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ABSTRACT
Heterogeneous memory systems are becoming more prominent
in high performance computing (HPC) with the introduction of
High Bandwidth Memory (HBM) and Non-Volatile Memory (NVM)
technologies. All these memory technologies along with DRAM,
while being byte-addressable, have different latency, bandwidth,
power and persistence characteristics that they bring to the ta-
ble. NVM adds to the capacity of main memory and expands the
address space of applications but lowers access speeds. HBM pro-
vides higher memory access bandwidth but has lower density than
DRAM. Although there is software support for using all the above
memory technologies in their individual capacity, there is a lack
of runtime support that takes advantage of all the benefits of a
heterogeneous memory system while being as user-transparent as
possible. To this end, we present a memory-aware runtime system
and programming paradigm called PEARS that enables HPC ap-
plication programmers to write traditional HPC workloads while
taking advantage of multiple benefits of a byte-addressable, hetero-
geneous memory system. We demonstrate PEARS abstractions for
workloads of matrix-multiplication and a variety of stencils with
different dimensionality while comparing performance to the stan-
dard baseline implementations of these workloads under various
memory allocation scenarios.
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• Computer Systems Organization → Architecture; • Com-
putingmethodologies→Massively parallel and high perfor-
mance simulations.
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1 INTRODUCTION
Heterogeneous memory systems are becoming more prominent in
HPC deployments. These memory systems are comprised of multi-
ple memory technologies like HBM, NVM and traditional DRAM.
With multiple processing units integrated into HPC nodes, the
memory architecture of these compute devices also becomes part
of the memory space that an application utilizes while exploiting
heterogeneous compute systems. Intel’s Knights Landing (KNL)
introduced HBM along with traditional DRAM-based main mem-
ory [29]. Graphics devices utilizing the General Purpose Graphics
Processing Units (GPGPU) have also been equipped with HBM [22].
Fujitsu uses a hybrid memory cube (HMC) for its A64FX ARM-
based chips to deliver high bandwidth memory access to all the
compute cores [12]. Recently, Intel launched their Optane DC Per-
sistent Memory Modules (PMM), which are NVDIMMs that can be
used as byte-addressable, non-volatile main memory (NVM) [14].
The Aurora supercomputer [3] will have support for Intel Optane
DC PMMs. All these memory technologies differ from each other
in terms of access latency and/or memory bandwidth provided to
compute devices. HBM has higher bandwidth than DRAM due to
a wider data access path whereas NVM is slower than DRAM in
terms of latency. They also differ in terms of the memory density
and their respective energy consumption.

Several software packages support these memory technologies.
The Memkind library [8] provides support for memory manage-
ment on HBM devices. Intel offers the PMDK library [31] that
supports memory management on NVM devices. There are other
software systems like Atlas [9] and Mnemosyne [33] that provide
persistent memory programming abstractions for NVM devices.
However, these software systems are not aware of the performance
characteristics of specific devices they utilize. They neither have
memory bandwidth nor capacity awareness of the memory devices
they operate on. The tool hwloc [19] provides information on the
performance characteristics of the memory system but this infor-
mation is not available directly at runtime to the application. The
burden of understanding performance impact of the underlying de-
vices for every allocation and data movement is on the application
programmer. This makes application design more complicated, i.e.,
applications often fall short in extracting the potential benefits from
a heterogeneous memory system. Also, application programmers
lack support for utilizing different memory devices using a single
library API.

Today, all memory devices can be combined into a single flat
byte-addressable address space, among other configuration options.
Applications can allocate memory on any of the devices, however,
due to the lack of performance and capacity awareness they choose
association with specific memory regions during computational
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phases to optimize performance. This can cause load imbalance, par-
ticular for allocations crossing boundaries between disjoint memory
devices, due to the inverse proportionality between memory band-
width and memory capacity in a heterogeneous memory system.
To remedy this problem, applications would require scheduling
strategies assisting in balancing compute and memory resources
in order to exploit the potential of higher memory bandwidth and
higher capacity provided in heterogeneous memories. Currently,
software systems lack such capabilities.

This work contributes a user-transparent framework for man-
aging memory allocations/de-allocations and data movement for
HPC workloads that utilize a heterogeneous memory system. Our
framework provides a PErformance-Aware Runtime system with
support for Static memory characterization (PEARS). It aims to
fill the gaps in software support for utilizing heterogeneous mem-
ory systems for HPC workloads and relieve the programmer from
complex application design. PEARS has the following features:

• static memory characterization;
• macro-based programming support for specific HPC work-
loads;

• amemorymanagement systemwith performance awareness;
and

• a runtime system to schedule data on multiple memory de-
vices.

In this paper, we will present the details of our implementa-
tion of PEARS and an experimental evaluation of memory and
compute-bound workloads on a heterogeneous memory system.
In Section 2, we present the related work. We describe the hetero-
geneous memory architecture in Section 3 and present the design
details of our framework in Section 4. We present our experimental
setup in Section 5 and analyze the results in Section 6 followed by
our conclusions in Section 7.

2 RELATEDWORK
Recent studies after the launch of Intel’s Optane DC PMMs evaluate
its characteristics under different memory architecture configura-
tions. Yang et al. and Izraelevitz et al. [15, 34] evaluated the read
and write memory access characteristics of Optane DC PMM for dif-
ferent file-systems, database applications and performance bench-
marks. They found that Optane DC improves the performance of
file systems and database applications due to lower latencies than
storage devices. Patil et al. [23] characterized the performance of a
DRAM/NVM hybrid memory system for HPC applications. They
measured the bandwidth performance and energy characteristics
of HPC applications runs on Optane DC compared to pure DRAM
and DRAM as cache for Optane DC. They also proposed a symbi-
otic hardware and software prefetching technique for DRAM-NVM
hybrid memory system [24]. Peng et al. [25] evaluated Optane DC
PMMs in all the configurations available and also measured the per-
formance of separating read and write allocation on a DRAM/NVM
memory system. Psaropoulos et al. [27] provided latency hiding
for the difference between Optane DC and DRAM for database
applications. All the above works focus on evaluating the basic
performance characteristics of Optane DC under various execution
contexts and workloads.

