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ABSTRACT
Non-Volatile Memory (NVM) is a byte-addressable, high capacity,
high latency and a persistent form of memory that can extend
the primary memory hierarchy by another level. It is up to 8x
denser than DRAM, allowing for clusters with compute nodes that
have significantly higher memory capacity than those of previous
generations. Intel’s Optane DC Persistent Memory Module (PMM)
is such an NVM device that can be used to increase the memory
density of high performance computing (HPC) systems. This work
hypothesizes that with highermemory density, scientific computing
applications with larger problem sizes can be run on fewer compute
nodes than on current HPC systems. This, in turn, can reduce
operational cost. This work tests this hypothesis by comparing
performance and energy of HPC jobs with large problem sizes of (1)
fewer nodes with large NVM capacity under various configurations
and (2) more nodes with an equivalent amount of DRAM memory.
In experiments, performance and energy consumption are shown
to be dependent on application characteristics: Codes optimized
for high cache reuse suffer no performance degradation on NVM,
combined with significant energy savings at lower acquisition and
operational costs compared to traditional HPC systems without
NVM. In contrast, memory bound applications using DRAM as a
cache for NVMmay provide a small performance benefit over using
a DRAM-NVM hybrid memory.
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1 INTRODUCTION
HPC systems have been instrumental in running large-scale simu-
lations of scientific problems in almost every field. These scientific
applications require large compute and memory resources, e.g.,
the Summit supercomputer [11] at Oak Ridge National Laboratory
(ORNL), to perform the simulations within reasonable amounts of
time and with sufficient accuracy. According to the latest TOP500
list [30], we are currently within the petascale era of compute capa-
bility (PetaFLOPS), where problem sizes run into petabytes (PBs).
By 2021, we expect to achieve exascale compute capability which
will increase the problem sizes due to more complex simulations
including whole slide image analysis [3, 27]. To run these massive
simulations and analysis, along with exaFLOP compute capability,
we also need a large amount of memory resources.

HPC systems today are large clusters of nodes [12] with compute
and memory resources. The compute resources include the primary
CPU and often additional co-processors or accelerators such as
GPUs [16]. Memory is usually comprised of DRAM but recently
accelerators have included separate high bandwidth DRAM (HBM)
modules. The compute and memory resources across nodes are con-
nected to each other with high-speed switches and interconnects.
The clusters also have cooling and power equipment.

According to the TOP500 list released in June 2020 [30], the 10
fastest supercomputers in the world have a large number of nodes,
which deliver 27 to 513 peak petaFLOPS and have main memory
ranging between 200 TB to 4.85 PB. Their peak power consumption
ranges from 1.5 to 28 MW. The total number of compute nodes
in these clusters are in the multiples of thousands. Due to the use
of accelerators in recent years, the number of compute nodes in a
cluster has reduced with the increase in compute density per node.
DRAM based main memory has scaled, too, but only at half the
rate of increase in compute capability [19].

In order to achieve exascale capability, memory density needs
to increase at the same rate as core count to solve larger problems.
The Frontier supercomputer that will be operational in 2022 has
an expected aggregate system memory of 10 PB [8] with approxi-
mately 6,400 nodes and a power envelope of 30 MW. Its acquisition
cost is $600 million. However, if only traditional DRAM memory
is used then memory density of the Frontier machine will not see
any significant increase compared to Summit. This will restrict the
problem sizes that can be run on the Frontier machine and reduce
the ability to achieve results with higher accuracy at higher reso-
lution and analysis with finer granularity. We focus on increasing
the memory density of compute nodes and memory per core ratio
in future HPC systems to support such large problem sizes with
cost and energy efficiency.

NVM is a byte-addressable, high-density memory that can help
increase the amount of memory in a single node of a cluster [20].
NVMcan be produced using various technologies like Phase Change
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Table 1: Comparisons of related work (BW:memory bandwidth, L: latency, ET: exec. time, EN: energy, CB: cache behavior, MN:
multi-node)
Publication Characteristics Hybrid Memory Allocation Policy Applications Problem sizes Cost Analysis
Our work BW ET EN MN Yes Memory agnostic AMG,LULESH,VPIC Large Yes
M. Ben et al. [22] BW ET Yes Memory aware AMG,LULESH,SNAP,QMCPACK Large No
Patil et al. [23] BW ET EN CB Yes Memory aware AMG,LULESH,SNAP,VPIC,Custom Small, Medium No
Izraelevitz et al. [13] BW L Yes Memory aware SPEC 2006,2017,PARSEC Small No
Peng et al. [25] BW EN L Yes Memory aware GAP Large No

Memory (PCM) [15], spin-torque transfer RAM (STT-RAM)[1] or
Resistive RAM (Re-RAM). NVM has a lower power consumption,
as constant refreshes to maintain state are not required. However,
all of these memories are slower than DRAM in terms of access la-
tencies. Intel has been first-to-market with a NVDIMM form factor
that can be used in conjunction with DRAM. The NVM device is
based on PCM technology known as Optane DC PMM. The Aurora
supercomputer will also have support for Optane DC PMM. It is
eight times denser than DDR4 DRAM but is also approximately six
times slower in terms of write latency [13, 23]. Also, Optane DC is
cheaper than DDR4 in terms of cost per GB of memory by a factor
of 1.5 to 2 depending on the capacity of the DIMM [21].

Contributions: This work evaluates the hypothesis that using
NVM devices like Intel’s Optane DC PMM as an extension to the ex-
isting memory hierarchy can support larger problem sizes in fewer
number of nodes, keeping cost and power consumption within a
target budget, compared to DRAM-only nodes. The slower write
speeds of NVM and lower aggregate compute capabilities over all
nodes may reduce the performance of the system, but the reduced
inter-node communication over the interconnect, increased mem-
ory per core ratio, reduced acquisition cost and energy efficiency
provide be a trade-off for the slowdown [10]. The increased mem-
ory size that NVM can bring to a node will result in maintaining
the required overall memory capacity across a cluster with fewer
number of nodes. This hypothesis is tested by measuring the perfor-
mance characteristics and power consumption of compute nodes
with and without NVM by executing large problem sizes of a set of
HPC applications (VPIC, AMG and LULESH).

