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Abstract

Power consumption has become a major concern, both
for processor design with high clock rates and embedded
systems that rely on batteries to operate. Recent support for
dynamic frequency and voltage scaling (DVS) in contempo-
rary architectures allows software to affect power consump-
tion by varying both execution frequency and supply volt-
age on the fly. However, processors generally enter a sleep
state while transitioning between frequencies/voltages. In
the following, we describe an experimental framework for
studying DVS for a processor that continues to execute dur-
ing frequency/voltage transitions. For this purpose, we de-
veloped an infrastructure for investigating hard real-time
DVS schemes on the IBM PowerPC 405LP. Task schedul-
ing was performed using four earliest-deadline-first (EDF)
DVS schemes, including our feedback real-time DVS algo-
rithm that, prior to this work, had only been evaluated in
simulation. Voltage and current of the processor core were
depicted through an oscilloscope, and the energy consump-
tion was assessed through a data acquisition board. Mea-
surements indicate a considerable potential for real-time
DVS scheduling algorithms to lower energy consumption up
to 54% over naive DVS schemes. The benefits of continued
execution during frequency/voltage switching provide up to
5% energy savings for frequent switches.

1. Introduction

Energy management has become a vital design con-
straint in embedded systems for a long time. The demand
for efficient energy management is increasing in hand-held
devices, where battery life is important. The battery life lim-
its the energy budget in these devices and imposes severe
restrictions on energy consumption. This means that energy
savings becomes a necessity rather than convenience. Dy-
namic Voltage Scaling (DVS) is a widely used energy man-
agement technique for extending battery life. DVS dynam-
ically scales processor core voltage up or down, depend-
ing on the computation demand of the system. Reducing

the supply voltage results in a lower maximum transistor
switching speed, and this also allows lowering the clock
frequency of the device. Assuming that voltage and fre-
quency are linearly related, scaling down both voltage and
frequency results in cubic reduction of power consumption
(PxVZxf).

DVS algorithms have been intensively studied for both
non real-time and real-time systems [15, 2, 11, 7, 8, 14, 18].
In the case of real-time systems, the DVS algorithm calcu-
lates a safe operation frequency that provides just enough
processor computation power to finish a given task before
its deadline. The goal is to save the maximum possible
amount of energy and yet maintain safe operation of the
hard real-time system where all tasks are guaranteed to meet
their deadlines.

In this work, we implemented a DVS infrastructure for a
real-time system using IBM’s PowerPC 405LP. The 405LP
processor provides the hardware support required for DVS
and allows software to scale voltage and frequency via user-
defined operation points ranging from a high end of 266
MHz at 1.8V to a low end of 33 MHz at 1V [13, 3, 10]. The
IBM PowerPC 405LP was especially attractive for DVS
since it has the ability to execute instructions even when
the frequency/voltage is being changed, much in contrast
to any other processors with DVS support that we know
of where the processor has to enter the sleep mode during
frequency/voltage transitions. We implemented a real-time
earliest deadline first (EDF) scheduling policy as part of a
user-level threads package under the supported Linux op-
erating system. Then, we extended the capabilities of the
infrastructure to support four hard real-time software DVS
techniques (static, cycle-conserving, look-ahead and feed-
back) that leverage the already available hardware DVS sup-
port in the PowerPC processor. We used an oscilloscope and
an analog data acquisition board to measure the voltage and
current supplied to the processor core. Custom changes to
the development board allow us to separately measure the
voltage and current of the processor, memory and 1/0 com-
ponents. From voltage and current, we calculate the power
consumption of the system during application runs for each
of the four DVS algorithms that we implemented.



2. Embedded Platform and DV'S Support

The PowerPC 495LP runs on a diskless MontaVista Em-
bedded Linux variant, which is based on the 2.4.21 stock
kernel but has been patched to support DVS on the PPC
405LP. The board has also been modified for 50% re-
duced capacitance, which allows DVS switches to oc-
cur more rapidly, i.e., switches are bounded by at most
a 200 microseconds duration from 1V to 1.8V during
which execution continues. Switches may occur in a syn-
chronous (blocking) manner, as traditionally supported by
DVS-capable processors. Alternatively, switches may be
asynchronous (non-blocking) such that execution may pro-
ceed during the switch. Figure 1 depicts the changes in
current (lower curve) and voltage (upper curve) of the pro-
cessor core during an asynchronous switch. This unique