There have been several works that help manage a complex mem-
ory hierarchy. Leon et al. [19] proposed an interface to help manage
the memory system complexity. It comprised of a set of memory
attributes and an API to express and manage the diverse memory
characteristics using high-level metrics. Oden et al. [20] propose a
flexible memory allocator for complex memory architectures. There
are other works that have focused on runtime based scheduling
memory movement and management for different memory sys-
tems. Chandrashekar et al. [10] proposed a memory-heterogeneity-
aware runtime system that guides data prefetch and eviction for a
HBM-DRAM memory architecture. Alvarez et al. [1] similarly pro-
posed a runtime approach to transparently manage stacked DRAM
memories in task-based programming models. Sánchez et al. [28]
proposed techniques at the runtime system level to mitigate the
impact of NUMA effects on parallel applications’ performance by
leveraging runtime system metadata expressed in terms of a task
dependency graph. Perarnau et al. [26] evaluated the performance
implications of a scheme based on a software-managed scratchpad
with coarse-grained memory-copy operations migrating applica-
tion data structures between memory hierarchy levels. Benoit et
al. [4] presented a realistic performance model to execute scientific
workflows on high-bandwidth memory architectures such as In-
tel’s Knights Landing. There have been several works that proposed
static memory management, e.g., Greenspan et al. [13] combined a
custom LLVM Pass with a custom C library to automatically handle
memory allocations performed by function calls without the need
for programmer input or hardware/OS level changes. Khaldi et
al. [16] introduced a new LLVM analysis called Bandwidth-Critical
Data Analysis (BCDA) to decide when it is beneficial to allocate data
in High-Bandwidth Memory (HBM) and then transform allocation
calls into specific HBM allocation calls to increase performance in
parallel systems. Our work focuses on characterizing the memory
architecture statically and using the heuristics to actively engage in
dynamic memory management activities during runtime for given
HPC workloads.

3 SYSTEM ARCHITECTURE
The system used in experiments is a single HPE Proliant DL360
node (see Table 1) with 2 CPU sockets equipped with Intel’s Xeon
8260 (code-named Cascade Lake). Each chip has 24 cores with a
clock frequency of 2.4 GHz. Each core has 2 processing units under
hyperthreading for a total of 96 CPUs. Each core has a 32 KB private
L1 instruction cache, a 32 KB private data cache, and a private 1 MB
L2 cache. There is a 35.75 MB L3 cache shared between all cores. It
has a DTLB cache with 64 entries, which is 4-way set associative.

Each socket has 12 DIMM slots. 6 of the slots are occupied by
16 GB DDR4 DRAM modules and the other 6 slots are occupied by
128 GB Optane DC modules for a total of 192 GB DRAM and 1.5
TB NVM. The node has 4 memory controllers in total, two are con-
nected to 6 DRAM DIMMs each, and the other two, known as iMC,
are connected to 6 NVDIMMs each. The processor uses the standard
DDR4 protocol on the regular DRAM memory controller and the
DDR-T protocol for Optane DC on the i-memory controller (iMC).
Using this proprietary extension of the protocol, the Optane DC
features asynchronous command/data timing and variable-latency
memory transactions.
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Table 1: Experimental Platform

Specifications Optane Node
Model name Intel(R) Xeon(R) 8260 @ 2.40GHz
Architecture x86_64
CPUs 96
Sockets 2
Cores per socket 24
NUMA nodes 4
CPU MHz 3100
CPU max MHz 3900
CPU min MHz 1000
L1d cache 32 KB
L1i cache 32 KB
L2 cache 1 MB
L3 cache 35.75 MB
Memory Controllers 4
Channels/controller 6
DIMM protocol DDR4
DRAM size 192 GB
Max. DRAM BW 104 GB/s
NVDIMM protocol DDR-T
NVRAM size 1.5 TB
Max. NVRAM BW 40 GB/s
No. of nodes 1
Interconnect No
Operating System CentOS 7
Compiler GCC 9.3.0

Optane DC has an on-DIMMApache Pass controller that handles
memory access requests and the processing required on NVDIMM.
The on-DIMM controller internally translates the addresses of all
access requests for wear-leveling and bad-block management. It
maintains an address indirection table on-DIMM that translates the
DIMM’s physical addresses to an internal device address. The table
is also backed up on DRAM.

Accessing data on Optane DC occurs after the translation. The
controller translates 64 byte load/stores into 256 byte accesses due
to the higher cache line access granularity of Optane DC, which
causes write amplification [15]. Optane DC PMM can operate in
different modes: (1) As an uncached byte-addressable memory (flat
mode), (2) as DRAM cached main memory (Memory mode), or (3)
as a block storage device (App-Direct mode). All modes (except for
Flat) are provided by Intel. Flat is a custom mode introduced by
patching the OS kernel to identify all DIMMs as DRAM, thereby
creating a true hybrid memory address space. All our experiments
are performed on the flat mode. The modes are described in Table 2.

3.1 SICM
The SICM (Simple Interface Complex Memory) [18] library pro-
vides an interface to allocate memory on different memory devices
available on a given compute node. It is a bare-metal library that
utilizes NUMA and jemalloc internally [2] to create arenas where
memory can be allocated. The arenas can be moved between the
different memory devices. The library has a two-tiered API ap-
proach: The high-level API gives a coarse grained control over the
memory management of a heterogeneous memory system and the
low-level API gives total control over memory management. SICM
is an integral part of the software support required for our runtime
solution. We utilize and extend the low-level SICM API to build and
support our framework.

Table 2: Optane DC operation modes

Operation mode Functionality

Memory mode

Optane DC PMMs act as volatile,
byte-addressable main memory.
DRAM acts as a cache for Optane
DC and is not visible to the user

App Direct
mode

Optane DC PMMs act as persistent
storage separate from the primary
memory hierarchy. Managed by

file systems installed on it.
DRAM acts as main memory

Mixed mode

Part of Optane DC PMMs can be
used as main memory and the
remaining part can be used as
persistent storage. DRAM acts

as cache for Optane DC

Flat mode
DRAM and Optane DC PMMs

are part of the same address space
and can be used as heap memory

L3 CACHE

Memory 
Controller

i-Memory 
Controller

DRAM NVRAM

DDR-TDDR4

- Socket - Core - L1 Cache - L2 Cache

Memory 
Controller

i-Memory 
Controller

DRAM NVRAM

DDR4DDR-T

NUMA node 3NUMA node 1NUMA node 2NUMA node 0

Figure 1: Heterogeneous memory architecture (flat mode)

