Toward Thread-L evel Speculation for Coar se-Grained
Parallelism with Regular Access Patterns™*

Ravi Ramaseshan and Frank Mueller

Dept. of Computer Science, Center for Efficient, Secure agithBle Computing,
North Carolina State University, Raleigh, NC 27695-7534ielter@cs.ncsu.edu

Abstract. Recent work on transactional memory (TM) bears promise phoéx
multicore capabilities. TM extensions for thread-leveksplative parallelism
(TLS) have predominantly focused on integer benchmarks s¥ibrt critical sec-
tions and exploit limited on-chip buffering space to stdnadow values needed
to potentially abort transactions. In contrast, scientificles generally provide
coarse-grained parallel regions with potentially sharesmory accesses, which
do not fit into size-limited shadow buffers. Hence, such sodpresent a mis-
match for TM-TLS.

This work contributes mechanisms to speculatively pdiaiescientific codes
with dense, non-scalar data references exploiting cotnmiléechniques and run-
time enhancements coupled with minor hardware enhancen@tiansparently
support TLS.

A method to efficiently detect access violations to sharedhorg in specula-
tively parallelized regions is developed, much alike TM{, wih data footprints
of arbitrarily large size. The mechanism for violation dgten is based on run-
time software and optional hardware support to efficiendlgtare regular access
traces. Experimental evaluations assess the speculateshead in presence and
absence of access violations considering an environmehtand without hard-
ware support. The results show that this method is competiti explicit paral-
lelization or auto-parallelization, yet can be appliedrewhen data dependency
checks remain inconclusive at compilation time.

1 Introduction

Contemporary computer architecture design has shiftenh fpashing processor fre-
guencies to increasing coarse-grained parallelism, mgstkaged as chip multi-
processors (CMPs) or multi-cores. While CMPs are projetdeslipport 32 cores per
chip or more, programming models for concurrency (multetiding) and their inter-
action with hardware are being revisited. To exploit thegptial speedup on these sys-
tems, course-grained concurrency within a program is aepugsite. In this context,
automatic and semi-automatic tools that help in identtfyand exploiting concurrency
are of grave importance.

On the Limitations of Auto-Parallelization: For scientific programs, statically
provablei.e., automatic parallelization under the compiler’s direntivave been suc-
cessful for regular, well-structured, loop-nest-domé@ehtodes, typically written in

* This work was supported in part by NSF grants CCR-0237570REER), CNS-0410203,
CCF-0429653 and a grant by the Humboldt Foundation.

Fortran. However, cases such as — aliasing of variablesitidppendent execution
patterns, complex control flow and use of third-party, bynanly libraries make it hard
for the compiler tqprovethat a loop nest can be safely parallelized. Researcheestav
tempted to overcome these challenges using increasingiplex algorithms involving
interprocedural analysis [8], abstract interpretatio®][@nd advanced symbolic anal-
ysis [5]. However, most of these attempts are very companatly expensive and can
only handle benchmarks written in Fortran.

Thread-L evel Speculation (TLS): TLS attempts to address scenarios where the
compiler cannot statically prove the safety of paralldlma. By speculatively paral-
lelizing a loop, typically by executing fixed-sized chunkstiee inner-most loop in
parallel, performance can potentially be dramatically iayed. However, if specula-
tion fails, i.e., data dependencies are actually violated by this chunkipgoach, the
effect for execution has to be reverted to the state priop&slation. For this reason,
buffers are employed by TLS schemes to speculatively ovenmremory and also to
allow for detection of dependence violation between spiMaly executing threads.
Most hardware TLS proposals support this by modifying theheaprotocol. Exam-
ples include STAMPEDE TLS from CMU [26], Hydra TLS from Stand [10] and
the TLS machine from UIUC [15]. For each cache line, add#ispace is reserved to
save the memory overwritten speculatively. Extra statebéncache protocol indicate
if the cache line is speculative. Invalidations to spedutatache lines invoked by a
less-speculative thread indicates violation dfise dependence €., a read-after-write
dependence), causing the more-speculative thread to lzstsed and restarted. TCC
(Transaction Coherence and Consistency / Stanford [9fg&usproposes to buffer the
entire speculative state inside the processor. At the esgexfulative execution, specu-
lative changes are broadcast to all processors to checkdepandence violation.