Recent works [13, 23] characterize the performance of Optane
DC for different HPC workloads and benchmarks compared to
DRAM. However, they lack the performance characterization of a
multi-node system with a DRAM-NVM based hybrid memory ad-
dress space where the application allocates data structures on both
DRAM andNVM for a given execution combinedwith a comparison
to the same execution on a traditional DRAM-based HPC systems.
Our work fills this gap and provides novel insights for running
applications on large memory nodes. It also provides the baseline
comparison for procuring future HPC systems while considering
different memory systems.

2 RELATEDWORK
Table 1 provides a feature comparison of our work to recent studies
that characterize the performance of NVM technologies especially
with Intel’s Optane DC PMM.

Izraelevitz et al. [13] evaluated the memory access characteristics
of Optane DC PMM for different file-systems, database applications
and performance benchmarks. They found that Optane DC boosts

the performance of file-systems and database applications due to
lower latencies than storage devices. In contrast, we focus on using
Optane DC as an extended memory address space for the existing
memory hierarchy for HPC applications. Patil et al. [23] character-
ized the performance of a DRAM-NVM hybrid memory system for
HPC applications. They measured the performance of frequently
occurring HPC kernels and HPC applications executing on Op-
tane DC with executions on DRAM and executions with DRAM
as cache for Optane DC. They compared the performance of all
memory devices whereas we are measuring the performance of two
different memory systems. Peng et al. [24, 25] evaluated the Optane
DC PMMs in all the configurations available and also measured
the performance of separating reads and writes on a DRAM-NVM
memory system. Zivanovic et al. [36] evaluated scaling-in; i.e. de-
creasing the number of application processes and compute nodes
to solve a fixed-sized problem, using a set of HPC applications
running in a production system. Our work focuses on comparing
the performance of memory system agnostic executions of HPC
applications on DRAM-NVM and DRAM-only memory systems
with a flat address space. Our evaluation spans over multiple nodes
with DRAM-NVM hybrid memory space whereas other works have
evaluated only the single node performance.

Recent studies focus on creating systems and policies to enable
hybrid memory architectures. M. Ben et al. [22] used profiling in-
formation obtained from PEBS based characterizations to guide
memory allocations on complex memory systems. Zhou et al. [34]
proposed a victim-aware cache policy to improve the lifetime of
NVM in a hybrid memory system. Rodriguez et al. [28] examined
write-aware replacement policies of data in PCM-based systems. Ma
et al. [17] implement an asymmetric NVM architecture where the
byte-addressable NVM is decoupled from the compute nodes and a
framework enables full data structure replication using operational
logging of all read and writes. This can limit the problem sizes. In
contrast, our work focuses on improving the memory-per-core ratio
in the compute nodes by utilizing the NVM as a byte-addressable
memory expanding device which increases the support for large
problem sizes. There have been many studies to identify challenges
related to achieving exascale systems. Bergman et al. [4] detailed
numerous challenges that need to be overcome to reach exascale
HPC capability. They outlined the memory challenges the current
systems face and survey many options to overcome them. They also
examine the challenges related to capping the power of exascale
systems. Peterka et al. [26] identified similar challenges to achieve
exascale computing and focused on memory bandwidth and ca-
pacity issues and how to mitigate them. Ashraf et al. [2] examined
methods of improving HPC performance under desirable power
caps. Gamatié et al. [9] empirically surveyed NVM technologies
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for energy efficient HPC systems. In contrast, we focus on evaluat-
ing available technology to increase the memory density and keep
power consumption and operating costs of HPC systems down.

3 BACKGROUND
Supercomputer architecture has been constantly evolving over
the last six decades. These changes were driven by the need to
solve larger and more complex problems, technological advances
and cost justification. In the 1970s, supercomputers were leading
edge processor machines specially designed to perform floating
point operations as fast as possible [16]. However, within a decade,
supercomputers were built using multiple processors connected
by different means as the cost of building faster processors rose
astronomically. This eventually led to the development of cluster
computing, where commodity hardware was connected over a fast
network (e.g., Beowulf Clusters). The clusters were further sped up
by introduction of multi-core processors, which were designed to
reduce the speed gap between memory and processors, increase
instruction level parallelism and improve power efficiency. A decade
ago, GPUs were introduced in clusters in order to utilize Single
Instruction Multiple Data (SIMD) parallel processing and boost
the performance of the supercomputers. Today, large clusters with
processors and GPUs, connected by a high speed interconnect, are
leading the TOP500 list of supercomputers.

Memory architecture also went through changes along with the
changes in supercomputer architecture [20]. With monolithic su-
percomputers, the memory system was simple with a single type of
main memory. As the processing speeds increased, more memory
was required to support the large problems that were executed
on the faster processors. However, memory access speeds did not
increase at the same rate as processor speeds. This led to the intro-
duction of different memory technologies that are used as buffers
or caches to reduce the performance impact of larger but slower
memory. The memory architecture was split into different tiers,
from faster but smaller memory to slower memory with massive ca-
pacities, in order to support multi-core processors and parallelism.
This has created the memory hierarchy we have today.

The changes in supercomputer architecture were also sparked
by the evolution of different or more efficient numerical solvers
and methods for scientific problems over the decades as well as
development of software that enabled the efficient use of new hard-
ware. Supercomputers eventually became very specialized, i.e., to
solve only certain types of problems efficiently [12]. The Summit
supercomputer is very efficient in running artificial intelligence and
big data problems, which are predominantly SIMD-based problems.
It may not be the best suited platform for other types of problems.

Memory technology has not scaled well in terms of capacity
compared to the scaling of processing speed [19]. This has led to
inefficiency in the design of clusters as the memory capacity is
critical in order to run large problem sizes. The system designer
has to strike a balance between the number of nodes in a cluster,
the amount of memory, and the size and speed of the intercon-
nect when given a specific cluster cost, power budget and target
performance. Due to inefficient scaling of DRAM capacity, a large
number of nodes will be required in a cluster to support the target
problem sizes at exascale. This will also add more communication

infrastructure to the cluster, which acts as a performance bottleneck
and consumes significant amounts of power. We hypothesize that
the increased memory capacity that NVM can bring to a node will
result in maintaining the required memory capacity of the cluster
with fewer number of nodes. This will help in solving large problem
sizes while staying within target cost and power budgets.