Figure 1. Current and Voltage Transition Dur-
ing DVS

feature of asynchronous switching is realized by a sys-
tem call that, when switching to a higher voltage/frequency;,
first reprograms the voltage to ramp up towards the max-
imum as fast as possible (30 degree voltage ramp on the
upper curve). As a side effect, this ramp-up results in an in-
stant current surge (steep ramp of the lower curve). In
addition to initiating the ramp-up, the time to reach a volt-
age level at least as high as required by the new frequency
is estimated. A high-resolution timer is programmed to in-
terrupt when this duration expires, prior to which execution
within the application can still continue after return-
ing from the system call (executing instructions during
the 30 degree ramp-up). Once the timer interrupt trig-
gers its handler (at the end of the 30 degree ramp on the up-
per curve), the power management unit is reprogrammed to
settle at the target voltage level, and the new processor fre-
quency is activated before returning from the handler.
The voltage then settles (in case it overshot) in a con-
trolled manner to the new operating point. The current also
settles in a controlled manner depending on the actual pro-
cessing activity.

This unique DVS facility is supported by a dynamic
power management (DPM) facility, which is provided as an
enhancement to the Linux kernel [3]. DPM operating points
define stable frequency/voltage pairs (as well as related sys-
tem parameters), which we experimentally determined. Op-
erating states describe system states, such as idle, task ac-
tivity and sleep. Each operating state can be associated with
an operating point via a DPM policy that defines a set of op-
erating points, one for each operating state. In such a man-
ner, operating points can be selected depending on activi-
ties chosen by the kernel. To allow applications to also se-
lect operating points, applications can define a DPM task
state through a system call. Each of these task states can
then be associated with an operating point within a given
policy. Overall, the DPM enhancements allow both kernel-
level and user-level DVS in a flexible manner. However, the
implementation details are more subtle. Changing a policy
results in synchronous DVS switching where execution is
blocked inside the Linux kernel till a safe, new operating
point is established. In contrast, changing a task state re-
sults in asynchronous DVS switching with continuing exe-
cution between the system call and the following timer in-
terrupt.

Our aim is to assess this advanced technology for the
suitability and benefits in power consumption for real-time
systems using DVS scheduling algorithms. Unfortunately,
stock Linux does not support any real-time schedulers.
Hence our first step was to implement an EDF scheduler
on the 405LP under Linux. The DVS scheduling is inde-
pendent of task scheduling, i.e., the scheduler can be en-
visioned to be comprised of (1) EDF scheduling and (2)
DVS scheduling. These two components are completely in-
dependent. This means that, even though we plan to iden-
tify and implement a specific DVS algorithm, our sched-
uler will work with any existing DVS algorithm. We imple-
mented an EDF and DVS algorithm on the user level and
analyzed the power benefits. We chose a user-level solu-
tion over a kernel-based one due to the simplicity of design
and the fact that OS background activity is minimal on this
embedded board, which ensures the validity of our results.
To expose the processor to a real-time task load, we devel-
oped a framework composed of tasks with synthetic CPU
board activity whose execution time is predictable and con-
trollable. We then exposed a variety of task sets to the EDF-
DVS scheduler for different scheduling policies within this
framework.

3. A Light-Weight Thread Library

The first step in implementing a DVS system is providing
support for pre-emptive threads. Since we are dealing with
a hard real-time system, these threads should be scheduled
according to some real-time scheduling algorithm (EDF in



our case). This raises a number of interesting issues and de-
sign choaices, which we will discuss briefly below.

Light-weight processes can be implemented under Unix
as either kernel-space or user-space threads [16, 12, 1]. In
the case of kernel-space, scheduling and dispatching of the
threads (including context switching) is performed as part
of the kernel and is transparent to the application. On the
contrary, user-space threads are scheduled and dispatched
as part of an application library transparently to the ker-
nel. Each approach has its pros and cons. Kernel-space
threads require complex kernel modifications, which are
often error-prone. However, kernel modifications provide
more control over the course of execution (especially with
real-time considerations). User-space threads are simpler to
implement as a part of an application library but they pro-
vide less control over execution and resources since the ker-
nel is not aware of their existence. Another important issue
is portability. Although we are targeting a very specific sys-
tem (the PowerPC development board running a specific
version of Linux), it would be much easier to develop a
generic and portable threads library under any Unix sys-
tem, which provides better debugging tools, eventually re-
ducing development time. Hence, we opted for user-level
threads instead of kernel-level threads.

