
Toward Thread-Level Speculation for Coarse-Grained
Parallelism with Regular Access Patterns ⋆

Ravi Ramaseshan and Frank Mueller

Dept. of Computer Science, Center for Efficient, Secure and Reliable Computing,
North Carolina State University, Raleigh, NC 27695-7534, mueller@cs.ncsu.edu

Abstract. Recent work on transactional memory (TM) bears promise to exploit
multicore capabilities. TM extensions for thread-level speculative parallelism
(TLS) have predominantly focused on integer benchmarks with short critical sec-
tions and exploit limited on-chip buffering space to store shadow values needed
to potentially abort transactions. In contrast, scientificcodes generally provide
coarse-grained parallel regions with potentially shared memory accesses, which
do not fit into size-limited shadow buffers. Hence, such codes represent a mis-
match for TM-TLS.
This work contributes mechanisms to speculatively parallelize scientific codes
with dense, non-scalar data references exploiting compilation techniques and run-
time enhancements coupled with minor hardware enhancements to transparently
support TLS.
A method to efficiently detect access violations to shared memory in specula-
tively parallelized regions is developed, much alike TM, yet with data footprints
of arbitrarily large size. The mechanism for violation detection is based on run-
time software and optional hardware support to efficiently capture regular access
traces. Experimental evaluations assess the speculation overhead in presence and
absence of access violations considering an environment with and without hard-
ware support. The results show that this method is competitive to explicit paral-
lelization or auto-parallelization, yet can be applied even when data dependency
checks remain inconclusive at compilation time.

1 Introduction
Contemporary computer architecture design has shifted from pushing processor fre-
quencies to increasing coarse-grained parallelism, mostly packaged as chip multi-
processors (CMPs) or multi-cores. While CMPs are projectedto support 32 cores per
chip or more, programming models for concurrency (multi-threading) and their inter-
action with hardware are being revisited. To exploit the potential speedup on these sys-
tems, course-grained concurrency within a program is a prerequisite. In this context,
automatic and semi-automatic tools that help in identifying and exploiting concurrency
are of grave importance.

On the Limitations of Auto-Parallelization: For scientific programs, statically
provablei.e., automatic parallelization under the compiler’s direction have been suc-
cessful for regular, well-structured, loop-nest-dominated codes, typically written in

⋆ This work was supported in part by NSF grants CCR-0237570 (CAREER), CNS-0410203,
CCF-0429653 and a grant by the Humboldt Foundation.



Fortran. However, cases such as — aliasing of variables, input-dependent execution
patterns, complex control flow and use of third-party, binary-only libraries make it hard
for the compiler toprove that a loop nest can be safely parallelized. Researchers have at-
tempted to overcome these challenges using increasingly complex algorithms involving
interprocedural analysis [8], abstract interpretation [23] and advanced symbolic anal-
ysis [5]. However, most of these attempts are very computationally expensive and can
only handle benchmarks written in Fortran.

Thread-Level Speculation (TLS): TLS attempts to address scenarios where the
compiler cannot statically prove the safety of parallelization. By speculatively paral-
lelizing a loop, typically by executing fixed-sized chunks of the inner-most loop in
parallel, performance can potentially be dramatically improved. However, if specula-
tion fails, i.e., data dependencies are actually violated by this chunking approach, the
effect for execution has to be reverted to the state prior to speculation. For this reason,
buffers are employed by TLS schemes to speculatively overwrite memory and also to
allow for detection of dependence violation between speculatively executing threads.
Most hardware TLS proposals support this by modifying the cache protocol. Exam-
ples include STAMPEDE TLS from CMU [26], Hydra TLS from Stanford [10] and
the TLS machine from UIUC [15]. For each cache line, additional space is reserved to
save the memory overwritten speculatively. Extra states inthe cache protocol indicate
if the cache line is speculative. Invalidations to speculative cache lines invoked by a
less-speculative thread indicates violation of atrue dependence (i.e., a read-after-write
dependence), causing the more-speculative thread to be squashed and restarted. TCC
(Transaction Coherence and Consistency / Stanford [9]) instead proposes to buffer the
entire speculative state inside the processor. At the end ofspeculative execution, specu-
lative changes are broadcast to all processors to check for adependence violation.

