

For each program, assembly code was generated by the com-

piler. We used the gcc compiler with high optimization settings

(-O3 -mpower -fprefetch-loop-arrays7). In addition, as stated be-

fore, we also reserved two registers for our prefetch snippet in the

generated assembly code using the flags “-ffixed-r15 -ffixed-r16”.

The executable built from this assembly source is our baseline for

performance evaluation. In the profiling/analysis pass, this assem-

bly source was instrumented for bursty tracing, and the generated

traces were analyzed using our framework. The generated predic-

tors were inserted into the assembly source that was assembled and

linked to create our modified executable for evaluation.

We only had access to a shared multi-user Power4 platform. The

shared usage caused variability in our performance measurements.

In order to address this problem, each measurement run was re-

7The “-fprefetch-loop-arrays” directs the compiler to insert explicit
prefetch (dcbt) instructions for loop-resident array accesses.



peated for 10 times, and the minimum values were chosen for com-

parison.

3.2 Self­Striding Comparison
Past related work on data prefetching has focused on self-striding

[17, 25]. We implemented a self-striding scheme and compared its

performance to our framework. The implementation of the self-

striding scheme is based on Wu et al.’s scheme [25]. For each load

instruction, the load access trace generated is examined. Up to 4

most frequent strides are selected. Strides that account for less than

25% of the accesses at that instruction are pruned. We keep track

of the average instruction distance B (Section 2) between consecu-

tive accesses at an access point. If the access point is in a loop, this

represents an approximate estimate of the number of cycles that the

loop body takes to execute. If the cache miss penalty is L cycles,

the prefetch multiplier K is calculated as:

K = min(⌈ L/B ⌉ , C) , where C is the maximum distance multi-

plier. We use L=120, C=10. 120 cycles is the latency for an L2

miss on the Power4. The value for C is chosen to be similar to past

work reported in Wu et al. [25] to permit a fair comparison.

The prefetch predictor has a distance of K*stride and is inserted

into the assembly source code as described before.

3.3 Measurement Metrics
We use two metrics — L1D load cache misses and the to-

tal number of processor cycles executed by the program. We

used hardware performance counters to measure these two met-

rics with the hpmcount performance monitoring tool (events

PM LD MISS L1 and PM CYC, respectively). The performance

measurements were undertaken with a different and larger data set

compared to the training data set used for tracing and analysis (Ta-

ble 1).

In addition, we also measured the L1D load cache misses on a

cache simulator using only the train data set for both the original

and predictor-inserted variants. The simulator is event-based (i.e., it

does not model timing), and the cache size is same as the as the real

machine’s L1D cache (32 KB). It also does not model the hardware

stream prefetcher available in the Power4 platform. In spite of its

limitations, the simulator output provides a useful indication of the

magnitude of potential miss rate savings possible, as will be shown.

3.4 Analysis
Table 2 shows the values of the parameters used during our anal-

ysis. Thus, predictors were pruned if they satisfied any of the fol-

lowing conditions: the predicted memory line was “seen” less than

85% of the time, the prediction was too late more than 60% of the

time or the prediction was redundant (i.e., the target memory line

was already in cache) more than 95% of the time. The sliding win-

dow size was 450, and candidate predictors were generated for up

to 10 and 20 cache lines in each direction for EA and EA Contents,

respectively.

Table 2: Analysis Parameters

Parameter Value
seen threshold 0.85
too late threshold 0.6
redundancy threshold 0.95
inst dist threshold 64
sliding window size 450
ea locality lines 10
ea contents locality lines 20

Figure 3 shows the percentage reduction in L1D cache misses as

reported by the simulator processing the traces from the train data

set. It gives a useful indication of the benchmarks where our tech-

nique is applicable. Figures 4 and 5 show the percentage reduction

in (a) L1D cache misses and (b) processor cycles, respectively, on

the real machine, as reported by the hardware performance counters

with the reference data set.

Consider the simulation results shown in Figure 3. In 8 bench-

marks (out of 14), our scheme is able to reduce the L1D cache miss

rates by 5% or more with more than 20% reduction in 5 bench-

marks (mcf, parser, em3d, mst, treeadd, tsp). Self-striding per-

forms significantly worse in 6 of these benchmarks (vortex, parser,

boxedsim, em3d, mst, tsp), shows comparable performance in 2

(mcf, treeadd) and is significantly better for FT. FT is discussed in

more detail below. For the other benchmarks, the difference in per-

formance with respect to self-striding can be attributed to the fact

that our scheme targets multiple different sources of predictability

(Section 1) while self-striding only focuses on the regularity of the

access stream at individual access points.