Software speculative parallelization proposes to maintsgieculative state entirely
in software. The LRPD test from Rauchwerggral. [22] and Rundbergt al. [24]
maintainshadow memory for all potential arrays that can participate in sgpaton.
Additional state at the level of individual data elemergg).(a single array position)
supports dynamic memory renaming, speculative privatimednd reduction. As with
past hardware TLS proposals, these schemes still mairgatuative information at a
fine-grained level. They are much slower than hardware TldSraquire large amounts
of memory to serve as shadow memory. Moreover, they depetttemompiler to save
and restore potentially overwritten memory state and tcalle and manage the shadow
memory.

Transactional Memory (TM) Design: In response to the increasing on-chip par-
allelism, academics and chip designers have been expltrenfenefits of TM as an
alternative to protecting data with locks (or semaphorf&gnsactions are shown to be
well-suited for small critical sections when concurrentesses to the same shared data
are the exception, which is the case for integer and clientés workloads. Past work
on parallelization for TM has focused on bounded transastia terms of data size
with extensions to unbounded protocols [11]. The formercammon in hardware TM
while the latter dominate in pure software solutions or gdrin high-performance
computing (HPC), software transactional systems are nopéon due to their cost for
maintaining shadow space and, optionally, versioning imaxy. A Hybrid approach

provides a fast solution while transactional state remamship €.g., in transactional
caches) but becomes slow when spilling into main memoneisions of TM for TLS
have been proposed in Stanford’s TCC, which provides apanest method to specu-
lative parallelize loop nests, as discussed before.

Critique of Past Work: The key weakness with most past approaches (one ex-
ception being TCC) is the reliance on fine-grained cache-i&vel speculation state
management. As thgze of the speculative region grows, the number of speculativel
written cache lines may increase beyond the capacity ofdbbe: Evicting a cache line
in a speculative state causes the speculation to be abbrtegise of TCC, the limiting
factor is the size of the in-processor write buffer that efothe speculation state; the
speculation is aborted if this write buffer overflows.

Due to these design limitations, the size of the speculatgion is necessarily
small. There are several downsides to this. First, the @agiof speculation manage-
ment instructions€.g., spawning a speculative thread, waiting to commit) can e si
nificant. Past studies report overhead ranging from 3.7909t6% [26]. Moreover, due
to fine-grained speculation, there is contention betweengssors for the same cache
lines, resulting in cache misses. Past work reports thavhaye from 1.67% to 65% of
the cache misses in speculative execution accessed datathim the other processor’s
cache [26]. Both these factors have a detrimental effechemet speedup obtainable
with speculation.

More critically, the limitation to small regions typicalfgrces speculation to be only
applied to the innermost loop, lest the speculative dataflovethe cache and cause an
abort. Kejariwakt al. [13,14] report only 1% gain of TLS over explicitly threadenbies
or hardware enhancements for Spec 2006 for inner-most Joolpich are extremely
constrained assumptions. In practice, the working setsiehsfic programs can be
much larger than the size of the cache. This restrictionteimost loops may disallow
speculative parallelization in cases where the inner l@ymot be parallelized. And the
cost of thread creation and speculation can be much lowarithaeir study if assisted
by hardware.

Consider a doubly nested loop with a dependence given by ithetidn vector
(=,<). In this case, the outer loop can be parallelized, but theritoop must execute
sequentially. In fact, even a dependence «of &) can be speculatively parallelized
by our approach if actual access traces reveal that a paligrdarried dependence of
the outer loop, as determined statically by the compilegsdeot occur dynamically,
effectively reducing it to (=).

Contributions: In contrast to prior work, we propose to explore the potdrifa
speculative parallelization beyond inner-most loop caretiwith low-cost dependence
violation detection and memory shadowing. This is not gaeswith the limited spec-
ulation regions of current TLS proposals.

Our focus is on scientific codes, which are a poor match for TG systems as
such systems provide large, parallelizable regions withymeon-scalar accesses that
are potentially shared. This approach exploits the fadtsbeentific programs tend to
be dominated by regular and predictable access patterstealh of maintaining fine-
grained speculation information per cache line, we devebtogpressed representations
of memory access patterns that are suitable for dependéeokiog without decom-

pression. Our idea improves over past TLS work by allowingeptally orders-of-
maghnitude larger speculation regions than possible withche-line centric approach.