After deciding on implementing a user-level threads li-
brary, the next question is how to actually approach the
implementation. Again, we are concerned here about porta-
bility mainly to facilitate ease of implementation and de-
bugging. The literature reveals that the most portable
technique to implement user-space threads is via us-
ing the standard C functions set j np() and | ongj np()
[4]. Setj nmp()) stores the current machine context (pro-
gram counter, stack pointer, and registers) in a j np_buf
structure, and | ongj np() restores the context saved in
a j np_buf structure. Although these functions are avail-
able for any system supporting the standard ANSI C,
unfortunately, the details of the j np_buf structure im-
plementation is machine dependent. From a program-
mer’s point of, this should not be a problem provided that
the saved and restored contexts are of the same struc-
ture on a given machine. We have to treat the j np_buf
structure as an opaque structure.

Each thread must execute using its own private
stack to enable pre-emptive scheduling. The UNIX
sigal tstack() system call forces a signal handler
function to run on a specified alternative stack [6]. By gen-
erating a new stack for each spawned thread and using
a signal handler running on the alternative stack to cre-
ate the thread’s context using set j np(), we ensure that
every thread will have its private execution context, includ-
ing its private stack. This eventually allows us to safely
implement pre-emptive scheduling.

The threads library provides the following API:

e init Threads(voi d): Initializes the data struc-
tures used by the threads library. Must be called from
the application before using any other threads func-
tions.

e spawnThread (voi d(*func)(void),
unsi gned int WCET, unsigned int
peri od, unsigned int deadline,
unsi gned i nt phase): Creates a new thread
running the function provided as the first argu-
ment. The characteristic of the task (WCET, period,
deadline, and phase) are used by the real-time sched-
uler to release new instances of the task, take schedul-
ing decisions, and confirm all deadlines are met. The
spawnThr ead() function only creates a new thread
and saves its context (including the private stack), but
it does not start its execution. We use SI GUSR1 sig-
nal to run the function Cr eat eNewCont ext () as
its signal handler and set it to run using an alterna-
tive stack (with the si gal t st ack() call). At this
point, saving the machine context for this thread us-
ing setjnp() will also save this private newly
created stack info.

e threadYi el d() : Must be called by the task to indi-
cate to the scheduler that the current job instant of the
task has finished execution. The context of this task is
saved at this point, and this will be the starting context
of the next released instance of this job. This behav-
ior is intentional (and correct) for periodic tasks since
their repetitive behavior is modeled as infinite while
loops, where each loop iteration corresponds to one in-
stance of the task.

e Start(): Called from nmai n() after spawning all
threads. Time starts (t = 0) when the St art () func-
tion is called, and threads are activated, scheduled, and
dispatched according to the provided scheduling algo-
rithm.

4. Real-Time Scheduler Integration

The scheduler we implemented is the standard earliest-
deadline-first (EDF) scheduler. The EDF scheduling policy
is one in which task priorities are dynamically assigned such
that the task with the earliest deadline has the highest pri-
ority. The EDF scheduler is invoked on two occasions: (1)
when a task completes, and (2) a task is released. When a
task completes, the EDF scheduler activates the next active
task with the earliest deadline. If there are no active tasks,
then the processor transitions into an idle state. At the mo-
ment, the idle state is modeled as an idle task that is an in-
finite loop. If the scheduler is invoked due to a task release,
the scheduler decides if the released task has to run next or
if the previous (interrupted) task has to be resumed. When



the scheduler is invoked, it decides the next task to be ex-
ecuted and also sets a timer interrupt to be triggered at the
next release time of any task(s) in the task set. When the
timer interrupt is triggered, the released task(s) is/are acti-
vated and the scheduler then assigns priorities for the tasks.

Example

The following example is depicted in Figure 2 below. It
shows the interaction between the threads library and the
preemptive scheduling algorithm. The steps are indicated
by numbers on the Figure. We assume that there are two
threads in the system running the functions T1 and T2, re-
spectively. The rmai n() function is called and initializes
the threads library by calling i ni t Thr eads() .

1. The first thread is spawned by calling the function
spawnThr ead() and

e Space is allocated for a new alternative stack;

e the SI GUSRL signal handler (Cr eat eNew-
Cont ext () function) is configured to use the
alternative stack (using the si gal t st ack()
function). The old stack value is saved;

e the SI GUSRL signal is raised, which will:

2. Call the Cr eat eNewCont ext () function running
on the newly created stack (T1_st ack). The context
of the machine at this point is saved in the structure
T1_j np_buf by calling the set j np() function.