Software speculative parallelization proposes to maintain speculative state entirely
in software. The LRPD test from Rauchwergeret al. [22] and Rundberget al. [24]
maintainshadow memory for all potential arrays that can participate in speculation.
Additional state at the level of individual data elements (e.g., a single array position)
supports dynamic memory renaming, speculative privatization and reduction. As with
past hardware TLS proposals, these schemes still maintain speculative information at a
fine-grained level. They are much slower than hardware TLS and require large amounts
of memory to serve as shadow memory. Moreover, they depend onthecompiler to save
and restore potentially overwritten memory state and to allocate and manage the shadow
memory.

Transactional Memory (TM) Design: In response to the increasing on-chip par-
allelism, academics and chip designers have been exploringthe benefits of TM as an
alternative to protecting data with locks (or semaphores).Transactions are shown to be
well-suited for small critical sections when concurrent accesses to the same shared data
are the exception, which is the case for integer and client/server workloads. Past work
on parallelization for TM has focused on bounded transactions in terms of data size
with extensions to unbounded protocols [11]. The former arecommon in hardware TM
while the latter dominate in pure software solutions or hybrids. In high-performance
computing (HPC), software transactional systems are not anoption due to their cost for
maintaining shadow space and, optionally, versioning in memory. A Hybrid approach



provides a fast solution while transactional state remainson chip (e.g., in transactional
caches) but becomes slow when spilling into main memory. Extensions of TM for TLS
have been proposed in Stanford’s TCC, which provides a transparent method to specu-
lative parallelize loop nests, as discussed before.

Critique of Past Work: The key weakness with most past approaches (one ex-
ception being TCC) is the reliance on fine-grained cache-line level speculation state
management. As thesize of the speculative region grows, the number of speculatively
written cache lines may increase beyond the capacity of the cache. Evicting a cache line
in a speculative state causes the speculation to be aborted.In case of TCC, the limiting
factor is the size of the in-processor write buffer that stores the speculation state; the
speculation is aborted if this write buffer overflows.

Due to these design limitations, the size of the speculationregion is necessarily
small. There are several downsides to this. First, the overhead of speculation manage-
ment instructions (e.g., spawning a speculative thread, waiting to commit) can be sig-
nificant. Past studies report overhead ranging from 3.7% to 30.6% [26]. Moreover, due
to fine-grained speculation, there is contention between processors for the same cache
lines, resulting in cache misses. Past work reports that anywhere from 1.67% to 65% of
the cache misses in speculative execution accessed data that was in the other processor’s
cache [26]. Both these factors have a detrimental effect on the net speedup obtainable
with speculation.

More critically, the limitation to small regions typicallyforces speculation to be only
applied to the innermost loop, lest the speculative data overflow the cache and cause an
abort. Kejariwalet al. [13,14] report only 1% gain of TLS over explicitly threaded codes
or hardware enhancements for Spec 2006 for inner-most loops, which are extremely
constrained assumptions. In practice, the working sets of scientific programs can be
much larger than the size of the cache. This restriction to innermost loops may disallow
speculative parallelization in cases where the inner loop cannot be parallelized. And the
cost of thread creation and speculation can be much lower than in their study if assisted
by hardware.

Consider a doubly nested loop with a dependence given by the direction vector
(=,<). In this case, the outer loop can be parallelized, but the inner loop must execute
sequentially. In fact, even a dependence of (<, <) can be speculatively parallelized
by our approach if actual access traces reveal that a potentially carried dependence of
the outer loop, as determined statically by the compiler, does not occur dynamically,
effectively reducing it to (=,<).

Contributions: In contrast to prior work, we propose to explore the potential of
speculative parallelization beyond inner-most loop combined with low-cost dependence
violation detection and memory shadowing. This is not possible with the limited spec-
ulation regions of current TLS proposals.

Our focus is on scientific codes, which are a poor match for TM-TLS systems as
such systems provide large, parallelizable regions with many non-scalar accesses that
are potentially shared. This approach exploits the fact that scientific programs tend to
be dominated by regular and predictable access patterns. Instead of maintaining fine-
grained speculation information per cache line, we developcompressed representations
of memory access patterns that are suitable for dependence checking without decom-



pression. Our idea improves over past TLS work by allowing potentially orders-of-
magnitude larger speculation regions than possible with a cache-line centric approach.