To this extent, we have developed a pure software implertientdor coarse-
grained speculative parallelization leveraging past warlcompressing regular access
patterns. We shall leverage this work to implement tracegr@ssion in software and
to evaluate the benefits and limitations in an experimemerenment. These exper-
iments distinguish the cost of (a) memory shadowing, (bjnenirace generation and
compression, (¢) dependence violation checking and (diaaexecution for the par-
allelized loops. These results allow us to assess the bef@fia hypothetical hybrid
hardware-software thread-level speculation scheme.ugirsimple and low-cost hard-
ware extensions, regular access patterns can be recogmdedmpressed in hardware.
A set of dependence tests can subsequently be executedrelihedware or in software
depending on their respective complexity. Overall, ourhmdtcan be more aggressive
in parallelization than existing TLS techniques, yet isvghdo be competitive in over-
head to explicit parallelization or auto-parallelizatitircan be applied even when data
dependency checks remain inconclusive at compilation trmadlow only TLS at the
inner-most loop nest.

2 Design and I mplementation

In a nutshell, our TLS design can be described as followst,Rihe program is run
with a small profile data set. Instrumentation (in hardwaresaftware) observes if
loop-carried dependencies exist during the executionetalget loop nest. If no such
dependencies are seen, the compiler inserts codpetmilatively parallelize the loop
nest on a multiprocessor machine, and the program is run thHull data set. For
the speculatively parallelized loop nest, each processamses its assigned chunks of
iterations in parallel. Hardware or software mechanisnsiemnthat if the speculation
fails, the state of the machine (registers and memory) careftered to a safe state
and re-executed serially. If speculation failure is infreqt, the program may achieve a
significant speedup in execution with this scheme.

Figure 1 shows the details of our proposed speculative lpéiraition scheme con-
sisting of an analysis step that identifies potential spimd parallelization candidates
and the actual execution step.

In the analysis step, all loops of an application are ingmbdty the compiler's
auto-parallelization framework, a modified version of ORI, 28]. Loops that do
not contain definite loop-carried dependencies are markgubgential candidates for
speculative parallelization. The compiler activatesrimsientation for tracing memory
accesses and the loop iterations of such loops. This prograom with a small data
set. For each speculation candidate loop-nest, the cameapy dependence graph is
rebuilt using the trace information.

Subsequently, all loops without a loop-carried dependémdkis trace-based de-
pendence graph are marked for speculative parallelizafibe program is now run
with the actual data set. The program executes non-spa@atill it encounters the
beginning of a speculative region. Within this region, onmore speculative loops may
execute in sequence. Each of these loops is parallelizadnerd by trace compression
capabilities to generate power regular section descsgfiRSDs) and, on exit from the

Loops
With
Potential
Dependences

ORC ,"/Small \\‘
Instrument < Data Set /
LD/ST QS
Trace-based Access l¢— CPU

Dependence Trace
Graph

]

v

Sequential ORC
Program Auto-Parallelization
Analysis

Profile Run

» enter_speculative_region();
for (TS=0; TS<TS_MAX; TS++) {

Actual Run B

parallel for(I=0; < MAX_L;I++) {
for (K=0; K < MAX_K; K++) {
/* loop-carried dependence */

1
dependence_check();

Restore Memory State
Restart serially

D,

Checking

}

exit_speculative_region();

Processor N

[Processor 1

Processor 0

optional
trace H/W

Fig. 1. Hardware accelerated hybrid hardware software specelagvallelization

parallelized loop, by a dependence violation test. The tcaims on the speculative re-
gion is that it must fully enclose any speculative loops,ityetay begin at a higher loop
level than the speculative loops themselves. In Figureid région encloses a coarser
timestep loop that contains the parallelized loop whiledpendence in the loop body
could be carried by either of the inner two loops. The compdmef the framework are
further elaborated in the following.

Success!

Analysis Step

We have enhanced the ORC compiler to selectively instruroens with potential
dependencies [21]. The instrumented application is thextuwed on a uniprocessor
using a small input as a training run. Accesses to memory aoj &éntry/exit points
are subsequently traced exploiting an online compressibarae to generate PRSDs
as outlined below. This access trace is utilized to brealedéencies in the compiler-
generated dependence graph that actually did not occuntitrrel. The modified ORC
compiler then generates a speculative program from thisceel dependence graph, as
outlined in Figure 1.