4 ARCHITECTURE
To test our hypothesis, we set up an experimental architecture with
actual servers. We have a single node with DRAM-NVM hybrid
memory and 4 nodes with only DRAMmemory that can support the
same problem size. The 4 nodes are connected to each other using
an Infiniband switch. We also used a setup of 2 DRAM-NVM hybrid
memory nodes connected over Infiniband to measure and isolate
the effect of communication on the performance of applications.
The specifications of each node are described in Table 2.

Table 2: Experiment Platforms

Specifications Optane Node DRAM Node(x4)
Model name Intel Xeon 8260L Intel Xeon 6152
Architecture x86_64 x86_64
CPUs 96 88
Sockets 2 2
Cores per socket 24 22
NUMA nodes 4 2
CPU MHz 3100 2900
CPU max MHz 3900 3700
CPU min MHz 1000 1000
L1d cache 32 KB 32KB
L1i cache 32 KB 32KB
L2 cache 1 MB 1 MB
L3 cache 35.3 MB 30.25 MB
Memory Controllers 4 2
Channels/controller 6 6
DIMM protocol DDR4 DDR4
DRAM size 192 GB 384 GB
Max. DRAM BW 104 GB/s 104 GB/s
NVDIMM protocol DDR-T None
NVRAM size 1.5 TB None
Max. NVRAM BW 40 GB/s None
No. of nodes 2 4
Interconnect (BW) Yes (100 GB/s) Yes (100 GB/s)
Avg. Power Consumption 440 W 330 W
Operating System CentOS 7 CentOS 7
Acquisition Cost factor 1 0.65

We refer to the nodes with NVM as the Optane nodes. In the Op-
tane nodes, we have two sockets, each with Intel’s 24 core Cascade-
Lake processor with hyper-threading turned on, which effectively
provides 96 processing units. Each core has a 32 KB private L1
instruction cache, a 32 KB private L1 data cache, and a private 1
MB L2 cache. There is a 35.3 MB L3 cache shared between all cores.
Each socket has 12 DIMM slots. 6 of the slots are occupied by 16
GB DDR4 DRAMmodules and the other 6 slots are occupied by 128
GB Optane DC modules. This adds up to 192 GB of DRAM and 1.5
TB of non-volatile memory. The nodes have 4 memory controllers
in total. Two of the memory controllers are connected to 6 DRAM
DIMMs each, and the other two, known as iMC, are connected to 6
NVDIMMs each.
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The nodes without NVM are referred to as DRAM nodes. Every
DRAM node has two sockets of Intel’s 22 core Skylake processor
with hyper-threading turned on, which effectively gives 88 pro-
cessing units. Each core has a 32 KB private L1 instruction cache, a
32 KB private data cache, and a private 1 MB L2 cache similar to
the Optane nodes. There is a 30.25 MB L3 cache shared between
all cores. Each socket has 6 DIMM slots each with a 32 GB DDR4
DRAM. That adds up to 384 GB of DRAM. Each node has 2 memory
controllers connected to 6 DRAM DIMMs and all nodes are con-
nected via single port to a Mellanox EDR 100 GB/s switch. We also
utilize a 8 node DRAM-only setup with Skylake nodes with half
the memory capacity.

We use a different architecture for DRAM nodes because of the
lack of availability of Cascade-Lake based machines as they have
only recently been introduced on the market. Cascade-Lake archi-
tecture is essentially the same as Skylake with a larger package
size, 4% higher CPU frequency and slightly higher data rate [6].
Although the Optane nodes has a higher L3 cache size, the cache
size/core ratio is equivalent for both architecture. The DRAM nodes
have slightly slower cores but they are in higher number for 4 nodes
in total compared to the Optane node. The Optane node consumes
25%more power than a single DRAMnode due to additional DIMMS
but has more than 4x memory capacity. The other heterogeneous
memory architecture available today is HBM-DRAM hybrid mem-
ory systems like Intel KNL. We do not evaluate this architecture, as
HBM is a very costly resource in terms of its smaller capacity and
aquisitional cost. Our objective is to increase the memory-per-core
ratio in HPC clusters while reducing cost and energy consump-
tion to solve larger problem sizes. We used the LMbench 3.0 [18]
benchmark to compare the memory bandwidth and access latency
of both the Optane node and a DRAM node. We used a buffer size
of 4 GB with a single instance of the benchmark and averaged
all the readings over 3 runs. The results are presented in Table 3.
The DRAM node has up to 2% better read bandwidth compared to
Optane node but up to 5% lower write bandwidth. The same differ-
ence is reflected in the sequential and random access latencies as
well. The acquisition cost of a single DRAM node is approximately
0.65 times the cost of a single Optane node as shown in Table 2.
Hence, the total acquisition cost of 4 DRAM nodes is 2.5x the cost
of a single Optane node, which provides an equivalent memory
address space. These cost ratios are devised from the actual quotes
of the nodes used for experimentation in our paper which cannot
be revealed due to non-disclosure agreements. All the nodes are
connected to rack mounted power distribution units (PDU) pro-
vided by Hewlett Packard Enterprise, which send Protocol Data
Units to the administrator node. We capture the basic power data
of the data units from the rack for DRAM nodes. These data units
are timestamped data at the outlet granularity so we get per-node
power data as well. We capture the same data for the Optane nodes.