4 THE PEARS SOFTWARE FRAMEWORK
PEARS has multiple components depicted in Figure 2. In combina-
tion, these components form a framework in support of memory
management and scheduling for a heterogeneous memory system.
We describe each component in detail in this section.
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Figure 2: PEARS: Block and flow diagram of static and dynamic components

NUMA Device classification
CPU ID NUMA ID Type Init(Mb/s) Triad(Mb/s)
72-95 1 fast 83665.204771 67649.395964
72-95 0 slow 41630.203821 33573.023831
72-95 3 slowest 4073.821638 6189.551163
72-95 2 slowest 1220.172135 810.849809
CPU ID NUMA ID Type Init(Mb/s) Triad(Mb/s)
48-71 0 fast 80094.647213 69189.514867
48-71 1 slow 44094.883771 34690.394709
48-71 2 slowest 4138.825899 6079.981850
48-71 3 slowest 1202.866903 799.498232
…
Page Migration measurement
CPU ID SRC DEST PgMigration(Mb/s)
72-95 0 1 17733886.936360
72-95 0 2 35102711.638282
72-95 0 3 35168571.209754
72-95 1 0 19843487.223887
72-95 1 2 35407006.497107
72-95 1 3 35253389.253937
72-95 2 0 9014960.473411
72-95 2 1 36200631.351450
72-95 2 3 40998997.652807
72-95 3 0 13322124.177216
72-95 3 1 34191903.297198
72-95 3 2 33858166.176772
…

Figure 3: Example of the classification
and measurements from the Memory
characterization

4.1 Static Memory characterization
A heterogeneous memory system is comprised of multiple memory
devices that differ in the underlying technology, e.g., DRAM, Phase
Change Memory (PCM) or High Bandwidth Memory (HBM). These
devices have different characteristics in terms of memory access
latency, bandwidth, power consumption, capacity and persistence.
Each characteristic can provide a unique advantage to the heteroge-
neous memory system when combining two or more of the above
mentioned technologies. It is critical to identify and associate each
memory device of the heterogeneous memory system with its spe-
cific characteristic. Currently, this association is unavailable at the
BIOS or OS level. We simply see each memory device as a separate
NUMA node at the user-level. Hence, there is a need to characterize
each NUMA node in terms of its specific attributes and identify the
underlying memory device.

To this effect, we devised a set of programs and scripts that
run micro-benchmarks to measure, analyze and associate memory
characteristics to each NUMA node of the system. We use three
micro-benchmarks that measure the average write-only stream
bandwidth, the average triad (1 write, 2 reads) stream bandwidth
and the page migration bandwidth. The kernels comprising the
micro-benchmarks feature sequentially-accessed streams, i.e., there
is negligible cache locality, which provides an upper bound on
the memory performance for a given access pattern. These micro-
benchmarks are parallel workloads that use OpenMP to assess

multi-threaded performance. We allocate stream buffers of 1 GB on
each NUMA node separately and then execute the kernels for every
NUMAnode using the respective buffers.Wemeasure the execution
time for each kernel and then calculate the effective data bandwidth
for them. The measurements are averaged over 10 runs and then
recorded separately for each NUMA node. We run the benchmark
separately for each core-NUMA node mapping using “numactl -m”
and record the measurements. We use K-means clustering on the
triad stream bandwidth measurements for all the NUMA nodes
and core-NUMA node mappings before classifying the clusters as
fast, slow and slowest memory devices with an assigned number
from 0 to 𝑛, where 𝑛 is the number of clusters and 0 is the fastest
memory device. We choose this generalized classification in order
to support future memory devices as it provides a more fine grained
classification of the memory devices.

These micro-benchmarks and the associated scripts are part of
our SICM library extensions. They are executed only once during
the installation of SICM. All classifications and measurements are
passed to the SICM library at runtime as a configuration file. An
example of this file is depicted in Figure 3. These classifications
and measurements are then used by the extended SICM library at
runtime to perform memory management and scheduling.
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4.2 Performance-Aware Memory management
We use the SICM library for low-level memory management. SICM
provides support for creating arenas, which is a concept extended
from jemalloc. The arenas help group memory pages in an encapsu-
lation, i.e., they can be allocated on a specific memory device or be
moved between memory devices. The arenas are moved between
memory devices using the NUMA API, which help select the device
they reside on. However, SICM lacks awareness of performance
attributes for the underlying memory devices in a heterogeneous
memory system. By complementing the framework without static
memory characterization (described above), we bring performance
awareness to SICM. Each NUMA node belongs a particular class of
memory based on its performance.

During the initialization of SICM, we obtain the memory classi-
fication from the configuration file. We acquire information on the
capacity of each device from the NUMA device files in the Oper-
ating System (OS). We extend the SICM API to allow the user to
specify the desired class of memory (fast, slow, slowest) for any
given allocation. The memory nodes for each class of memory have
a fixed preference order. When the first preferred device of the
specified class does not have enough memory, allocation moves on
to the next preferred device. If no device in the desired class has
enough memory for the new allocation, then the next slowest class
is selected for memory and allocation. We also extend the allocator
API to accept a group id to associate related allocation to each other.
We create a new arena for each group specified by the user. The
metadata (arena, group id, start address of an allocation, class of
memory, NUMA device id, size) about a given allocation is stored
in a linked list within SICM and utilized later during its life cycle.
The metadata is destroyed after a particular arena is de-allocated.
We also extend the SICM API to move memory allocation between
different classes of memory. Memory is moved based on the avail-
ability of space within the devices of a given memory class. If a
class were to run out of memory, the allocation is not moved. Any
metadata of a particular allocation is updated accordingly.

We also extend the SICM API to support various utility functions
that are used internally, e.g., to check the available capacity of a
given device, to query the group id of an allocation etc. The SICM
extended API can be used on its own for any kind of workload/ap-
plication but requires specific knowledge on the programmers part,
i.e., it is primarily designed in support of frameworks that establish
higher-level memory abstractions.

4.3 Macro-based Programming support for
HPC workloads

To utilize our framework, we depend on the SICM library to perform
memory management and then orchestrate the runtime schedul-
ing of tasks. This involves initialization and finalization of many
supporting data structures that maintain the metadata for memory
management. The framework also adds additional buffers to the
data structures allocated by the user to maintain logical consis-
tency of the workloads. Hence, the framework provides targeted
support for a set of HPC workloads. Adding the respective API calls
to achieve the runtime support as described above would require
significant changes to the source code of existing HPC applications.
It will also hinder development of new HPC applications that utilize

kernels as the programmer would have to consider many factors
affecting performance due to memory placement of data structures.