Software Tracing

Software tracing occurs during the execution of the speively parallelized program.
Accesses are traced on a per-thread basis to determinesifdéggendencies that ac-
tually occur during parallel execution are being violatéée represent the memory
access pattern seen by the hardware at runtime using PowefdR&ection Descrip-
tors (PRSDs) [17,18]. PRSDs represent hierarchicallyaubstemory accesses such as
those frequently generated by access points in loop ne®®R2D is described by the
following recursive production rules:

PRSD—<Base_Addr ess, PRSD_Body>

PRSD_Body —<Stride, Length, PRSDBody> | e
Base_Addr ess is the first address described by the PRSD. Each PRSD describe
Lengt h number of instances of a child PRSPRSD_Body), each of which is strided
at a distance o$t r i de. The child PRSD may itself contain children PRSDs. In this
manner, PRSDs can efficiently describe regular accessesdbar in deeply nested

loops.
For example, consider the following code, assuming rowemkgyout and array
elements of 8 bytes and matrix dimensions of 2000 square.

for(i=0;i < 2000;i++) PRSD A: <Base_A, <16000, 2000, <8, 1000>>>

for (% =0;j < 1000;j ++ PRSD B: <Base B, <8, 2000, <16000, 1000>>>

AlT][j1=Bljl[i]1+Ci } [i]1; PRSD _C. <Base C, <16000, 2000, <8, 1000>>>
The innerj-loop initially accesses 1000 consecutive elements ofirmAtof row 0

represented concisely as RSBaseA[i], (8.1000) for i = 0, i.e,, the first iteration of
thei-loop. Fori = 1, 1000 consecutive elements of A are accessed again, yetirttd
in row 1. Effectively, elements 1000-1999 of row O were sldgignot accessed). Hence,
the offset between A[0][0] and A[1][0] is calculated as 1®ytes, and PRSB is
created to denote both the 1000 accesses ofjtls®p (as seen in the RSD above)
within the 2000 iterations of theloop and a 16.000 bytes offset for the array accesses
between consecutive iterationsiofThus, when the code shown on the left is executed,
the 3 PRSDs shown on the right are created on-the-fly as tlessstream is generated.
In this case, 6 million accesses are represented as a 3PB&D requiring less than 100
bytes of memory. More significantly, the compressed repreg®ns (PRSDs), gener-
ated within each thread, are still in a format that can beyeea to determine if data
dependencies were violated.

Optional Hardware Tracing

Software tracing imposes a considerable overhead on apiplicperformance, as quan-
tified in the experimental results. Instead, traces may beigged in hardware building
on existing architectural features. PRSDs are generatezhfdh access pointincremen-
tally using a constant amount of working memory and a boumdaber of operations
per memory access. We propose a constant-size trace baffeciated with the per-
formance monitoring unit (PMU) and the prefetch unit. PRSI eration in hardware
then amounts to (1) recognizing strided accesses and (2pgimg a logic for mon-
itoring/logging memory references. Hardware prefetctadmsady realize (1) for short
stride lengths. Performance monitoring units already an@nt (2) as trap-based fa-
cilities to capture latency-constrained memory loads wvithe pipeline (Itanium-2),
through precise event-based sampling (Pentium) and stgintbased sampling (AMD
Barcelona). We supplement these features by a fixed-siferttafstore PRSDs of ap-
proximately 30 entriesg(g., for 6 non-scalar references in 5 loop nests) and the logic
to detect/extend PRSDs as striding references are encedntdpon buffer overflow,
outer-most PRSDs could be spilled to memory, as is the cabecwirent PEBS func-
tionality. When leaving parallelized regions, the entitdfér is explicitly spilled. The
PRSD algorithm is described in detail by Marattieal. [16, 18]. Overall, additional
circuit requirements should be equivalent to a small subeixisting chip area for
performance monitoring, but the details of area and powetigations are beyond the
scope of this paper. The objective of this paper is to aséessemaining performance
impact of our TLS scheme when tracing is supported in hardwar

Dependence Testing

When the program starts executing the speculatively pizdd loop, the loop itera-
tions are partitioned by multiple threads running on défgrprocessors. Access trac-
ing (in software or hardware) results in the on-the-fly camdion of PRSDs, which
are flushed when necessary to a memory buffer private to ¢aehd. At the end of
speculative execution, the PRSD traces from each threaidspected to determine if
data dependencies were violated by the speculative plazatien.