To this extent, we have developed a pure software implementation for coarse-
grained speculative parallelization leveraging past workon compressing regular access
patterns. We shall leverage this work to implement trace compression in software and
to evaluate the benefits and limitations in an experimental environment. These exper-
iments distinguish the cost of (a) memory shadowing, (b) online trace generation and
compression, (c) dependence violation checking and (d) actual execution for the par-
allelized loops. These results allow us to assess the benefits for a hypothetical hybrid
hardware-software thread-level speculation scheme. Through simple and low-cost hard-
ware extensions, regular access patterns can be recognizedand compressed in hardware.
A set of dependence tests can subsequently be executed either in hardware or in software
depending on their respective complexity. Overall, our method can be more aggressive
in parallelization than existing TLS techniques, yet is shown to be competitive in over-
head to explicit parallelization or auto-parallelization. It can be applied even when data
dependency checks remain inconclusive at compilation timeor allow only TLS at the
inner-most loop nest.

2 Design and Implementation

In a nutshell, our TLS design can be described as follows. First, the program is run
with a small profile data set. Instrumentation (in hardware or software) observes if
loop-carried dependencies exist during the execution of the target loop nest. If no such
dependencies are seen, the compiler inserts code tospeculatively parallelize the loop
nest on a multiprocessor machine, and the program is run withthe full data set. For
the speculatively parallelized loop nest, each processor executes its assigned chunks of
iterations in parallel. Hardware or software mechanisms ensure that if the speculation
fails, the state of the machine (registers and memory) can berestored to a safe state
and re-executed serially. If speculation failure is infrequent, the program may achieve a
significant speedup in execution with this scheme.

Figure 1 shows the details of our proposed speculative parallelization scheme con-
sisting of an analysis step that identifies potential speculative parallelization candidates
and the actual execution step.

In the analysis step, all loops of an application are inspected by the compiler’s
auto-parallelization framework, a modified version of ORC [1, 2, 28]. Loops that do
not contain definite loop-carried dependencies are marked as potential candidates for
speculative parallelization. The compiler activates instrumentation for tracing memory
accesses and the loop iterations of such loops. This programis run with a small data
set. For each speculation candidate loop-nest, the corresponding dependence graph is
rebuilt using the trace information.

Subsequently, all loops without a loop-carried dependencein this trace-based de-
pendence graph are marked for speculative parallelization. The program is now run
with the actual data set. The program executes non-speculatively till it encounters the
beginning of a speculative region. Within this region, one or more speculative loops may
execute in sequence. Each of these loops is parallelized, enhanced by trace compression
capabilities to generate power regular section descriptors (PRSDs) and, on exit from the



®ÅÜóÅ
!8Of
}�«Â�OÙ

ð��
Ló!«c}O�OffÅf8zO!8«


L
Of�¨8¨

¿««Ö¨
í8!��
}«!Å
!8Of
2ÅÖÅ
IÅ
`Å¨

ð��
w
¨!�óÙÅ
!

¿2�®¥
}�«Â�OÙ

®ÙOff
2O!O�®Å!

�}¼L``Å¨¨�
¥�O`Å

¥�O`ÅcÓO¨ÅI�
2ÅÖÅ
IÅ
`Å�

ê�OÖ�

Å
!Å��¨ÖÅ`ófO!8�Å��ÅÂ8«
/F]
t«��/¥®�¢]�¥®¹¥®�ÐLç]�¥®þþF��
,
ÖO�OffÅf t«�/w�¢]w�¹�ÐLç�w]wþþF��
t«��/C�¢]�C�¹�ÐLç�C]�CþþF��
�Z�f««Öc`O��8ÅI�IÅÖÅ
IÅ
`Å�Z�

qq
IÅÖÅ
IÅ
`Å�`�Å`�/F]

q
Å�8!�¨ÖÅ`ófO!8�Å��ÅÂ8«
/F]

}�«`Å¨¨«��¶
}�«`Å¨¨«��Í

}�«`Å¨¨«��¢
«Ö!8«
Of
!�O`Å�ä�í

}�®2¨
2ÅÖÅ
IÅ
`Å
��Å`�8
Â

2ÅÖÅ
IÅ
`Å
û8«fO!8«
�

¶ð

)@®

�Å¨!«�Å�ÐÅÙ«���®!O!Å
�Å¨!O�!�¨Å�8Off�

®ó``Å¨¨W

}�«t8fÅ��ó


L`!óOf��ó


Fig. 1. Hardware accelerated hybrid hardware software speculative parallelization

parallelized loop, by a dependence violation test. The constraint on the speculative re-
gion is that it must fully enclose any speculative loops, yetit may begin at a higher loop
level than the speculative loops themselves. In Figure 1, this region encloses a coarser
timestep loop that contains the parallelized loop while thedependence in the loop body
could be carried by either of the inner two loops. The components of the framework are
further elaborated in the following.