Consider the actual reduction in L1D misses obtained with the

reference data sets in Figure 4. We observe that there are signif-

icant savings for many benchmarks, but the values are uniformly

lower as compared to the simulator predictions (except for vor-

tex, where they are higher). For our scheme, vortex and tsp show

a significant reduction (> 30%) while mcf, boxedsim, em3d and

mst exhibit appreciable reductions ranging from 4.9% to 17%. In

comparison, self-striding has significantly worse performance in 4

of these benchmarks (vortex,em3d, mst, tsp), comparable perfor-

mance in 2 (mcf, boxedsim) and performs significantly better for

FT. Some benchmarks that show significant improvement with the

simulator do not show a corresponding improvement on the real

machine with the larger reference data set (parser, mst, treeadd).

The potential reasons for this discrepancy are discussed below.

Figure 5 shows the corresponding reduction in processor cy-

cles. The performance results are mixed. 6 benchmarks (mcf, vor-

tex, vpr, bisort, em3d, tsp) show appreciable reductions ranging

from 2% to 7.6%. However, 4 benchmarks (parser, boxedsim, ft,

treeadd) experience slowdowns ranging from -2% to -12%. Except

for FT, self-striding always performs worse for all benchmarks,

i.e.,no benchmark shows an improvement of 2% or more. For self-

striding, mcf achieves significant L1D miss reductions but almost

no processor cycle reductions. We suspect that the cause is subop-

timal instruction scheduling for the prefetch snippet, as discussed

below.
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Figure 3: Simulator: % Reduction in L1D load misses (Train-

ing data set)
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Figure 4: H/W: % Reduction in L1D load misses (Reference

data set)

We have seen that for many benchmarks, the simulator results

are much better than the results on the actual machine. In addi-

tion, for several benchmarks the L1D miss reductions on the real

machine do not correspond to a reduction in processor cycles. In

fact, some benchmarks show a degradation in performance. What

could account for these anomalies? To attain a definitive answer,

we would need a cycle-accurate simulator that models our target

(commercial) Power4 processor. There are several plausible expla-

nations:

• Simulator: Our simulation results are expected to be opti-

mistic, since the simulator is event-based and does not model

prefetch timeliness. In addition, it does not currently model

the hardware stream prefetcher present in the Power4 plat-

form. Some of the predictable prefetches may also be recog-

nized by the hardware prefetcher, reducing the observed L1D

miss savings on the real machine.

• Prefetch snippet Cost: We do not account for the cost of

the prefetch snippets. This cost can overwhelm the benefits

of reduced misses if there are many redundant prefetches.

• Prefetch scheduling: Our current approach is based on an-

notating the assembly source code. In the course of our ex-

periments, we found that scheduling of the prefetch snippets

has a big impact on the overall processor cycles. Implement-

ing our scheme in the backend of the compiler would solve

this problem.

3.5 FT
FT illustrates a potential weakness of our scheme. Self-striding

performs exceptionally well for FT while our scheme did not find

significant prefetch predictors. In this benchmark, there is a sin-

gle load access in a tight pointer-chasing loop that accounts for the

bulk of the load misses. The access point exhibits a regular stride

of -120. Self-striding is able to detect this stride and generates a

prefetch predictor distance of -1200 (since the maximum distance

multiplier, C, is 10) off the effective address (EA) of the access

point. Recall that our sliding window analysis only generates pre-

dictors for a limited region around the access point’s EA. In our

experiments, this was set to 10 cache lines, i.e., the predictors gen-

erated had prefetch distances of -1152, -1024,...-128. However, all

these prefetch predictors were classified as “too late” because of

the tight nature of the pointer-chasing loop nest. Hence, they were

rejected.
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Figure 5: H/W: % Reduction in processor cycles (Reference

data set)

Thus, in this case, self-striding was able to generate prefetch pre-

dictors while the sliding window analysis failed to do so. The cause

was that the high instruction distance threshold (64) was too pes-

simistic — it did not consider the number of cycles the proces-

sor was stalled due to a cache miss but only considered the actual

number of instructions issued between the candidate predictor and

the target dynamic load instruction. In further experiments, low-

ered the instruction-distance threshold below 64. This helped FT

gain performance but adversely effected other benchmarks. It ap-

pears that a more adaptive scheme to adjust the instruction-distance

threshold would be needed to be universally affective across differ-

ent codes.

4. RELATED WORK
Sair et al. performed a simulation-based study to classify pro-

gram load misses into next-line, stride, same-object and pointer

misses [23]. A significant fraction of the load misses was found

to be of one of the first three types for many of the SPEC bench-

marks. It is precisely these misses that are targeted by our frame-

work. Hardware implementations of next-line and stream prefetch-

ing have been proposed earlier [13,24]. The Power4 platform has a

stream-based hardware prefetcher. However, this prefetcher needs

a “warm-up” period of a certain number of misses to consecutive

cache lines before it starts to prefetch the stream. Hur et al. propose

a memory-side prefetcher for the Power5+ system that targets such

short-length streams [10]. In contrast, our approach is completely

software-based and uses explicit prefetch instructions to target such

streams successfully.

Stride-based prefetching has been explored both in hardware and

software. Unlike our scheme, much of the past work has focused on

the striding regularity of individual access points, i.e., they do not

consider predictability among accesses from different load/store in-

structions. Wu et al. [25] and Luk et al. [17] describe such software

self-striding schemes. Hardware stride prefetchers have also been

proposed [8, 20] and implemented in the Pentium microprocessor.