Table 3: Performance comparison using lmbench3.0

Node Rd BW(MB/s) Wr BW(MB/s) Sequential access(ns) Random access(ns)

Optane 10926 ± 879 8792 ± 15 27.2 ± 0.1 85.4 ± 1.1

DRAM 11153 ± 712 8353 ± 15 26.8 ± 0.1 92.5 ± 1.1

5 EXPERIMENTS
We evaluate the performance of a HPC application and 2 HPC
proxy-apps on the Optane nodes and DRAM nodes. Optane DC
can be configured to run in different modes: it can be used as a
byte-addressable memory with DRAM as a direct-mapped cache
(Memory mode), or as a persistent memory device separate from
the memory (App-direct mode), or as a combination of the two
(Mixed mode). In order to have the applications allocate their
heap data on Optane DC and DRAM agnostically, we modified
two files in the Linux OS kernel, arch/x86/platform/efi/efi.c and
arch/x86/boot/compressed/eboot.c, to treat NVDIMMasDRAM [13],
which unifies the Optane DC and DRAM under one large address
space in true DRAM-NVM hybrid memory fashion. We refer to this
mode as the “Flat” mode hereafter.

We compare the performance of the single Optane node op-
erating in Flat and Memory-mode separately with a cluster of 4
DRAM nodes with an equivalent amount of DDR4 DRAM main
memory as described in Table 2. We also perform the evaluation
of the same benchmarks running over 2 Optane nodes operating
in Flat mode connected by a high speed interconnect. The aim of
these experiments is to compare the performance of homogeneous
address spaces connected over high-speed interconnects to massive
address spaces with a hybrid but slower memory architecture with
fewer nodes. We want to evaluate whether using NVM as a part
of the primary memory architecture can deliver reasonable perfor-
mance on fewer number of nodes compared to the conventional
DRAM address spaces spread across a larger number of nodes. We
scale the problem sizes of our benchmarks to ensure they do not
fit entirely in the DRAM of a single Optane node so that we do
not end up measuring only the performance of DRAM. However,
in the multi-node Optane setup, smaller problem sizes do execute
only on DRAM. Our problem sizes can be described as large HPC
problems ranging from 200 GB to 1.3 TB. The memory footprint
of each application is indicated in Table 4. The upper limit of the
problem sizes were fixed such that the applications did not run
into an out of memory error on any of the setups. The memory
allocation for all our benchmarks is memory technology agnos-
tic. In Flat mode, it exhausts local DRAM memory before spilling
onto NVM. The amount of compute we scale up to is bound by the
amount of compute available on the Optane node to have a fair
comparison. We use hyper-threading on the single Optane node
in order to scale the compute on the DRAM nodes to resemble
a similar core-to-working-set-size ratio compared to bare DRAM
nodes and the 2 Optane nodes.

Table 4: Benchmark configuration

Benchmark No. of iterations Memory Footprint
Strong Scaling(GB) Weak Scaling(GB/process)

AMG Variable(19-21) 388 9.6
VPIC 600 timesteps 572 12
LULESH 10 590 22

We perform strong and weak scaling of applications by using
MPI on both Optane and DRAM nodes. We use Open MPI 3.1.3.
We use LIKWID [32] to collect performance characteristics such
as energy consumption and memory bandwidth on all nodes for
all the experimental runs. All processes are pinned to a particular
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core individually for every run on both setups. Hence, the memory
mapping for every process is consistent across runs even if the pro-
cesses mapped to DRAM will have different performance compared
to processes mapped to NVM. We also calculate the total energy
consumed by the nodes based on rack managed PDU data. The
racks were provided by HP and utilize model H8B50A full-length
PDUs. These PDUs do not collect the power consumption for the
Mellanox switch and the cooling system used for the nodes. The
PDUs report the power consumption of the node at a 10 second
interval. We utilize “ipmitool” to collect node power numbers.All
applications are compiled using GCC 7.3.0 on both setups with
-O2 optimization. We do not use any special libraries that are not
provided with the source code of these applications and the page
size used on both setups is 4 KB. We next describe our applications
used in experiments.

VPIC:. Vector Particle-In-Cell (VPIC) [5] models kinetic plasmas
in 1 to 3 dimensions and employs a variety of short-vector, single-
instruction-multiple-data (SIMD) intrinsics for high performance
and has been designed so that the data structures align with cache
boundaries making it compute bound. However, for our experi-
ments we do not focus on vector operations. The code comprises of
kernels that compute multiple data streams and operate on entire
data structures. We use the ’lpi’ input deck for our experiments.

AMG:. AMG is a parallel algebraic multi-grid solver for linear sys-
tems arising from problems on unstructured grids [33]. The driver
provided with AMG builds linear systems for various 3-dimensional
problems. It it is an SPMD code that uses MPI and OpenMP thread-
ing within MPI tasks. AMG is memory bound with only about 1-2
computations per memory access, so memory-access speeds will
also have a large impact on performance. We use the default prob-
lem, which is a Laplace type problem on a cube with a 27-point
stencil.

LULESH. LULESH [14] is a highly simplified application, hard-
coded to only solve a simple Sedov blast problem with analytic
answers. It features numerical algorithms, data motion, and pro-
gramming style typical for scientific C or C++ based applications.
It uses MPI and OpenMP for parallelization and is also memory
bound.

These applications are representative of the workloads of com-
mon HPC applications that are currently used. Hence, evaluating
the above applications will provide good approximation of the
energy and cost efficiency of using a DRAM-NVM hybrid mem-
ory compared to a traditional memory architecture. We compare
the inter-node and intra-node point-to-point MPI communication
performance on DRAM and Optane, respectively, using the OSU
MPI micro-benchmark suite 5.6.2 [7] as depicted in Figure 1. The
y axes are on a logarithmic scale, with the left y-axis indicating
bandwidth as a boxplot and the right y-axis showing latency as a
line graph. We observe that the shared memory buffer communi-
cation on the Optane node has up to half the latency and 3x the
bandwidth than the Infiniband-connected DRAM-only nodes. By
using a Flat mode memory, we consolidate all MPI communication
on the intra-node network (e.g., Intel Quickpath [35]), which can
reduce the inter-node communication overhead for applications.
This is also reflected in Table 5, where we present the MPI profiling

information for all benchmarks evaluated in this work. We used
EZTrace 1.1-9 [31] to collect the communication traces and observe
that all applications spend less than 19% of their total execution
time on MPI communication. The majority of the communication
time is spent waiting (MPI_WaitAll) and during collective opera-
tions like MPI_AllReduce. As processes are spread over multiple
nodes, there will be some node local and remote communication
and the overall progress (e.g., timestep between stencil updates)
would be upper bounded by the slowest link, i.e., any remote node
point-to-point communication (for an MPI_WaitAll handle or col-
lective). This will be true for any interconnect irrespective of the
memory architecture on the nodes. However, the ratio of average
communication time to total execution time for a given applica-
tion remains constant for any number of nodes irrespective of the
interconnect.