To facilitate heterogeneous memory management, we provide
a macro-based approach in support of our framework. We define
workload-specific macros that perform the initialization and final-
ization of the framework while enabling the programmer to focus
strictly on the workload kernel. The macros expand into low-level
API calls to the extended SICM library for initialization, memory
management, runtime scheduling and consistency, finalization and
OpenMP pragma support. The macros provide an easy methodol-
ogy to program with complex memory systems while giving the
programmer control over the runtime scheduling of the workload
kernels.

int main(int argc, char *argv[]){ 
 … 
BoT_TMM_INIT(row, col, matrix_size, no_of_procs)  //Initialization  
CHUNKED_ALLOCATE(&a, SICM_DOUBLE)   //Allocation 
CHUNKED_ALLOCATE(&b, SICM_DOUBLE) 
CHUNKED_ALLOCATE(&c, SICM_DOUBLE) 
BoT_PROLOGUE(3,a,b,c) 
for(i = 0; i < CHUNK_ROWS; i++){   //Initialization kernel 
 for(j = 0; j < CHUNK_COLUMNS; j++){ 
   a[SEQ_ACCESS][i*CHUNK_COLUMNS+j] = (double)(rand())     \ 
          /((double)(RAND_MAX)+1); 
   b[SEQ_ACCESS][i*CHUNK_COLUMNS+j] = (double)(rand())       \ 
          /((double)(RAND_MAX)+1); 
   c[SEQ_ACCESS][i*CHUNK_COLUMNS+j] = 0.0; 
 } 
} 
BoT_EPILOGUE(3,a,b,c) 
 … 
BoT_PROLOGUE(3,a,b,c)  //Prologue 
TMM_KERNEL_LOOP 
 for(i = 0; i < CHUNK_ROWS; i++){    //Main kernel 
  for(j = 0; j < CHUNK_COLUMNS; j++){ 
   double tmp=0.0; 
    for(k = 0; k < CHUNK_ROWS; k++){ 
     tmp += a[ROW_ACCESS][(i*CHUNK_COLUMNS) + k]    \ 
           *b[COL_ACCESS][(k*CHUNK_COLUMNS) + j]; 
    } 
    c[SEQ_ACCESS][(i*CHUNK_COLUMNS) + j] += tmp; 
   } 
  } 
BoT_TMM_EPILOGUE(3,a,b,c)  //Epilogue 
 … 
CHUNKED_DEALLOCATE(&a, SICM_DOUBLE)  //De-allocation 
CHUNKED_DEALLOCATE(&b, SICM_DOUBLE) 
CHUNKED_DEALLOCATE(&c, SICM_DOUBLE) 
BoT_TMM_FINALIZE()  //Finalization 
}

Figure 4: Sample code of tiled matrix multiply with PEARS
macros

The runtime scheduling macros are to be used to delimit the
target kernel, i.e., as a prologue and an epilogue to the kernel. The
initialization and finalization macros encompass the entire program.
An example of how the code shape with our macros extensions is
given in Figure 4. The macros also provide support for adjusting
loop limits and identifying access patterns. We support accessing
the memory chunks in sequential or row- or column-order based
on the kernel access pattern. Currently, we provide macro-based
programming support for tiled matrix multiplication as well as one-,
two, and three-dimensional (1D/2D/3D) stencil kernels.

4.4 Runtime Scheduling Support for
heterogeneous memory system

In a heterogeneous memory system, memory performance and
capacity of a given device are inversely proportional to each other.
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Fast memory has low capacity while slow memory tends to be
larger in capacity, sometimes by almost an order of magnitude. The
slower memory supports in-core computation for larger problem
representations but also hampers performance due to slower access
latency besides the simple cost of accessing larger problem sizes.
Application performance can suffer significantly as it is bounded
by the performance of the slowest memory device. This problem is
particularly aggravated if allocated memory remains in the same
memory device throughout the execution of the entire application.
To remedy this, we provide a runtime data movement scheduling
mechanism through which we ensure that both the capacity of the
heterogeneous system and the memory performance of the fastest
memory device in the system are striking a balance.

Table 3: Statically Fixed chunked sizes in (MB)

Chunk size TMM 2D dataset 3D dataset
F1 0.5 128 512
F2 1 256 1024

We achieve this by dividing a given allocation into multiple
memory chunks. Each chunk is allocated in a separate arena and
the chunks are distributed across all memory classes based on the
capacity ratios of each memory class. The workload kernel iterates
over all chunks to perform the desired computation. Chunks are
subjected to parallel execution within an OpenMP parallel region.
Right before and right after a scheduled chunk is executed, its
associated memory arenas can be moved between memory devices.
We move each memory chunk (arena) using the SICM API, which
utilizes the mbind() system call to select the memory policy. The
objective during execution is to allow the maximum number of
memory chunks to utilize the fastest memory device in the system
while balancing the workload for all participating threads, even
when some of them are subjected to chunks on different memory
devices. To this end, we provide twomemory scheduling techniques
that a programmer may select, namely, the “Inspector-Executor”
and the “Bag of tasks” methods. A simple change in macro prefix
name selects the scheduling technique, e.g., the BoT prefix denotes
Bag of tasks in the code snippet in Figure 4, which can be changed
to IEC for Inspector-Executor.

The Inspector-Executor method first uses the main thread as an
inspector thread that assigns a small set of the total memory chunks
to each thread (including itself) subject to computation within
the kernel. Once executed, memory chunks with computational
results are moved to the slowest memory device. After a chunk was
operated on during execution, the main thread then assigns more
chunks to each thread based on their order of completion and chunk
throughput. The earliest finishing thread receives proportionately
more chunks to process based on its throughput, and these chunks
are moved to the fast memory device. The last finishing thread
receives fewer chunks and moves them to the fast memory device
only if capacity is available. If any memory chunks remain to be
processed after this, then each thread that finishes computation on
its assigned memory chunks can grab a set of the remaining chunks.
Such a thread then iterates over new chunks while also moving

them to a fast memory device based on the availability of capacity.
Threads exit the parallel region once all the memory chunks have
been processed.