As shown in this work, our scheme performs significantly better

than self-stride prefetching in isolation for most benchmarks. This

is because our approach is able to detect multiple other sources of

predictability in addition to most cases of self-striding. However, in

a few situations, self-striding may perform better than our scheme

(e.g., for FT). Zhang and Torrellas propose a hardware scheme to

group fields or objects that are used together, and prefetch all these

at the same time [26]. In comparison, our scheme will also recog-

nize groups of field accesses that occur together and target them for



prefetching if they miss frequently in cache. However, our scheme

is implemented completely in software.

Lipasti et al. propose SPAID, a prefetching heuristic for pointer

and call intensive programs [15]. SPAID inserts prefetches for the

target of pointer parameters at call sites on the assumption that

the pointed object will be dereferenced soon. Our scheme extends

SPAID in that any pointer load is analyzed as a potential prefetch

candidate, not just the pointers at call sites. In addition, when look-

ing for predictable cache misses, we look at a large contiguous

area of memory around the candidate pointer while SPAID will

only prefetch at most one cache line (the one pointed to by the

pointer). Our experiments indicate that our approach is better be-

cause pointers pointing at objects or structures are often used to

deference fields of an object that span multiple cache lines. Finally,

our detailed trace information allows much better pruning of harm-

ful or useless prefetches. The dynamic instruction distance allows

us to model prefetch timeliness for SPAID-like prefetch predictors,

pruning away those that would be too late to be useful. The re-

dundancy threshold prunes away predictors whose targets are most

often already in cache.

Inagaki et al. present a software prefetching approach for target-

ing both “inter-iteration” (self-striding) and “intra-iteration” pre-

dictability (predictability across instruction points) [11]. This is

the closest related work. During just-in-time compilation of a hot

Java loop, the load dependence graph is constructed. An interpreter

runs the first few iterations of the loop and attempts to determine

stride patterns among the different loads in the dependence graph.

This information is used to insert software prefetches, and speedups

of up to 20% are reported on some benchmarks. Our scheme

shares the goal of determining address predictability among mul-

tiple memory access points. However, our offline approach allows

us to conduct a much more detailed analysis by accounting for

prefetch timeliness and prefetch redundancy. Our scheme targets

misses from all loads, not just the loop-resident ones. Finally, our

scheme can potentially group multiple prefetches because it con-

siders memory lines and not just the strides between two loads in a

pair — since multiple fields typically share the same cache line.

Beyler and Clauss developed a binary rewriting framework to

first measure latencies of loads using the time counter register of

the IA64 before inserting prefetches where beneficial [2]. They pe-

riodically monitor program behavior to add and remove prefetches

in response to their effectiveness and to changes of program behav-

ior (phasing). After compensating for instrumentation overhead,

they report 2-143% performance improvement. Results are hard

to compare because (a) they lack prefetching under gcc while we

enabled it and (b) since IA64 performance is known to more criti-

cally depend on memory performance than that of the Power archi-

tecture with hardware prefetching. In contrast to their work, ours

determines predictors before inserting prefetches statically, which

does not incur any runtime overhead.

Hardware schemes have been proposed that assess predictability

in misses generated from different access points [19, 27]. In con-

trast, our approach is completely in software and is therefore more

portable.

Finally, there are other prefetch schemes that are complementary

to our approach. Software prefetching for regular array accesses

in loop intensive programs is well established [18]. We do not tar-

get these misses but focus on other sources of address predictabil-

ity in irregular integer-intensive programs. Prefetching of pointer

chains, for example using Markov predictors, has been previously

proposed in both hardware [6, 7, 12, 21] and software [5, 22]. Our

scheme does not address this problem. Finally, helper-thread based

approaches leverage additional hardware contexts to prefetch data

for the main program [14, 16]. In contrast, we focus on prefetch

instructions inserted inline in the target program that can be single-

threaded or multi-threaded.

5. CONCLUSIONS AND FUTURE WORK
In this work, we have presented a novel software-only prefetch

scheme that exploits predictability in the memory access stream to

create prefetch predictors. Our approach unifies and extends sev-

eral past approaches that each targeted a different source of address

predictability. Our approach is fully automated, portable and uses

novel threshold-based mechanisms for addressing prefetch accu-

racy, prefetch timeliness and prefetch redundancy.

We have evaluated our scheme on a real machine as well as a

cache simulator. We have shown that significant reductions in L1D

load cache misses are achievable on real hardware with our ap-

proach. However, the performance improvements in terms of pro-

cessor cycles has been lower than anticipated. Based on experience

with microbenchmarks, we conjecture that prefetch scheduling has

a significant impact on the overall processor cycles. In future work,

we intend to port our framework to the back-end of a compiler,

which will allow us to schedule prefetch snippets. In addition, we

will port our framework to other memory constrained architectures,

such as the Itanium2 platform.
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