Table 5: MPI Communication profile (QP - Quickpath, IB -
Infiniband)

Benchmark MPI Processes
Comm. time(%) Avg. msg size(MB) Functions consuming most time

QP IB QP IB QP IB

VPIC 48 4.73 2.8 0.38 0.31 MPI_WAIT (93%) MPI_WAIT (53%)

AMG 48 18.8 27.38 0.022 0.025 MPI_WAITALL (72%) MPI_WAITALL (85%)

LULESH 27 10.73 7.93 1.37 1.5 MPI_ALLREDUCE (65%) MPI_ALLREDUCE (85%)

Due to the scale of the problem sizes, the execution times of the
applications tends to be very high. In order to finish the experiments
for VPIC and LULESH in a reasonable amount of time but also have
a fair representation of the compute and memory operations, we
reduce the number of iterations of the main loop. This reduction has
no effect on the performance of the application. The total number
of iterations each experiment runs is given in Table 4. We plot the
average of execution times and energy consumption over three runs
for each execution of the benchmarks with a standard deviation of 1
to 3% for execution time and 2 to 5% for energy. These applications
are a fair representation of the HPC workloads that run on the
current HPC machines.

6 RESULTS
Application bandwidth, energy consumption and execution time
measurements are plotted in separate graphs to observe their corre-
lation. These graphs are provided for both strong and weak scaling
experiments. In all graphs, the values are indicated on the y-axis
and depicted as bar charts.In the first set of graphs, Solve time
is indicated on the left-hand y-axis with units as seconds(s) and
depicted as a bar chart. In the second set of graphs, bandwidth is
indicated on the left-hand side y-axis with units as megabytes/sec-
onds (MB/s) and depicted as a bar chart. In the next set, energy is
indicated on the left-hand side y-axis with units as Joules (J) and
depicted as a bar chart. The axes for bandwidth and energy are on a
logarithmic scale. The x-axis depicts the number of MPI processes
for a given execution. We refer to the results of 4 nodes without
NVM as “DRAM” and the two modes in which the single node with
Optane DC PMMs operates by their respective names, “Flat-mode”
and “Memory-mode”. The 8 nodes with DRAM are referred to as
“DRAM(8x)” and the 2 nodes with Flat-mode are referred to as “Flat
multi-node”.
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Figure 1: Performance of MPI communication for DRAM-only vs. Optane nodes
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Figure 2: Solve time for VPIC

6.1 VPIC results
Figures 2a and 3a depict the execution times and application band-
width for strong scaling of VPIC. We increase the number of pro-
cesses from 1 to 96 and the overall problem size remains constant.
To achieve this, we decrease the ’nppc’ parameter from 131072 to
8192 in the input file.

Observation 1: The execution times for Flat-mode, Memory-mode,
Multi-node and DRAM are similar for VPIC with only up to 15% differ-
ence for all process counts up to the number of native cores (48), and
time is further reduced by oversubscribing (hyper-threading beyond
48 cores). However, the bandwidth achieved by Flat-mode is lower
than Memory-mode and DRAM barring the single process execution
due to serialization. Nonetheless, Flat-mode delivers comparable per-
formance to DRAM and Memory-mode provides a slight benefit over
Flat-mode. We find a similar effect for execution time in weak scaling,
except for oversubscriptions, which prolongs execution.

This is due to the nature of VPIC to optimize cache hits (as
mentioned in Section 5) and have strided access pattern. It is a
compute-bound application that aligns data accesses with the cache
line size. Due to its access pattern, VPIC obtains significant spatial

locality in the cache and does not fetch memory frequently. This
helps in hiding the memory access latency of NVM. VPIC also
benefits from a larger L3 cache in the node with Optane DC and
intra-node communication. Memory-mode executions try to hide
latency for memory accesses by using the DRAM as a cache but
page swapping between NVM and DRAM causes it to have only
15% decreased execution time compared to Flat-mode. This is due
to the fact that the page swapping occurs every time a page fault
occurs which is a very expensive operation in terms of memory
access latency. The solve time is inclusive of the page swapping cost
between DRAM and NVM. There is an increase in execution time
under strong scaling at 24 processes for all executions relative to
the serial execution for a single process. When multiple processes
are executing at the same time, an overhead for parallelization is
introduced first seen at 24 processes. As we increase the number
of processes further, the benefit of parallelization outweighs the
overhead. Memory mode has lower execution time than Flat Mode
due to significantly higher write bandwidth achieved over Flat
mode. We also see that the Flat-mode bandwidth increases at a
faster rate than Memory-mode beyond 72 processes. This effect
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Figure 3: Bandwidth measurement for VPIC
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Figure 4: Energy consumption for VPIC

can be attributed to that fact that Flat-mode utilizes all 4 memory
controllers at the same time whereas Memory mode utilizes only
the 2 DRAM memory controllers. This can increase the load on the
DRAM controllers with higher number of processes and restrict
the bandwidth.

Figures 2b and 3b depict weak scaling, where the number of
processes increases from 1 to 96 but the problem size per core
remains constant. To achieve this, we keep nppc=32,768 in the input
file for all runs. We observe that Flat-mode and Memory-mode have
10-17% lower execution time than DRAM up to 48 processes. The
application bandwidth achieved by Flat-mode is lower than DRAM
and Memory-mode executions. However, beyond 48 processes, the

execution time doubles up due to oversubscribing of CPUs (hyper-
threading). When oversubscribing, the memory controller queues
overflow, which leads to serialization of loads and stores due to
back pressure and nullifies the benefit of bank parallelism so that
further scaling has no effect on the performance. This is also the
reason for the longer times observed for 72 processes in strong
scaling.