The single-bounds interval test determines if regions of accesses from different
threads are disjoint. To this extent, PRSD generation isreamged by tracking the up-
per and lower watermark for a given access point, expresbigrg as a single interval
for the entire PRSD. By arranging intervals of watermarkatfnAVL tree, the region
overlap test has a complexity 6f(n log n) wheren is the total number of intervals over
all threadsj.e., n insert operations on the AVL tree are required, each of winicly
take up tdlog n comparisons. If the tree is traversed to determine the ilmcaif a new
interval: and an existing interval originating from a different thread is encountered
that overlaps in range, a potential data dependence is f¢Ntice that intervals need
to be tagged with the last thread ID that performed an ingethe respective range to
determine the origin of intervals in terms of threads.)

This check requires implementation in software due to ig@athmic complexity.
The overhead of the dependence check depends on the nunmtbeeads, and the
number of PRSDs generated per thread]he latter can be affected by limiting the
scope of speculation. The former can be influenced by péritig the dependence
check in which case the serial complexity ©fn logn) for n = p x t (wherep is
averaged over all threads) can be reduce@ (g p + log t) [19], but this optimization
is beyond the scope of this paper. Our framework supportspkeification of a set of
dependence tests, but details are omitted here becaug®adidiests have not been
implemented yet.

If no potential dependence is found and speculation suscéken the results of
computation are immediately availables., unlike some TM-TLS proposals, there is
no “commit” overhead. If speculation fails, then the systismestored to a safe state
before entering the speculative region as explained next.

Entering Speculation Regions

In the process of speculative execution, memory locatioebeing modified. The con-
tent of these locations needs to be saved since modifiedsvedgelire recovery upon
failed speculation. Past approaches leveraged cachewimadtechniques or main-
tained fine-grained copies of old values in memory. Shadoghes limit the size
of speculation while fine-grained shadow memory, sometialss employed when
shadow caches overflow, may impose significant overheadadar-ttlemand copying
at data-type granularity upon each and every write oparatio

Our scheme exploits virtual memory with the copy-on-writeahanism inherent
to process creation. This has the advantage that old vategz@served through bulk
transfers into a shadow memory region, which is more effidiean on-demand fine-
granular copies and does not impose limitations on the sobggeculation as shadow
caches do. When entering the scope of a speculative regi@véo at a coarser level),
a child process is forked and immediately suspended. Aseaefféct, the operating

system (OS) marks the pages of parent and child as read ohbn\&page is written to
(in the parent), a page protection fault is caught by the @®8s8quently, a copy of the
page is created in physical memory and mapped onto the samealyiage as before. At
this point, write access to this virtual page is enabled foept and child so that, upon
return from the OS, the write is re-issued in the parent. Upaccessful speculation,
results are already available in the parent while the chititess is simply Killed. If a

potential violation is detected, the parent is abortedd#jl while the child is activated

and resumes with sequential execution from the point ofydntthe speculative region.
Since the child is privy to the memory state prior to specdafgtcorrect results are
guaranteed.

3 Experimental Results

Our experiments were conducted on a dual processor 900 Mii™2 machine
running Linux. We configured our benchmarks to be compiledvim threads. We used
ORC version 2.1 for our framework with customized extensiuch as the OpenMP
runtime system and some enhancements within the paraliieliz framework at the
HIR level to be able to compile and parallelize the benchmatbject to evaluation).

For our evaluation, we selected five benchmarks from a maliéesion of the NAS
Parallel Benchmark [4] suite, a widely used suite to evatia performance of parallel
computers. Specifically, we use the NAS (OpenMP C) parabelchmark suite (ver-
sion 2.3) by the Omni OpenMP Compiler group for our experitaefhe source code
of each benchmark was modified by removing all OpenMP direstirom them. In
addition, we also replaced the complex number implementatsed in thé=T bench-
mark to use that provided by the C Standard Library. This fication was required
to circumvent a deficiency in our branch of ORC that perforeduction analysis on
structure elements incorrectly. The benchmarks were clethit the highest level of
optimization ¢ G3). In our research, we are focusing on do-all rather than coss
auto-parallelization. Hence, we used the do-apo flag and turned do-across auto-
parallelization off. We also switched inter-procedurabbysis and binary dead-code
elimination off to bypass further bugs in our branch of ORC.