Analysis Step

We have enhanced the ORC compiler to selectively instrumentloops with potential
dependencies [21]. The instrumented application is then executed on a uniprocessor
using a small input as a training run. Accesses to memory and loop entry/exit points
are subsequently traced exploiting an online compression scheme to generate PRSDs
as outlined below. This access trace is utilized to break dependencies in the compiler-
generated dependence graph that actually did not occur at runtime. The modified ORC
compiler then generates a speculative program from this relaxed dependence graph, as
outlined in Figure 1.

Software Tracing

Software tracing occurs during the execution of the speculatively parallelized program.
Accesses are traced on a per-thread basis to determine if data dependencies that ac-
tually occur during parallel execution are being violated.We represent the memory
access pattern seen by the hardware at runtime using Power Regular Section Descrip-
tors (PRSDs) [17,18]. PRSDs represent hierarchically nested memory accesses such as
those frequently generated by access points in loop nests. APRSD is described by the
following recursive production rules:

PRSD→<Base Address, PRSD Body>



PRSD Body→<Stride, Length, PRSD Body> | ǫ

Base Address is the first address described by the PRSD. Each PRSD describes
Length number of instances of a child PRSD (PRSD Body), each of which is strided
at a distance ofStride. The child PRSD may itself contain children PRSDs. In this
manner, PRSDs can efficiently describe regular accesses that occur in deeply nested
loops.

For example, consider the following code, assuming row-major layout and array
elements of 8 bytes and matrix dimensions of 2000 square.
for(i=0;i < 2000;i++) PRSD_A: <Base_A,<16000,2000,<8,1000>>>
for(j=0;j < 1000;j++) PRSD_B: <Base_B,<8,2000,<16000,1000>>>
A[i][j]=B[j][i]+C[i][j]; PRSD_C: <Base_C,<16000,2000,<8,1000>>>

The innerj-loop initially accesses 1000 consecutive elements of matrix A of row 0
represented concisely as RSD〈BaseA[i], 〈8.1000〉〉 for i = 0, i.e., the first iteration of
thei-loop. Fori = 1, 1000 consecutive elements of A are accessed again, yet, this time
in row 1. Effectively, elements 1000-1999 of row 0 were skipped (not accessed). Hence,
the offset between A[0][0] and A[1][0] is calculated as 16.000 bytes, and PRSDA is
created to denote both the 1000 accesses of thej-loop (as seen in the RSD above)
within the 2000 iterations of thei-loop and a 16.000 bytes offset for the array accesses
between consecutive iterations ofi. Thus, when the code shown on the left is executed,
the 3 PRSDs shown on the right are created on-the-fly as the access stream is generated.
In this case, 6 million accesses are represented as a 3-levelPRSD requiring less than 100
bytes of memory. More significantly, the compressed representations (PRSDs), gener-
ated within each thread, are still in a format that can be analyzed to determine if data
dependencies were violated.

Optional Hardware Tracing

Software tracing imposes a considerable overhead on application performance, as quan-
tified in the experimental results. Instead, traces may be generated in hardware building
on existing architectural features. PRSDs are generated for each access point incremen-
tally using a constant amount of working memory and a boundednumber of operations
per memory access. We propose a constant-size trace buffer associated with the per-
formance monitoring unit (PMU) and the prefetch unit. PRSD generation in hardware
then amounts to (1) recognizing strided accesses and (2) employing a logic for mon-
itoring/logging memory references. Hardware prefetchersalready realize (1) for short
stride lengths. Performance monitoring units already implement (2) as trap-based fa-
cilities to capture latency-constrained memory loads within the pipeline (Itanium-2),
through precise event-based sampling (Pentium) and instruction-based sampling (AMD
Barcelona). We supplement these features by a fixed-size buffer to store PRSDs of ap-
proximately 30 entries (e.g., for 6 non-scalar references in 5 loop nests) and the logic
to detect/extend PRSDs as striding references are encountered. Upon buffer overflow,
outer-most PRSDs could be spilled to memory, as is the case with current PEBS func-
tionality. When leaving parallelized regions, the entire buffer is explicitly spilled. The
PRSD algorithm is described in detail by Maratheet al. [16, 18]. Overall, additional
circuit requirements should be equivalent to a small subsetof existing chip area for
performance monitoring, but the details of area and power implications are beyond the
scope of this paper. The objective of this paper is to assess the remaining performance
impact of our TLS scheme when tracing is supported in hardware.