Figure 4a depicts the energy consumption for strong scaling of
VPIC.
Observation 2: Flat-mode, Multi-node and Memory-mode consume
up to 3x less energy than DRAM for VPIC in terms of node energy due
to similar execution times. These energy savings are observed for all
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executions in spite of similar or higher processor energy consumption
for Flat and Memory-mode than DRAM.

The node energy is also contributed to by other auxiliary com-
ponents, e.g., cooling fans and power supplies in addition to the
processor and DIMMs. We measure the energy consumed by the
processors separately using the RAPL driver through LIKWID but
we do not measure the energy consumed by the auxiliary compo-
nents. We account for that energy in the node energy measurement
obtained from the PDUs. The node energy for Flat and Memory-
mode and Multi-node remains lower due to the fewer number of
nodes involved in the execution of the application, i.e., fewer compo-
nents that consume energy. DRAM has a larger difference between
its node energy and its processor energy due to more auxiliary
components. The same effect is observed for weak scaling depicted
in Figure 4b. In multi-node execution, as the number of nodes is
twice than of Flat-mode, the energy consumed is also higher. The
energy consumption of Flat-mode is up to 3x lower than DRAM
for all executions barring the 96 processes case, where the higher
execution time of Flat-mode causes it to consume more energy than
DRAM. The higher execution time for Flat-mode is again a result of
oversubscription. The Memory-mode consumes a similar amount of
node energy compared to Flat-mode despite a slight improvement
in execution time due to increase in energy consumption of DIMMS
where DRAM is used as cache. The Flat multi-node execution has
higher energy consumption than DRAM due to its higher execu-
tion time but increasing problem size the energy benefits should
scale with capacity: With a problem size at the capacity of the 2
nodes with Flat memory, 8 DRAM-only nodes are required to fit
the problem size in memory, and the energy consumption of the
DRAM-only nodes is higher than the 2 nodes with Flat memory
when extrapolated.

Inference 1: Applications that optimize their cache hits (VPIC)
or are compute-bound can benefit from a low power, high capacity
memory device in terms of energy given a large enough last-level
cache and enough compute resources on a single node. Their exe-
cution will result in low energy consumption under minimal to no
performance degradation for a DRAM-NVM hybrid memory platform
with lower acquisition and operation costs than multiple nodes using
traditional DRAM memory. Exploiting DRAM as a cache for a NVM
based memory can provide a slight advantage over the DRAM-NVM
hybrid memory space in terms of execution time at the cost of a 20%
reduction in problem size.

6.2 AMG results
Figures 5a and 6a depict the results for strong scaling of AMG. We
scale the number of processes from 24 to 96 and keep the aggregate
problem size constant. This is done by using the input value of
768 in the x,y and z problem dimensions for a single process and
reducing it to 192, 192 and 128 in x,y and z problem dimensions.
We do not provide results for a single process execution as the
problem size would exceed the memory address space of a single
DRAM node. Weak scaling is depicted in Figures 5b and 6b, where
we scale up the number of processes from 1 to 96 keeping the size
per processor constant. This is achieved by keeping the input value
of all dimensions at 224 for every run.

Observation 3: The execution time of Flat-mode is an order of
magnitude slower than DRAM for AMG. The total bandwidth achieved

by Flat-mode is two orders of magnitude lower than DRAM, which
causes the execution time to be an order of magnitude higher for both
strong and weak scaling. Memory-mode provides up to a 20% reduction
in execution time compared to Flat-mode for strong scaling with a
higher memory bandwidth due to using DRAM as a cache. For weak
scaling, Memory-mode has a 30% lower execution time compared
to Flat-mode before core oversubscription and a 60% reduction in
execution time after oversubscription.

AMG is a memory-bound benchmark and its performance is
heavily dependent on the write latency of the memory device. The
access pattern is very irregular, where array indices are often in-
directly referenced from other arrays. Due to higher write latency
of Optane DC, Flat and Memory-mode bandwidth remains lower
than DRAM and the execution time is higher. The gap between
execution time widens as we scale up the number of processes for
weak scaling. As the process count exceeds 48 cores for Flat-mode,
the execution time increases dramatically due to oversubscription
of resources. Memory-mode hides memory access latency by using
DRAM as a cache but due to constant swapping of pages between
DRAMandNVM the execution time is 6 to 9x higher thanDRAM for
strong scaling. In weak scaling, for lower number of processes the
problem size is also lower, which results fewer page swaps between
DRAM and NVM. Hence, the execution time is 30% lower com-
pared to Flat-mode but 6 to 15x slower than DRAM. Figure 7a and
Figure 7b depict the energy consumption of Flat-mode, Memory-
mode and DRAM executions for strong and weak scaling of AMG,
respectively.

Observation 4: For strong scaling of AMG, the total energy con-
sumption of Flat-mode is up to 2x higher than the total energy con-
sumption of DRAM. For weak scaling, the energy consumption for
a single process execution in Flat and Memory-mode is lower than
DRAM. In contrast, for all multi-process executions the energy con-
sumption of Flat and Memory-mode is 3-4x higher than the energy
consumption of DRAM.

Energy consumption of an application is directly correlated to
its execution time. Even though Optane DC DIMMs consume less
power than DRAM DIMMs, they consume higher energy due to
longer execution times. TheDRAMDIMMs plus their additional pro-
cessors consume a fraction of the aggregate energy of all 4 DRAM
nodes. In contrast, the Optane DC DIMMs consume a large fraction
of the total energy consumption of the Optane node. Memory-mode
uses DRAM as cache causing the DIMM energy consumption to
rise such that only a 12-15% reduction in node energy is observed
compared to Flat-mode.

Inference 2: Memory-bound applications like AMG, which are
dependent on fast access latency of memory devices, will suffer in
performance and energy when executed on a DRAM-NVM hybrid
memory architecture. Using DRAM as a cache for NVM can help
reduce execution time and energy consumption up to 15-20% at the
cost of a 20% reduction in problem size. However, the acquisition costs
of the multiple DRAM nodes required to run larger problems is more
than 2x higher than a single Optane node.