Potential of Speculative Parallelization

To analyze the potential of our speculative parallelizafi@amework, the benchmarks
were traced and analyzed offline using the class S data sehargeculation experi-
ments were run using the class A data set. In order to estithatgotential of specula-
tive parallelization, we compare the execution times ofdbeservatively parallelized
program against that of the speculatively parallelizedgprmn without the speculative
runtime overheads of tracing, PRSD compression and depeadéolation checking.

The objective of the first experiment is to study the captédiof our speculative
parallelization framework. The goal of speculative paiathtion is to simply turn it
on regardless of potential violations due to data deperidenidence, we are assessing
here if speculative parallelization can achieve at leagicasl of a result as compile-
time parallelization for codes that are known to be stafjcahalyzable in terms of data
dependencies.

Table 1 summarizes the results and shows that our speaufatimework is com-
petitive with compile-time parallelization. Not only thatit theLU benchmark shows

potential beyond conventional compile-time paralleli@ats speculation uncovers ad-
ditional potential for savings. Further analysis of thedlanark codes further indicates
additional potential for speedup by the speculative fraor&if a coarser level of par-

allelization (with more work per thread) was chosen at aepuatore loop level.
Table 1. Limit of Speculative Parallelization

NPB| Wall-clock time (seconds) |Speedup
Static ParallgSpeculative Parallel
BT | 1007.37 1009.00 0%
EP 119.50 120.46 0%
FT 50.35 50.30 0%
LU 406.42 371.60 9%
SP 357.20 357.44 0%

Speculative Execution Over heads

The objective of the second experiment is to distinguishitamtal costs due to our
software speculative framework and discuss their impadeunthe assumption that par-
tial hardware support exists (particularly for PRSD traeagration). We then have to
distinguish the cost of (a) memory shadowing, (b) onlinedgrgeneration and compres-
sion, (c) dependence violation checking and (d) actual wia@t for the parallelized
loops. Hence, we perform the following experiments withgpeculatively parallelized
program: (A) Without tracing, PRSD generation, forking asependence violation
checking; (B) with tracing overheads but without PRSD gatien, forking and de-
pendence violation overheads; (C) with tracing and PRSDeggion overheads but
without forking and dependence violation checking; (D)hwitacing, PRSD genera-
tion and forking overheads but without the dependence titmlachecking overhead,;
(E) with all the overheads but no mis-speculation (oracfgetelence checking) and (F)
with all the overheads including potential mis-speculatio

These experiments were run with the speculative programtasg compiled for
class 'S’. With the above five experiments, we calculatedcihets of each individual

overhead. Table 2 shows the wallclock measurements of eqertiment.
Table 2. Speculation Overhead Experiments

Experiment Wall-clock time (seconds)
BT | EP |FT| LU SP

SpecNoOverhead 1.13|7.53(1.28 0.26 | 0.37
Speclnstr 5.55 (13.735.62 3.02 | 1.54
SpeclnstrPrsd 84.29(14.796.48309.59210.40

SpeclnstrPrsdFork 98.87(14.786.51{310.58229.89
SpeclinstrPrsdForkOracleChetR5.6714.806.52520.48248.66
SpecinstrPrsdForkCheck (111.1114.786.52516.13308.44

Figure 2 shows the relative costs of each overhead duringgheulative run nor-
malized against the execution time considering all ovaitked@he overheads of the
speculative run indicate a substantial contribution bgitrg and PRSD compression
followed by dependence violation checks (for selected bararks) as they dominate
the overheads for most benchmarks. Recall the discussigramoting tracing and
PRSD generation to hardware monitoring. By shifting thediewr of this costly task,
data (trace) generation suitable for dependence checldogrbes feasible. It still re-
mains the responsibility of our software framework to pericdependence violation

Speculation Overheads

100%
90%
80%

70% —

[Misspeculation

Ml Violation Checking
[T Forking

[@ PRSD

| Compression

[l Instrumentation

{ [Execution

60% T
50% T
40% 1]
30% T

Percentage Overhead

20% 1

10%1—

|

BT.S EP.S FT.S LU.S SP.S
Benchmarks

Fig. 2. Relative Costs of Speculation Overheads

checking. This may result in program slowdowns (comparedti¢osersion without de-

pendence violation checks) for two reasons. The first is imzaf the the different
levels of dependence checks, and the second is due to thetddviime in executions
resulting in incorrect speculation. Another source of ted is due to retaining pro-
gram state prior to entering speculation, which is due t&ifa. The current cost of
forking depends much on the write set of pages of a given breadh Furthermore,

there is still room for improvement since forking currenthkes place at the entry to
a speculative region. By coarsening the state capture tevarlaesting level (outer
loops), this overhead can be further reduced, which is atigréeing investigated.