Dependence Testing

When the program starts executing the speculatively parallelized loop, the loop itera-
tions are partitioned by multiple threads running on different processors. Access trac-
ing (in software or hardware) results in the on-the-fly construction of PRSDs, which
are flushed when necessary to a memory buffer private to each thread. At the end of
speculative execution, the PRSD traces from each thread areinspected to determine if
data dependencies were violated by the speculative parallelization.

The single-bounds interval test determines if regions of accesses from different
threads are disjoint. To this extent, PRSD generation is augmented by tracking the up-
per and lower watermark for a given access point, expressingthem as a single interval
for the entire PRSD. By arranging intervals of watermarks inan AVL tree, the region
overlap test has a complexity ofO(n log n) wheren is the total number of intervals over
all threads,i.e., n insert operations on the AVL tree are required, each of whichmay
take up tolog n comparisons. If the tree is traversed to determine the location of a new
interval i and an existing intervalj originating from a different thread is encountered
that overlaps in range, a potential data dependence is found. (Notice that intervals need
to be tagged with the last thread ID that performed an insert on the respective range to
determine the origin of intervals in terms of threads.)

This check requires implementation in software due to its algorithmic complexity.
The overhead of the dependence check depends on the number ofthreads,t, and the
number of PRSDs generated per thread,p. The latter can be affected by limiting the
scope of speculation. The former can be influenced by parallelizing the dependence
check in which case the serial complexity ofO(n log n) for n = p × t (wherep is
averaged over all threads) can be reduced toO(log p+ log t) [19], but this optimization
is beyond the scope of this paper. Our framework supports thespecification of a set of
dependence tests, but details are omitted here because additional tests have not been
implemented yet.

If no potential dependence is found and speculation succeeds, then the results of
computation are immediately available,i.e., unlike some TM-TLS proposals, there is
no “commit” overhead. If speculation fails, then the systemis restored to a safe state
before entering the speculative region as explained next.

Entering Speculation Regions

In the process of speculative execution, memory locations are being modified. The con-
tent of these locations needs to be saved since modified values require recovery upon
failed speculation. Past approaches leveraged cache shadowing techniques or main-
tained fine-grained copies of old values in memory. Shadow caches limit the size
of speculation while fine-grained shadow memory, sometimesalso employed when
shadow caches overflow, may impose significant overhead due to on-demand copying
at data-type granularity upon each and every write operation.

Our scheme exploits virtual memory with the copy-on-write mechanism inherent
to process creation. This has the advantage that old values are preserved through bulk
transfers into a shadow memory region, which is more efficient than on-demand fine-
granular copies and does not impose limitations on the scopeof speculation as shadow
caches do. When entering the scope of a speculative region (or even at a coarser level),
a child process is forked and immediately suspended. As a side effect, the operating



system (OS) marks the pages of parent and child as read only. When a page is written to
(in the parent), a page protection fault is caught by the OS. Subsequently, a copy of the
page is created in physical memory and mapped onto the same virtual page as before. At
this point, write access to this virtual page is enabled for parent and child so that, upon
return from the OS, the write is re-issued in the parent. Uponsuccessful speculation,
results are already available in the parent while the child process is simply killed. If a
potential violation is detected, the parent is aborted (killed) while the child is activated
and resumes with sequential execution from the point of entry to the speculative region.
Since the child is privy to the memory state prior to speculation, correct results are
guaranteed.

3 Experimental Results

Our experiments were conducted on a dual processor 900 MHz ItaniumTM2 machine
running Linux. We configured our benchmarks to be compiled for two threads. We used
ORC version 2.1 for our framework with customized extensions (such as the OpenMP
runtime system and some enhancements within the parallelization framework at the
HIR level to be able to compile and parallelize the benchmarks subject to evaluation).