6.3 LULESH results
Figures 9a and 8a depict the bandwidth and execution time for
strong scaling of LULESH from 8 to 64 MPI processes. We do not
provide results for the single process execution as the problem



NVM-based energy and cost efficient HPC clusters MEMSYS21, Oct., 2021, Virtual Conference

0

500

1000

1500

2000

2500

3000

3500

4000

24 48 72 96

Ti
m
e
(se

co
nd

s)

MPI Processes

DRAM Solve time
Flat Solve time

Memory-mode Solve time
Flat multi-node Solve time

(a) AMG Solve time Strong Scaling

0

500

1000

1500

2000

2500

3000

3500

4000

1 24 48 72 96

Ti
m
e
(se

co
nd

s)

MPI Processes

DRAM Solve time
Flat Solve time

Memory-mode Solve time
Flat multi-node Solve time

(b) AMG Solve time Weak Scaling

Figure 5: Solve time for AMG
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Figure 6: Bandwidth measurement for AMG

size exceeds the memory capacity of a single DRAM node. The
aggregate problem size remains the same. In order to achieve this,
the input parameter changes from 1024 to 256 in each dimension
keeping the number of elements constant. Figure 9b and 8b depict
the bandwidth and execution time for weak scaling, i.e., scaling
the number of processes from 1 to 64 while keeping the problem
size per processor constant. This is achieved by keeping the input
parameter at 320 in every dimension, which results in increasing
numbers of elements with the number of processes.

Observation 5: For LULESH, the execution time for Flat-mode is
up to an order of magnitude higher than DRAM; and Memory-mode is
more than 50% faster than Flat-mode but 3-7x slower than DRAM. Due
to the higher access latencies of Optane DC, Flat and Memory-mode
do not achieve reasonable read or write bandwidth. DRAM, on the

other hand, achieves high read and write bandwidth, which results
in lower execution times. This effect is observed for both strong and
weak scaling. For weak scaling, the execution time of Flat-mode is up
to an order of magnitude higher than DRAM while Memory-mode is
more than 60% faster than Flat-mode for larger numbers of processes.

LULESH, like AMG, is also heavily dependent on access latency
on the underlying memory device making it a memory-bound appli-
cation. The memory access patterns of LULESH are non-unit stride
due to its region based solvers [14]. This increases the LLC misses
and wastes precious cycles waiting for memory fetches as observed
in [23]. For weak scaling, fewer processes on the Optane node for
Flat and Memory-mode achieve comparable bandwidth to DRAM.
Hence, the difference in execution time is not significant. However,
as we scale up the processes beyond 27, the execution time increases
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Figure 7: Energy consumption for AMG
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Figure 8: Solve time for LULESH

exponentially due to low bandwidth. The application bandwidth for
LULESH is also affected by problem size. In strong scaling, as the
problem size per process reduces, the memory bandwidth increases
with higher number of processes. However, in weak scaling where
the problem sizes per process remains the same, the application
memory bandwidth reduces. This could be a result of the non-unit
stride references of LULESH. Memory-mode executions perform
significantly better than Flat-mode due to DRAM caching but are
still 3-7x slower than DRAM. This is due to an order of magnitude
higher bandwidth than Flat mode execution.

Figures 10a and 10b depict energy consumption and execution
times for strong and weak scaling of LULESH respectively.

Observation 6: LULESH consumes up to 3x more energy on Flat-
mode than on DRAM due to longer execution time for strong scaling.
For weak scaling, Flat and Memory-mode consumes 30% less energy
than DRAM up to 8 processes.

The Optane DIMMs contribute heavily to the total energy con-
sumption of Flat andMemory-mode executions compared to DRAM
energy consumption on DRAM nodes in strong scaling. Compared
to Flat-mode, Memory-mode consumes up to 50% less node energy
due to the significantly lower execution times. In weak scaling, due



NVM-based energy and cost efficient HPC clusters MEMSYS21, Oct., 2021, Virtual Conference

1
10
100
1000
10000
100000
1 × 106
1 × 107

8 27 64

Ba
nd

w
id
th

(M
B/
s)

MPI Processes

DRAM Total BW
DRAM Read BW
DRAMWrite BW

Flat Total BW

Flat Read BW
Flat Write BW

Memory-mode Total BW
Memory-mode Read BW

Memory-mode Write BW
Flat multi-node Total BW
Flat multi-node Read BW
Flat multi-node Write BW

(a) LULESH Bandwidth Strong Scaling

1
10
100
1000
10000
100000
1 × 106
1 × 107

1 8 27 64

Ba
nd

w
id
th

(M
B/
s)

MPI Processes

(b) LULESH Bandwidth Weak Scaling

Figure 9: Bandwidth measurement for LULESH
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Figure 10: Energy consumption for LULESH

to lower power consumption of Optane DIMMs and fewer proces-
sors with similar execution times, Flat-mode consumes less energy.
The energy consumption increases drastically for Flat-mode beyond
8 processes due to higher execution times. However, Memory-mode
executions have similar energy consumption to DRAM for higher

number of processes. These results show that applications depen-
dent on both read and write bandwidth for performance can expect
reasonable performance with some energy savings for smaller prob-
lem sizes and fewer processes on a single node with Optane DC
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combined with lower acquisition costs. Using Memory-mode, we
can obtain significant performance benefits compared to Flat-mode.

Inference 3: From the above observations, we infer that compute-
bound applications, which utilize cache locality well, are able to run
larger problem sizes on fewer compute nodes with a DRAM-NVM
hybrid memory system. They experience minimal performance degra-
dation while providing significant cost and energy savings. Conversely,
memory-bound applications suffer from performance degradation and
higher energy cost. Using DRAM as a cache for NVM can reduce the
performance degradation for memory-bound applications. There may
also be an opportunity for memory-bound applications on Flat-mode
if memory latency can be hidden using aggressive prefetching. Hence,
a single node with a DRAM-NVM hybrid memory system can support
large problem sizes with reasonable trade-offs that traditionally would
require approximately 4 DRAM-only nodes to run.