In the Bag of tasks method, each thread starts with a small subset
of the total number of memory chunks. After processing them, the
threads move the memory chunks to the slowest memory device
and grab more chunks on a first-come-first-served basis. An earliest
arriving thread has a higher probability of being assigned more
memory chunks, which it can move to the fast memory device
based on the availability of capacity. Again, the threads exit the
parallel region once all the memory chunks have been processed.

Data movement ceases if all memory chunks can fit inside fast
memory. A critical part of the runtime scheduling support is the
creation of memory chunks, the number of chunks, the size of each
chunk, as well as consistency and atomicity of the data distributed
across these chunks. We provide two methods determine chunking
granularity, i.e., the size of chunks and their total number.

Method 1: The chunk size is determined by the problem size, i.e,
the number of memory regions within a kernel, the allocation size
of each kernel, and the capacity ratios of the fast, slow and slowest
devices.

Method 2: The chunk size is fixed based on the private cache
size of each core (see next section for implementation choices) in
the system. Internally, the macros issue the necessary API calls
that determine memory chunking and allocation with respect to
device types. To ensure deterministic and logically correct accesses
of every data element of a memory chunk, specific macros are
provided. As data is partitioned across memory chunks, we further
provide algorithmic support for a given workloads. The macros for
tiled matrix multiplication ensure that the row-wise and column-
wise access of data across chunks is consistent and semantically
correct.

Stencil operations are supported by providing halo value commu-
nication across memory chunks via buffering each memory chunk
and partitioning the data logically according to its dimensionality.
Due to this, we incur a memory and communication overhead for
1D, 2D and 3D stencil workloads. For 1D and 2D stencil workloads,
the memory overhead for an 𝑛2 matrix is

4ℎ × ( 𝑛
𝑚

+ 1) ×𝑚

, where ℎ is the size of the halo, 𝑛 is the dimension of the matrix
and𝑚 is the number of memory chunks. Similarly, for an 𝑛3 matrix,
the memory overhead is

4ℎ × (3 𝑛
𝑚

+ 2ℎ) ×𝑚

, where ℎ is the size of the halo, 𝑛 is the dimension of the cube and
𝑚 is the number of memory chunks.

5 EXPERIMENTAL SETUP
We measure the effectiveness of our memory management and
runtime scheduling solution in a set of experiments on our hetero-
geneous memory system described in Section 3. The objective of
our experiments is to assess the performance impact of our memory
management and runtime scheduling methods under different con-
figurations for critical HPC kernels are used in many applications.
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We developed custom benchmarks for a set of representative
HPC kernels including dense tiled matrix multiplication (TMM),
3- and 7-point 1D stencil kernels, 5-, 9-point, and 9-point with
diagonal values 2D stencil kernels, and 7-, 13- and 27-point 3D
stencil kernels. The TMM kernel consists of 5 2D matrices that
perform multiplication in two stages. First, the product of two
matrices 𝐶 = 𝐴 × 𝐵 is calculated, second, its result matrix is used
in another multiplication, 𝐸 = 𝐶 × 𝐷 . All stencil kernels consist of
a write stream and a read stream of a 2- or 3-dimensional dataset
of linearly laid out arrays accessed in row-major order.

The stencil codes are implemented as Jacobi iterative kernels,
which are common in Computational Fluid Dynamics (CFD) ap-
plications, Partial Differential Equations (PDEs), and pointular au-
tomata [11]. Some examples of stencil code-based HPC applications
are Vector Particle In Cell (VPIC) [5–7] and Algebraic Multi-grid
(AMG) [35], which are compute- and memory-bound applications,
respectively. The 3-, 5-, 7-, 9- and 13-point stencils use the Von Neu-
mann neighborhood, whereas the 7-point (1D), 9-point with diago-
nal values and 27-point stencils use the Moore neighborhood [17].
The 3-point stencil is a 1D stencil, where for every iteration the pre-
vious element and the next element are read along with the current
one. Another 7-point 1D stencil reads the previous 3 elements and
the next 3 elements along with the current one per iteration. The
5-point stencil is a 2D stencil, where along with adjacent elements
in the same row of the current element, adjacent elements in the
same column of the current element are also read. The 9-point
stencil has a similar shape to the 5-point stencil but it access twice
as many adjacent elements in the same row and column. The 9-
point stencil is a 2D stencil including diagonal elements beyond
the 5-point stencil. The 7-point stencil is a 3D stencil, where along
with the adjacent elements in the same row (x) and column (y) of
the current element, adjacent elements in the next and previous
plane (z) are read. The 13-point stencil is also a 3D stencil that
accesses twice as many adjacent elements than the 7-point stencil
along each dimension. Similarly, the 27-point stencil is a 3D sten-
cil with diagonals on every dimensional pair beyond the 7-point
stencil. These stencils comprise one or more read streams, plus a
write stream accessed sequentially. We run each benchmark under
multiple memory allocations and runtime scheduling policies. The
different memory allocation policies used are DRAM-only alloca-
tion, NVM-only allocation, memory chunking with a dynamically
determined chunks size and memory chunking with a statically
fixed chunk size. The DRAM and NVM-only allocations are realized
via numa_alloc_onnode(). Memory chunks are allocated using the
macro-based programming API of PEARS, with the SICM library
underneath. We compare our memory chunking management over
the above allocation policies to compare the performance of dis-
tributed memory allocation across heterogeneous memory devices
with a homogeneous memory allocation policy. We also assess dy-
namic and fixed chunk sizes with their respective macro variants.
Dynamic chunk sizes are determined by the problem size of the
HPC kernel and the capacity ratios of all the memory devices at
runtime. Static chunk sizes are fixed relative to the L2 and L3 cache
sizes and the maximum chunking that is supported on the system
for matrix multiplication, 2D datasets and 3D datasets. Fixed chunk
sizes for each benchmark are described in Table 3.

The different runtime scheduling policies used in our experi-
ments are regular OpenMP for loop-based work sharing (referred
to as DRAM and NVM based on allocation), the collapse clause of
OpenMP (referred to as DRAM-collapse and NVM-collapse, based
on the allocation), our Inspector-Executor (IEC) model and our
Bag of tasks (BoT) model. The BoT and IEC models use the PEARS
framework. The OpenMP collapse [21, 30] clause specifies how
many loops in a nested loop should be collapsed into one large
iteration space and divided according to the schedule clause over
the number of available threads. Any sequential execution of the
iterations in associated loops determines the order of the iterations
in the collapsed iteration space. We compare with this scheduling
clause because the concurrency of the iteration of the all memory
chunks together as a whole determine the order of distribution of
all memory chunks (iteration partitioning) among all threads in
BoT and IEC models. This is similar to the collapse clause.