For our evaluation, we selected five benchmarks from a modified version of the NAS
Parallel Benchmark [4] suite, a widely used suite to evaluate the performance of parallel
computers. Specifically, we use the NAS (OpenMP C) parallel benchmark suite (ver-
sion 2.3) by the Omni OpenMP Compiler group for our experiments. The source code
of each benchmark was modified by removing all OpenMP directives from them. In
addition, we also replaced the complex number implementation used in theFT bench-
mark to use that provided by the C Standard Library. This modification was required
to circumvent a deficiency in our branch of ORC that performs reduction analysis on
structure elements incorrectly. The benchmarks were compiled at the highest level of
optimization (-O3). In our research, we are focusing on do-all rather than do-across
auto-parallelization. Hence, we used the do-all-apo flag and turned do-across auto-
parallelization off. We also switched inter-procedural analysis and binary dead-code
elimination off to bypass further bugs in our branch of ORC.

Potential of Speculative Parallelization

To analyze the potential of our speculative parallelization framework, the benchmarks
were traced and analyzed offline using the class S data set andthe speculation experi-
ments were run using the class A data set. In order to estimatethe potential of specula-
tive parallelization, we compare the execution times of theconservatively parallelized
program against that of the speculatively parallelized program without the speculative
runtime overheads of tracing, PRSD compression and dependence violation checking.

The objective of the first experiment is to study the capabilities of our speculative
parallelization framework. The goal of speculative parallelization is to simply turn it
on regardless of potential violations due to data dependencies. Hence, we are assessing
here if speculative parallelization can achieve at least asgood of a result as compile-
time parallelization for codes that are known to be statically analyzable in terms of data
dependencies.

Table 1 summarizes the results and shows that our speculative framework is com-
petitive with compile-time parallelization. Not only thatbut theLU benchmark shows



potential beyond conventional compile-time parallelization as speculation uncovers ad-
ditional potential for savings. Further analysis of the benchmark codes further indicates
additional potential for speedup by the speculative framework if a coarser level of par-
allelization (with more work per thread) was chosen at an outer-more loop level.

Table 1. Limit of Speculative Parallelization
NPB Wall-clock time (seconds) Speedup

Static ParallelSpeculative Parallel
BT 1007.37 1009.00 0%
EP 119.50 120.46 0%
FT 50.35 50.30 0%
LU 406.42 371.60 9%
SP 357.20 357.44 0%

Speculative Execution Overheads

The objective of the second experiment is to distinguish additional costs due to our
software speculative framework and discuss their impact under the assumption that par-
tial hardware support exists (particularly for PRSD trace generation). We then have to
distinguish the cost of (a) memory shadowing, (b) online trace generation and compres-
sion, (c) dependence violation checking and (d) actual execution for the parallelized
loops. Hence, we perform the following experiments with thespeculatively parallelized
program: (A) Without tracing, PRSD generation, forking anddependence violation
checking; (B) with tracing overheads but without PRSD generation, forking and de-
pendence violation overheads; (C) with tracing and PRSD generation overheads but
without forking and dependence violation checking; (D) with tracing, PRSD genera-
tion and forking overheads but without the dependence violation checking overhead;
(E) with all the overheads but no mis-speculation (oracle dependence checking) and (F)
with all the overheads including potential mis-speculation.

These experiments were run with the speculative program also being compiled for
class ’S’. With the above five experiments, we calculated thecosts of each individual
overhead. Table 2 shows the wallclock measurements of each experiment.

Table 2. Speculation Overhead Experiments
Experiment Wall-clock time (seconds)

BT EP FT LU SP
SpecNoOverhead 1.13 7.53 1.28 0.26 0.37

SpecInstr 5.55 13.735.62 3.02 1.54
SpecInstrPrsd 84.29 14.796.48309.59210.40

SpecInstrPrsdFork 98.87 14.786.51310.58229.89
SpecInstrPrsdForkOracleCheck105.6714.806.52520.48248.66

SpecInstrPrsdForkCheck 111.1114.786.52516.13308.49

Figure 2 shows the relative costs of each overhead during thespeculative run nor-
malized against the execution time considering all overheads. The overheads of the
speculative run indicate a substantial contribution by tracing and PRSD compression
followed by dependence violation checks (for selected benchmarks) as they dominate
the overheads for most benchmarks. Recall the discussion onpromoting tracing and
PRSD generation to hardware monitoring. By shifting the burden of this costly task,
data (trace) generation suitable for dependence checking becomes feasible. It still re-
mains the responsibility of our software framework to perform dependence violation



Fig. 2. Relative Costs of Speculation Overheads

checking. This may result in program slowdowns (compared tothe version without de-
pendence violation checks) for two reasons. The first is because of the the different
levels of dependence checks, and the second is due to the invested time in executions
resulting in incorrect speculation. Another source of overhead is due to retaining pro-
gram state prior to entering speculation, which is due to forking. The current cost of
forking depends much on the write set of pages of a given benchmark. Furthermore,
there is still room for improvement since forking currentlytakes place at the entry to
a speculative region. By coarsening the state capture to a lower nesting level (outer
loops), this overhead can be further reduced, which is currently being investigated.