Observation 7: The executions with split allocations utilizing
more DRAM have lower execution times and consequently lower en-
ergy consumption.

Figure 11 depicts execution time and energy consumption for
all three benchmarks while splitting the dynamic memory across
DRAM and NVM in fixed ratios of 1:1, 1:3 and 1:7 (DRAM:NVM).We
achieve this by overloading the allocation wrappers in the bench-
marks and utilizing ’numa_alloc_onnode()’ instead of ’malloc()’.
The problem sizes used for these experiments are smaller than the
previous experiments as we are limited by DRAM capacity. The
left-hand y-axis depicts energy consumption on a logarithmic scale
and the right-hand y-axis depicts time in seconds on a linear scale
except in Figures 11e and 11f. For VPIC, we observe that DRAM(8x)
consumes more energy than all other executions despite having
lower execution time until the other executions start using hyper-
threading. This can again be attributed to the cache locality of VPIC
and fewer nodes to execute on due to the consolidated memory ca-
pacity of Flat-mode. For AMG, any execution that utilizes NVM has
higher execution times and the ratio of DRAMmemory used has no
effect. Hence, the energy consumption for all Flat-mode executions
is higher than DRAM(8x). For LULESH, we see that DRAM(8x) has
lower execution times and energy consumption compared to other
executions but splitting memory across DRAM and NVM mitigates
the performance degradation.

Inference 4: From the above observations, we infer that appli-
cations with cache locality benefit from a memory allocations split
across DRAM and NVM. Higher utilization of DRAM can mitigate
the performance degradation due to NVM.

6.4 Projection
To assess the cost benefit of a DRAM-NVM memory system based
supercomputer, we refer to Frontera, a cluster with Cascade Lake
processors, predecessors to the Sapphire Rapids processors to be
used in Aurora [3]. It has an acquisition cost of $60 million [30] and
achieves 24 petaPFLOPS of LINPACK performance on 8,008 nodes
connected by Mellanox HDR-100 switches with dual sockets and
192 GB of DRAM on each node that amounts to 1.46 PB in total.
Each node costs approximately $7,500 and we spread the cost across
Compute, Memory and Interconnect with ratios of 0.66 ($5,000),
0.2 ($1,500) and 0.14 ($1,000), respectively. We assume these ratios
based on an informal survey of costs for the respective components

that is available publicly as the exact quotes for the system are
unavailable.

The Cascade Lake nodes can support up to 768 GB of DRAM
using the 32 GB DDR4 DIMMs and 6 TB of Optane DC using the
512 GB NVDIMMs based on memory channels shown in Table 2.
This brings the support to a total of approximately 55 PB of byte-
addressablememory in Flatmode. Based on the cost ratio for Optane
DC compared to DRAM in Section 1, Optane DC on a single node
costs around $25,000 and the extra DRAM adds another $4,500,
which increases the per-node cost to $37,000. Just the addition
of Optane DC PMMs and the required DRAM to support it will
bring the cost of Frontera up to $296 million. If compared to the
projected acquisition cost ($500 million) of Aurora [3], we still
would have around $200 million to purchase additional compute to
increase additional FLOPS for this machine, which is equivalent to
the entire budget of Summit [29]. However, if the current DRAM
based architecture of Frontera was to be scaled up to support a
problem size of 55 PB, it would require 290,290 nodes and would
cost $2.2 billion. Even though the compute performance of such a
machine will be approximately 708 petaFLOPS assuming a linear
speed up, the acquisition cost and power required to operate such
a large cluster makes it infeasible. We can bring down the number
of nodes by upgrading the amount of DRAM in every node to
768 GB. Such a machine requires approximately 72,573 nodes and
the cost of the cluster will be approximately $871 million, where
each node costs $13,000. This configuration will achieve a compute
performance of approximately 177 petaFLOPS assuming a linear
speed up, but it will come at approximately 1.25x the cost of Aurora,
and its power and space requirements will still be infeasible.

By just increasing the capacity of the current cluster by adding
NVM, one can support 20x larger problem sizes than Summit at just
1.5x the cost. As seen in Fig. 4b, compute-bound application will suf-
fer minimal performance degradation while increasing the problem
size support by approximately 37x and being significantly more en-
ergy efficient than anyDRAMbased configurations.Memory-bound
applications will suffer while using a memory agnostic allocation
scheme as seen in Fig. 6b. One can sacrifice 11% of the total memory
capacity by using DRAM as cache for NVM to limit the slowdown
up to 50% for some applications while still supporting 19x larger
problem sizes than Summit [23]. Also, a memory aware allocation
scheme can limit the slowdown by keeping memory bound data
structures in DRAM [25] for a hybrid memory system.

7 CONCLUSION
Our work assessed the performance and energy characteristics of
DRAM-NVM memory systems for large problem sizes under dif-
ferent modes and compared it to DRAM-only memory systems.
For memory-bound applications, using a DRAM-NVM memory
can hamper performance due to higher access latencies but using
DRAM as a cache for NVM can restrict the performance degradation
to a certain extent with the tradeoff in smaller problem sizes. How-
ever, with enough compute resources, compute-bound applications
achieve similar performance and lower energy on Flat-mode com-
pared to traditional HPC systems. Flat-mode has marginally lower
performance than Memory-mode for most cases. But Flat-mode
allows significantly larger problems to be brought into memory, a
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Figure 11: Energy consumption of VPIC, AMG and LULESH under different memory allocation policies

tradeoff future HPC system designers will have to consider when
choosing between fast DRAM or slower but larger NVM at equal
acquisition cost. Memory allocation policies that can utilize DRAM
more can also help take advantage of NVM. Using NVM to extend
byte-addressable memory in HPC clusters with or without DRAM
as a last-level cache provides a viable option to reduce the gap be-
tween compute and memory scaling. It provides a promising path
to extend memory address spaces of HPC systems without compro-
mising performance and energy for certain codes, which translates
into lower operational cost combined with lower acquisition costs.
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