4 Reated Work

Compressed access patterns have been proposeahipile-time analysis in past work,
such as for array privatization and reduction detection 2¥2. Unfortunately, complex
control flow and input-dependent symbolic variables may eriakmpossible to reason
about such compressed representations at compile timesponse, Rust al. pro-
pose aHybrid Analysis (HA) [25]. With HA, the compressed accesses (descriptors)
are formed at compile time using sophisticated symbolidysma The descriptors may
include symbolic terms whose values are unknown at comjmie.tThe actualse
of these descriptors for deciding if an optimizatiaxg(, parallelization) is safe is de-
ferred till runtime when the values of symbolic variables known and can be plugged
in. The need for sophisticated symbolic analysis (to forrd aggregate the descrip-
tors) limits the applicability of this approach to a subskFortran codes. In contrast,
we do not need symbolic code analysis as the access dessrgbuilt on-the-fly
based on observed run time addresses. We exploit Power &efgittion Descriptors
(PRSDs) [17, 18], which provide the means to represent eegudcess patterns in con-
stant space regardless of the number of loop nests andidtesatsing an effective
online detection and compression technique. Hence, ownsehs more general and
applicable to a larger set of programs than static schemes.

Past work on parallelization for TM has focused on boundaddactions in terms
of data size with extensions to unbounded protocols [3, 80} The former are com-
mon in hardware TM while the latter dominate in pure softwsmkitions or hybrids.

XTM utilizes memory protection but lacks trace compressapabilities to speed up
violation detection [7].

5 Conclusion

We have enhanced the ORC compiler to selectively instrutoeps with potential de-
pendencies. The access trace obtained by executing thenrestted program is utilized
to calculate a relaxed dependence graph that our modified €@R@iler uses to gener-
ate a speculative program. Further, we have developed aspitreare implementation
for coarse-grained speculative parallelization thatilages past work on compressing
regular access patterns using PRSDs.

While the cost of PRSD generation dominated the overheadsrigd by our frame-
work, regular access patterns can be recognized and cosegrésrough simple and
low-cost extensions in hardware, which would eliminatenihees overhead. By coars-
ening the state capture to a lower nesting level (outer [pdpe overhead due to de-
pendence violation checking can be further reduced. Welateve that by selecting
a coarser level of parallelization (with more work per thdeat an outer-more loop
level, we would not only be able to mask this overhead but ehénspeedups with our
framework. We are currently investigating both these tégphes.

Overall, our method can be more aggressive in paralletipatian existing TLS
techniques, yet is shown to be competitive in overhead tdi@parallelization or
auto-parallelization. It can be applied even when data niégecy checks remain in-
conclusive at compilation time or allow only TLS at the irimeost loop nest.

References

1. Open research compiler for itanium processor familyp:hipf-orc.sourceforge.net/.

2. Open64 compiler. http://sourceforge.net/projectsids.

3. C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leisersmid S. Lie. Unbounded trans-
actional memory. Iinternational Symposium on High Performance Computer Architecture,
pages 316-327, 2005.

4. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, RQarter, D. Dagum, R. A. Fa-
toohi, P. O. Frederickson, T. A. Lasinski, R. S. SchreiberDHSimon, V. Venkatakrishnan,
and S. K. Weeratunga. The NAS Parallel Benchmaii International Journal of Super-
computer Applications, 5(3):63—-73, Fall 1991.

5. W. J. Blume. Symbolic analysis techniques for effectutomatic parallelization. Technical
Report UIUCDCS-R-95-1913, 1995.

6. W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, Biesbrouck, G. Pokam,
B. Calder, and O. Colavin. Unbounded page-based transattioemory. InArchitectural
Support for Programming Languages and Operating Systems, pages 347—-358, 2006.

7. J.Chung, C. C. Minh, A. McDonald, T. Skare, H. Chafi, B. Dri&teom, C. Kozyrakis, and
K. Olukotun. Tradeoffs in transactional memory virtuatina. In Architectural Support for
Programming Languages and Operating Systems, 2006.

8. M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-W.d,i&. Bugnion, and M. Lam.
Maximizing multiprocessor performance with the SUIF colapiComputer, 29(12):84—-89,
1996.