4 Related Work

Compressed access patterns have been proposed forcompile-time analysis in past work,
such as for array privatization and reduction detection [12,27]. Unfortunately, complex
control flow and input-dependent symbolic variables may make it impossible to reason
about such compressed representations at compile time. In response, Ruset al. pro-
pose aHybrid Analysis (HA) [25]. With HA, the compressed accesses (descriptors)
are formed at compile time using sophisticated symbolic analysis. The descriptors may
include symbolic terms whose values are unknown at compile time. The actualuse
of these descriptors for deciding if an optimization (e.g., parallelization) is safe is de-
ferred till runtime when the values of symbolic variables are known and can be plugged
in. The need for sophisticated symbolic analysis (to form and aggregate the descrip-
tors) limits the applicability of this approach to a subset of Fortran codes. In contrast,
we do not need symbolic code analysis as the access descriptors are built on-the-fly
based on observed run time addresses. We exploit Power Regular Section Descriptors
(PRSDs) [17,18], which provide the means to represent regular access patterns in con-
stant space regardless of the number of loop nests and iterations using an effective
online detection and compression technique. Hence, our scheme is more general and
applicable to a larger set of programs than static schemes.

Past work on parallelization for TM has focused on bounded transactions in terms
of data size with extensions to unbounded protocols [3,6,11,20]. The former are com-
mon in hardware TM while the latter dominate in pure softwaresolutions or hybrids.



XTM utilizes memory protection but lacks trace compressioncapabilities to speed up
violation detection [7].

5 Conclusion

We have enhanced the ORC compiler to selectively instrumentloops with potential de-
pendencies. The access trace obtained by executing the instrumented program is utilized
to calculate a relaxed dependence graph that our modified ORCcompiler uses to gener-
ate a speculative program. Further, we have developed a puresoftware implementation
for coarse-grained speculative parallelization that leverages past work on compressing
regular access patterns using PRSDs.

While the cost of PRSD generation dominated the overheads incurred by our frame-
work, regular access patterns can be recognized and compressed through simple and
low-cost extensions in hardware, which would eliminate them as overhead. By coars-
ening the state capture to a lower nesting level (outer loops), the overhead due to de-
pendence violation checking can be further reduced. We alsobelieve that by selecting
a coarser level of parallelization (with more work per thread) at an outer-more loop
level, we would not only be able to mask this overhead but to enable speedups with our
framework. We are currently investigating both these techniques.

Overall, our method can be more aggressive in parallelization than existing TLS
techniques, yet is shown to be competitive in overhead to explicit parallelization or
auto-parallelization. It can be applied even when data dependency checks remain in-
conclusive at compilation time or allow only TLS at the inner-most loop nest.

References

1. Open research compiler for itanium processor family. http://ipf-orc.sourceforge.net/.
2. Open64 compiler. http://sourceforge.net/projects/open64.
3. C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Unbounded trans-

actional memory. InInternational Symposium on High Performance Computer Architecture,
pages 316–327, 2005.

4. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.Carter, D. Dagum, R. A. Fa-
toohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga. The NAS Parallel Benchmarks.The International Journal of Super-
computer Applications, 5(3):63–73, Fall 1991.

5. W. J. Blume. Symbolic analysis techniques for effective automatic parallelization. Technical
Report UIUCDCS-R-95-1913, 1995.

6. W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M. V. Biesbrouck, G. Pokam,
B. Calder, and O. Colavin. Unbounded page-based transactional memory. InArchitectural
Support for Programming Languages and Operating Systems, pages 347–358, 2006.

7. J. Chung, C. C. Minh, A. McDonald, T. Skare, H. Chafi, B. D. Carlstrom, C. Kozyrakis, and
K. Olukotun. Tradeoffs in transactional memory virtualization. In Architectural Support for
Programming Languages and Operating Systems, 2006.