We use OpenMP for all our experiments. Benchmarks are com-
piled using -O3 optimization with GCC 9.3.0. The maximum prob-
lem sizes of our experiments are limited by the DRAM size of the
system (192 GB). We measure the total execution time for each
benchmark using clock_gettime() and average over 5 runs for each
configuration with a standard deviation of no more than 3%. To
obtain cache performance and memory performance metrics, we
use LIKWID [32] to measure metrics for every benchmark that are
obtained from hardware performance counters. We perform strong
and weak scaling for all our benchmarks and scaled the number
of OpenMP threads from 2-32. We proportionally change problem
sizes for each benchmark depending on the type of scaling. For
TMM, the problem sizes varies from a 20482 element matrix to a
81922 element matrix. For 1D and 2D stencil benchmarks, we vary
the problem size from a 163842 to a 655362 element matrix. For 3D
stencils, we vary problem sizes from 8203 to 20483 elements. For
TMM without any chunking, the tiling size is fixed at 642 elements.

6 RESULTS
In the following, we present our experimental results and findings.
We performed experiments for both strong and weak scaling and
plot results in separate graphs. Each graph features box plots. We
provide graphs for three different metrics, namely, the memory
bandwidth, cache bandwidth and DTLB-load store miss ratio, which
are plotted as bar charts with bandwidth (MB/s) on the left y-axis.
Each graph indicates the number of OpenMP (OMP) threads on the
x-axis.

We conduct two different sensitivity studies that are plotted
separately. First, the different memory management and scheduling
techniques are investigated in separate data series within the same
plots. Second, different chunk sizes are analyzed in plots. For the
memory bandwidth analysis, we provide (1) read, (2) write and (3)
total bandwidth measured at the memory controllers using LIKWID.
Similarly, for Cache Bandwidth analysis we provide (a) L1-L2 cache
bandwidth, (b) L2-L3 cache bandwidth and (c) L3-System (Sys)
bandwidth measured using the performance counters with the help
from LIKWID. For DTLB miss ratio analysis, we provide (i) load
and (ii) store store misses measured using LIKWID. We measure
solve time of all our benchmarks, which encapsulates the entire
application execution time, including the overhead of initialization
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Figure 5: Memory chunk distribution of IEC scheduling for
dynamic and static chunk sizes
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Figure 6: Time series distribution of IEC scheduling for dy-
namic and static chunk sizes
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Figure 7: Memory chunk distribution of BoT scheduling for
dynamic and static chunk sizes
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Figure 8: Time series distribution of BoT scheduling for dy-
namic and static chunk sizes

and finalization of the PEARS framework. Due to space limitations,
we provide a subset of representative graphs from the vast dataset
that was collected. Other graphs have similar trends, which are also
discussed.

Figures 5 and 7 depict the memory chunk distribution graphs
of our IEC and BoT runtime scheduling policies for static and dy-
namic chunk sizes with the TMM workload. A stacked bar graph
with the x-axis shows the number of memory chunks assigned to
any given thread. The y-axis indicates each individual thread from
1..8. Figures 6 and 8 depict the time series distribution for our IEC
and BoT runtime scheduling policies for static and dynamic chunk
sizes with the TMM workload. It is again depicted as a stacked bar
chart with 8 OpenMP threads on the y-axis and normalized time
on x-axis. The figures provide distributions for each of the three

kernels of TMM (Init, A=BxC, E=CxD). For both IEC and BoT with
dynamic chunking, the number of chunks created is lower than
fixed chunk sizes (IEC-F1, IEC-F2, BoT-F1 and BoT-F2) due to the
dependence on problem sizes and memory capacity. However, the
workload distribution of of both IEC and BoT scheduling policies
is not affected by the number and size of chunks. For IEC schedul-
ing, a uniform memory chunk distribution is observed up till the
executor phase for dynamic and fixed chunk size across all threads
(Figure 5) and across all kernels. The Inspector phase distributes
a very small fraction of the total memory chunks to each thread
and, based on the completion of each thread, distributes the chunks
for the Executor phase. This results in a quite balanced time series
distribution (Figure 6) with some imbalance during the Executor
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Figure 9: Solve Time comparison of scheduling and chunking policies for TMM with Strong scaling
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Figure 10: Solve Time comparison of scheduling and chunking policies for TMM with Weak scaling

phase of IEC. However, the greedy phase helps in reducing the im-
balance by distributing more chunks to the threads that finish early.
These threads finish executing the chunks quickly on the faster
memory while other threads are working on the slower memory
chunks. For BoT scheduling, the tasks are greedy in grabbing a
subset of total memory chunks right from the outset. In phase 1,
BoT does not move any chunks from where they reside. Hence, for
the Init kernel, we observe that a few threads take a lot of time to
finish phase 1 as some of the memory chunks were residing in the
slower memory device. However, as we move ahead in phases, the
workload distribution becomes more balanced. The data movement
overhead increases with larger subsets of memory chunks but it is
compensated when the chunks are executed on the faster memory
as seen for the A=BxC kernel. Both scheduling policies ensure that
if a thread takes longer time to finish in the earlier stages, other
threads move ahead in phases quickly to balance the workload as
seen in IEC-F2 for E=CxD kernel.

Observation 1: The runtime scheduling and memory manage-
ment of PEARS outperforms other memory allocation and runtime
scheduling methods for the TMM workload.

Figures 9 and 10 depict the time comparison of all scheduling
and chunking policies and Figures 11a and 11b depict the mem-
ory bandwidth results for strong and weak scaling of the TMM
benchmark. For Figures 9 and 10, we plot every OpenMP thread
configuration separately due to the large difference in solve time
over varying number of threads under weak scaling. We observe
that, under strong scaling, BoT and IEC runtime scheduling outper-
form all other memory allocation and runtime scheduling methods.
The execution times of BoT and IEC are identical, which are up to

40% faster than pure NVM allocations and up to 15% faster than
pure DRAM allocations in execution time.