9. L. Hammond, B. D. Carlstrom, V. Wong, M. Chen, C. Kozyrakisd K. Olukotun. Transac-
tional coherence and consistency: Simplifying paralletinare and softward EEE Micro,
24(6):92-103, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

L. Hammond, M. Willey, and K. Olukotun. Data speculatsupport for a chip multiproces-
sor. INASPLOSVIII: Proceedings of the eighth international conference on Architectural
support for programming languages and operating systems, pages 58—69, New York, NY,
USA, 1998. ACM Press.

T. Harris, A. Cristal, O. S. Unsal, E. Ayguad, F. GagliaBl Smith, and M. Valero. Trans-
actional memory: An overviewEEE Micro, 27(3):8-29, 2007.

P. Havlak and K. Kennedy. An implementation of interpiharal bounded regular section
analysis.|IEEE Transactions on Parallel and Distributed Systems, 2(3):350-360, July 1991.
A. Kejariwal, X. Tian, M. Girkar, W. Li, S. Kozhukhov, U. dherjee, A. Nicolau, A. V.
Veidenbaum, and C. D. Polychronopoulos. Tight analysisefgerformance potential of
thread speculation using spec cpu 2006.ACM S GPLAN Symposium on Principles and
Practice of Parallel Programming, pages 215-225, 2007.

A. Kejariwal, X. Tian, W. Li, M. Girkar, S. Kozhukhov, H.a@80, U. Banerjee, A. Nicolau,
A. V. Veidenbaum, and C. D. Polychronopoulos. On the perforoe potential of different
types of speculative thread-level parallelism: The dl mersf this paper includes corrections
that were not made available in the printed proceedings!ntiernational Conference on
Supercomputing, page 24, 2006.

V. Krishnan and J. Torrellas. A chip-multiprocessorhétexture with speculative multi-
threading.|EEE Trans. Comput., 48(9):866—880, 1999.

J. Marathe. Metric: Tracking memory bottlenecks viaabjnrewriting. Master’s thesis,
North Carolina State University, July 2003.

J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. AKde, and A. Yoo. METRIC:
Tracking down inefficiencies in the memory hierarchy viadsinrewriting. Ininternational
Symposium on Code Generation and Optimization, pages 289-300, Mar. 2003.

J. Marathe, F. Mueller, T. Mohan, S. A. McKee, B. R. de 8siii and A. Yoo. Metric: Mem-
ory tracing via dynamic binary rewriting to identify cacheefficiencies ACM Transactions
on Programming Languages and Systems, 29(2), Apr. 2007.

M. Medidi and N. Deo. Parallel dictionaries using aveseJ. Parallel Distrib. Compuit.,
49(1):146-155, 1998.

K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood. Logtlog-based transactional
memory. hpca, 0:254-265, 2006.

R. Ramaseshan. Trace-based dependence analysisdolasipe loop optimizations. Mas-
ter's thesis, North Carolina State University, June 2007.

L. Rauchwerger and D. A. Padua. The LRPD test: Specalatin-time parallelization of
loops with privatization and reduction parallelizatiolEEE Transactions on Parallel and
Distributed Systems, 10(2):160-180, 1999.

L. Ricci. Automatic Loop Parallelization: An Abstracttérpretation Approach. IRAR-
ELEC ' 02: Proceedings of the International Conference on Parallel Computing in Electrical
Engineering, page 112, Washington, DC, USA, 2002. IEEE Computer Saciety

P. Rundberg and P. Stenstrom. An all-software threaelldata dependence speculation
system for multiprocessorgournal of Instruction-Level Parallelism, 3, Oct. 2001.

S. Rus, L. Rauchwerger, and J. Hoeflinger. Hybrid anslystatic & dynamic memory
reference analysis. IKCS’02: Proceedings of the 16th international conference on Super-
computing, pages 274-284, New York, NY, USA, 2002. ACM Press.

J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. Alabke approach to thread-level
speculation. IHSCA, pages 1-24, 2000.

P. Tuand D. A. Padua. Automatic array privatizationCamnpiler Optimizationsfor Scalable
Parallel Systems Languages, pages 247-284, 2001.

C. Wu, R. Lian, J. Zhang, R. Ju, S. Chan, L. Liu, X. Feng, andhang. An overview of
the open research compiler. llanguages and Compilers for High Performance Computing,
pages 17-31, 2004.