8. M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-W. Liao, E. Bugnion, and M. Lam.
Maximizing multiprocessor performance with the SUIF compiler. Computer, 29(12):84–89,
1996.

9. L. Hammond, B. D. Carlstrom, V. Wong, M. Chen, C. Kozyrakis, and K. Olukotun. Transac-
tional coherence and consistency: Simplifying parallel hardware and software.IEEE Micro,
24(6):92–103, 2004.



10. L. Hammond, M. Willey, and K. Olukotun. Data speculationsupport for a chip multiproces-
sor. InASPLOS-VIII: Proceedings of the eighth international conference on Architectural
support for programming languages and operating systems, pages 58–69, New York, NY,
USA, 1998. ACM Press.

11. T. Harris, A. Cristal, O. S. Unsal, E. Ayguad, F. Gagliardi, B. Smith, and M. Valero. Trans-
actional memory: An overview.IEEE Micro, 27(3):8–29, 2007.

12. P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section
analysis.IEEE Transactions on Parallel and Distributed Systems, 2(3):350–360, July 1991.

13. A. Kejariwal, X. Tian, M. Girkar, W. Li, S. Kozhukhov, U. Banerjee, A. Nicolau, A. V.
Veidenbaum, and C. D. Polychronopoulos. Tight analysis of the performance potential of
thread speculation using spec cpu 2006. InACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 215–225, 2007.

14. A. Kejariwal, X. Tian, W. Li, M. Girkar, S. Kozhukhov, H. Saito, U. Banerjee, A. Nicolau,
A. V. Veidenbaum, and C. D. Polychronopoulos. On the performance potential of different
types of speculative thread-level parallelism: The dl version of this paper includes corrections
that were not made available in the printed proceedings. InInternational Conference on
Supercomputing, page 24, 2006.

15. V. Krishnan and J. Torrellas. A chip-multiprocessor architecture with speculative multi-
threading.IEEE Trans. Comput., 48(9):866–880, 1999.

16. J. Marathe. Metric: Tracking memory bottlenecks via binary rewriting. Master’s thesis,
North Carolina State University, July 2003.

17. J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. McKee, and A. Yoo. METRIC:
Tracking down inefficiencies in the memory hierarchy via binary rewriting. InInternational
Symposium on Code Generation and Optimization, pages 289–300, Mar. 2003.

18. J. Marathe, F. Mueller, T. Mohan, S. A. McKee, B. R. de Supinski, and A. Yoo. Metric: Mem-
ory tracing via dynamic binary rewriting to identify cache inefficiencies.ACM Transactions
on Programming Languages and Systems, 29(2), Apr. 2007.

19. M. Medidi and N. Deo. Parallel dictionaries using avl trees. J. Parallel Distrib. Comput.,
49(1):146–155, 1998.

20. K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood. Logtm: log-based transactional
memory.hpca, 0:254–265, 2006.

21. R. Ramaseshan. Trace-based dependence analysis for speculative loop optimizations. Mas-
ter’s thesis, North Carolina State University, June 2007.

22. L. Rauchwerger and D. A. Padua. The LRPD test: Speculative run-time parallelization of
loops with privatization and reduction parallelization.IEEE Transactions on Parallel and
Distributed Systems, 10(2):160–180, 1999.

23. L. Ricci. Automatic Loop Parallelization: An Abstract Interpretation Approach. InPAR-
ELEC ’02: Proceedings of the International Conference on Parallel Computing in Electrical
Engineering, page 112, Washington, DC, USA, 2002. IEEE Computer Society.

24. P. Rundberg and P. Stenström. An all-software thread-level data dependence speculation
system for multiprocessors.Journal of Instruction-Level Parallelism, 3, Oct. 2001.

25. S. Rus, L. Rauchwerger, and J. Hoeflinger. Hybrid analysis: static & dynamic memory
reference analysis. InICS ’02: Proceedings of the 16th international conference on Super-
computing, pages 274–284, New York, NY, USA, 2002. ACM Press.

26. J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to thread-level
speculation. InISCA, pages 1–24, 2000.

27. P. Tu and D. A. Padua. Automatic array privatization. InCompiler Optimizations for Scalable
Parallel Systems Languages, pages 247–284, 2001.

28. C. Wu, R. Lian, J. Zhang, R. Ju, S. Chan, L. Liu, X. Feng, andZ. Zhang. An overview of
the open research compiler. InLanguages and Compilers for High Performance Computing,
pages 17–31, 2004.