Under weak scaling, BoT and IEC are on par or faster than
other runtime scheduling methods in terms of execution time. They
achieve this in spite of having lower memory bandwidth than other
methods, especially for larger numbers of threads. This can be at-
tributed to the L2-L3 cache bandwidth of BoT and IEC for strong
scaling and the L1-L2 cache bandwidth for weak scaling, as shown
in Figures 12a and 12b, respectively. This indicates that there more
cache hits are due to the memory chunking, which reduces the
dependency on memory access latency. Figures 13a and 13b indi-
cate higher load and store misses for BoT and IEC. This, along with
lower memory bandwidth, means that both BoT and IEC runtime
scheduling prefetch pages into the DTLB beforehand while utiliz-
ing all memory controllers simultaneously, which gives PEARS
a performance boost over other memory allocation and runtime
scheduling methods. For TMM weak scaling, the problem sizes
grow linearly with the number of threads but the algorithm has a
complexity of (𝑂3). Hence, the execution time still grows at a cubic
rate.

Figures 14a and 14b depict the memory bandwidth for different
memory chunk sizes under BoT and IEC scheduling. Both schedul-
ing policies determine chunk sizes dynamically at runtime based
on the problem size. In contrast, BoT-F1, IEC-F1, BoT-F2 and IEC-F2
impose statically fixed chunk sizes for comparison, where sizes are
indicated in Table 3. We observe that fixed chunk sizes that align
with the private cache achieve lower execution time, i.e., outper-
form dynamically determined chunk sizes in Figures 9 and 10. Both
IEC and BoT result in almost 3x times faster execution with their



MEMSYS21, Oct., 2021, Virtual Conference Onkar Patil1 , Frank Mueller1 , Latchesar Ionkov2 , Jason Lee2 , Michael Lang2

0

200

400

600

800

1000

1200

2 4 8 16 32

Ba
nd

w
id
th

(M
B/
s)

OMP Threads

DRAM Total BW
DRAM Read BW
DRAMWrite BW
NVM Total BW
NVM Read BW
NVMWrite BW

DRAM-collapse Total BW
DRAM-collapse Read BW
DRAM-collapse Write BW
NVM-collapse Total BW
NVM-collapse Read BW
NVM-collapse Write BW

BoT Total BW
BoT Read BW
BoT Write BW
IEC Total BW
IEC Read BW
IEC Write BW

(a) Strong Scaling

0

200

400

600

800

1000

1200

2 4 8 16 32

Ba
nd

w
id
th

(M
B/
s)

OMP Threads

(b) Weak Scaling

Figure 11: Memory bandwidth for scheduling TMM
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Figure 12: Cache bandwidth for scheduling TMM
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Figure 13: DTLB load store miss ratios for scheduling TMM
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Figure 14: Memory bandwidth over different chunk sizes for TMM
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Figure 15: Cache bandwidth over different chunk sizes for TMM
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Figure 16: DTLB load store miss ratios over different chunk sizes for TMM
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Figure 17: Solve Time comparison of scheduling and chunking policies for 27-pt stencil with Strong scaling
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Figure 18: Solve Time comparison of scheduling and chunking policies for 27-pt stencil with Weak scaling

statically fixed F1 and F2 chunk variants under strong and weak
scaling compared to dynamic chunk size variants. The fixed chunk
sizes show higher memory bandwidth and L1-L2 cache bandwidth
(as shown in Figures 15a and 15b) along with higher DTLB load
misses (as shown in Figures 16a and 16b), which contributes to the
faster performance.

Inference 1: Splitting the memory allocation into chunks and
scheduling them across memory devices simultaneously while fully
utilizing fast memory and all memory controllers at the same time
helps achieve higher performance for TMM on a heterogeneous mem-
ory system.

Observation 2: For 1D stencil codes, PEARS scheduling and mem-
ory management can support larger data sizes than DRAM or NVM
allocations by themselves. It also outperforms all NVM scheduling
policies. However, for the smaller problem sizes that fit into DRAM, it
has inferior performance to DRAM memory allocation and runtime
scheduling methods.

For a 1D 3-point stencil kernel (figures omitted due to space), we
observe that BoT and IEC perform up to 3x times slower than DRAM
allocation for both strong and weak scaling. For lower numbers of
threads in weak scaling, BoT and IEC perform slightly faster than
NVM allocation. This can be attributed to the lower memory reuse
of very small stencils, which result in high memory bandwidth
demand than cannot be met by NVM (used by BoT and IEC) while
DRAMprovide higher bandwidth.We observe that BoT and IEC also
achieve lower cache bandwidth than other allocation and runtime
scheduling methods. Nonetheless, BoT and IEC do achieve the same
DTLB load and store misses compared to others. This means that
BoT and IEC do not help in achieving high locality in the caches for

3-point stencil workloads. Fixed chunk sizes improve the execution
time by only 10%. This is true for both strong and weak scaling.

For a 1D 7-point 3 halo stencil kernel (figures omitted), BoT
and IEC (both using NVM) again are 3x times slower than DRAM
but perform on par with NVM-collapse allocation and scheduling
for strong scaling. For weak scaling, they perform slightly better
than NVM and NVM-collapse allocations and runtime scheduling
for lower numbers of threads. BoT and IEC have slightly higher
memory, cache bandwidth and DTLB load miss ratios than NVM
and NVM-collapse allocation and runtime scheduling methods. Due
to the denser stencil (increased spatial locality) and higher reuse
(increased temporal locality), BoT and IEC are able to achieve higher
cache locality. Fixed chunk sizes do not have any impact on the
performance.

Inference 2: The PEARS framework can accommodate larger 1D
stencil problem sizes than any other allocation policy. However, for
smaller problem sizes with sparse 1D stencils, it has inferior perfor-
mance to DRAM , which is due to lower memory and cache bandwidth.
For denser stencils, PEARS outperforms NVM only allocations and
runtime scheduling.

Observation 3: For 2D stencil codes, PEARS can again support
larger problem sizes than other policies. But for allocations that fit
into DRAM, PEARS is slower than DRAM only. Yet under weak scaling,
it is on par or faster than the collapse runtime scheduling methods
for both DRAM and NVM allocation policies.

For a 2D 5-point stencil kernel, we observe that BoT and IEC
perform almost 3x time worse than DRAM allocation and 40%
slower than NVM allocation for strong scaling. Similarly, the 2D
9-point stencil (2 halo) benchmark and the 2D 9-point stencil (with
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Figure 19: Memory bandwidth over different chunk sizes for 27-pt stencil

diagonals) benchmark result in 3x and 2.5x times longer execution,
respectively, under BoT compared to DRAM allocation, and 30%
slower execution than NVM allocation. However, BoT and IEC
outperform NVM allocation in case of all three 2D stencil codes
for lower numbers of threads under weak scaling. For both the
2D 9-point stencil codes, BoT and IEC outperform NVM-collapse
allocation and runtime scheduling and are on par with DRAM-
collapse allocation and runtime scheduling. The performance of
BoT and IEC can be attributed to the change in memory bandwidth
observed for all three benchmarks. However, neither PEARS variant
is able to extract any benefit from cache locality, which is seen by
their low cache bandwidth and high DTLB load and store misses.
For all three benchmarks, the fixed chunk sizes for BoT and IEC
offer only slight performance improvement over the dynamically
determined memory chunk sizes, except for larger numbers of
threads, where both fixed chunk sizes perform around 10% faster.
This improvement is again attributed to higher memory bandwidth
achieved by fixed size memory chunking.

Inference 3: PEARS can accommodate larger 2D stencils than
any other method. But for smaller problem sizes, a lack of improve-
ment in cache locality for 2D stencils under PEARS results in lower
performance than with DRAM allocations. Nonetheless, PEARS still
provides some benefit over NVM allocations and the OpenMP collapse
runtime scheduling, even for smaller data sizes.

Observation 4: For 3D stencil codes under both strong and weak
scaling, runtime scheduling andmemorymanagement of PEARS static
chunking outperforms the pure DRAM methods, while PEARS with
dynamic chunking is on par with the DRAM methods.

For a 3D 7-point stencil benchmark, BoT and IEC perform ap-
proximately 3x times slower than other memory allocation and
runtime scheduling methods. However, IEC performs 10% faster
than BoT. This is the case for both strong and weak scaling. Simi-
larly, for a 3D 13-point stencil (2 halo) BoT performs 3.5x slower
than DRAM allocation and IEC performs 2.5x slower. IEC is again
30% faster than BoT for both strong and weak scaling. For a 3D
27-point stencil, BoT and IEC are both 2x slower than DRAM for
strong scaling. In weak scaling, BoT and IEC are on par with DRAM
allocation performance and better than NVM allocation. For all 3
benchmarks, this performance can be attributed to high memory
bandwidth and DTLB load and store misses.

A different picture is seen for fixed chunk sizes for both BoT
and IEC for all the 3D-stencil codes. For the 3D 7-point stencil, we
observe that IEC performs 3x times faster with fixed chunk sizes,
which puts it on par with DRAM allocation performance. Similarly,
for the 3D 13-point stencil (2 halo) we again see a 3x time perfor-
mance improvement for IEC and for the 3D 27-point stencil, we see
a 4x times performance improvement (as shown in Figure 17 and
18), which means it is outperforming DRAM allocation. The same
improvement in performance is not observed for BoT for 7- and 13-
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Figure 20: Cache bandwidth over different chunk sizes for 27-pt stencil

point (2halo) 3D stencils where the fixed chunk sizes only bring
minor improvements in performance. For 27-point stencil, we see
a 4x times performance improvement. The performance impact of
fixed chunk size allocation can be attributed to the higher memory
and cache bandwidth observed over the dynamically determined
chunk sizes as shown in Figures 19a, 19b, 20a and 20b.

IEC runtime scheduling has a clear advantage over BoT sched-
uling for sparse 3D stencil codes. In BoT, all threads grab chunks
in a greedy manner. This can lead to cases where a single thread
can grab more chunks than they can fit in the fast memory leading
to sub-optimal results in a heterogeneous memory system due to
low cache reuse. This situation is avoided with IEC as the main
thread aims to balance the workload across all threads and ensures
optimal use of both the fast memory and all memory controllers
within the memory subsystem. Hence, with the large problem and
chunk sizes of sparse 3D stencil codes, IEC performs faster than
BoT and, in some cases, faster than (or at least on par with) DRAM
allocation.

Inference 4: The performance of IEC runtime scheduling and
memory management under PEARS is on par or even exceeds all other
allocation and scheduling methods for 3D stencil codes, due to IEC’s
ability to balance workload across memory devices and controllers in
the memory system. This helps take advantage of the capacity and
the speed available in a heterogeneous memory system.

Observation 5: The PEARS framework delivers better perfor-
mance for denser stencils than sparse stencils and for higher dimen-
sional datasets than lower dimensional datasets.

Denser stencils that operate on large data sets tend to have lower
temporal cache locality due to larger reuse distance between ac-
cesses and the streaming-like access pattern. This leads to lower
cache hits and cache contention. When only a single type of mem-
ory is used for allocation in a heterogeneous memory system, not all
memory resources are utilized, which can leave some performance
gains on the table. Due to memory chunking in PEARS, the datasets
get divided into smaller memory streams, which have higher tempo-
ral cache locality due to a shorter reuse distance. When the memory
chunk sizes align with the private cache sizes, the number of cache
hits for each memory chunk also increases. This helps workloads
such as dense TMM. As the memory chunks are distributed and
executed simultaneously across all memory devices, all resources
are utilized, which improves the memory systems performance as
well. This also reduces memory request back pressure from the
memory controllers. The memory chunking does incur a memory
overhead and halo value communication overhead for stencil codes.
But with large datasets, this overhead becomes a small fraction of
the total workload and its overhead is easily recouped.

Inference 5: Overall, the PEARS framework is an ideal solution
achieve balanced memory management and runtime scheduling for
dense stencil or TMM workloads with large datasets.
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7 CONCLUSION
This work contributes a memory management and runtime sched-
uling framework called PEARS enabling HPC application program-
mers to write programs that can take advantage of the resources
provided by a heterogeneous memory system. It helps targeted
HPC workloads like TMM and stencil kernels to achieve better
memory performance than traditional memory management and
scheduling techniques. It helps reduce the performance impact of a
slower memory in the memory system. At the same time, it helps
support larger problem sizes than can fit into a homogeneous mem-
ory while reducing the dependency on the application programmer
to optimize memory performance for a heterogeneous memory
system.The PEARS framework will accelerate the adoption and use
of heterogeneous memory systems for large scale HPC workloads,
which has many cost and energy benefits for future HPC systems.
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