3. After returning from Cr eat eNewSt ack( ) , the sig-
nal handling stack is set back to the original stack.

4. Control is returned back to mai n() .
5. Same as (2) above, but a new stack is created for T2.

6. Same as (3) above, but T2 context is saved in
T2 np_buf.

7. Same as (4) above.

8. The St art () functionis called. St art () will ini-
tialize the data structures used by the scheduler
(mainly, timers), and call the Schedul er () func-
tion.

Let us assume that T2 has the highest priority and should
run now. The saved context T2_jmp_buf is restored by call-
ing a longjmp() to that context. This will transfer the con-
trol again to the CreateNewContext(), specifically to the
setimp(). The return value of setjmp() will indicate that it
has been called by a longjmp(), and the actual function T2
is called (labeled B in Figure 2).

While T2 is running, a timer interrupt goes off (indicat-
ing the release of a new task). The timerhandler() function is
called (labeled C on the figure), where the context of the in-
terrupted task T2 is saved in the structure T2_jmp_buf, then
the Scheduler() is called. Assume that the scheduler decides

that T2 is still the highest priority job in the system, so it dis-
patches it again by calling a longjmp() to T2_jmp_buf. This
will take us back to the saved context at the timerhandler()
function at setjmp(). The return value of setjmp() will in-
dicate it was called by a longjmp(), which means we need
to resume the job from the point, where it was interrupted
when the timerhandler() was first triggered by the alarm sig-
nal. This is achieved by just returning from timerhandler(),
which will transfer control back to T2() at the interrupted
point (labeled D).

The current instant of T2 continues execution without
any further interruptions till it finishes. At this point, the
thread calls the threadYield() function (labeled E). The ex-
ecution context is saved (this will be the starting point of
the new released instance of the task), and the scheduler is
called.

C and E indicate the two situations at which the sched-
uler is invoked, namely task release and task completion.

Note that timerhandler() and threadYield() functions will
run on the interrupted calling thread’s stack, respectively.

5. Worst-Case Timing Analysis

We currently lack tool support to derive safe up-
per bounds of the worst-case execution time of tasks
on the PPC405 processor, such as a static timing anal-
ysis tool would provide [9]. Hence, we resorted to the
more conventional empirical analysis using dual-loop tim-

ing, as given in the following code shippet:
tl = gettineofday();

for( i =0; i<N i++);
t2 = gettineofday();
wor k() ;

t3 = gettinmeofday();
for(i=0; i<N, i++)
wor k() ;

~ t4 = gettineofday(); =
The timing loop computes the average execution time of

N instances of the task taking into account the loop over-
head and cold cache misses. The execution time is calcu-

lated as:
; (4 —13) — (2 —t1)
Lwork — N .

6. Dynamic Voltage Scaling Algorithms

We implemented four dynamic voltage scaling algo-
rithms: The static, cycle-conserving and look-ahead devel-
oped by Pillai and Shin [15] as well as the feedback scheme
developed in-house by Zhu et al. [20, 19, 5]. All of these
DVS schedulers interact with the EDF scheduler as follows.
Once a scheduling decision is demanded, the EDF sched-
uler invokes a DVS scheduler that looks at the amount of
work completed so far, the actual processor requirement,
static slack (due to under-utilization) and dynamic slack
due to early completion) available. The DVS scheduler then
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Figure 2. Interaction between the Threads Library and the Preemptive Scheduling Algorithm

computes a safe frequency and voltage that can meet the
real-time requirements of the task set. The DVS sched-
uler also issues the appropriate primitives to reduce the fre-
quency/voltage. We used system calls to the patched Linux
PowerPC kernel that change the frequency as well as volt-
age. The user-level library that was responsible for thread
creation and management also has primitives to dynami-
cally change the frequency and voltage.

Next, the DVS scheduling algorithms are introduced in
increasing level of computational overhead (for making a
scheduling decision) and increasing potential for energy
savings.

6.1. Static Voltage Scaling under EDF

In this algorithm, the lowest possible operating fre-
quency is selected while still meeting deadlines in EDF
scheduling for a given task set. The system utiliza-
tion is computed based on the worst-case execution times.
This provides the amount of static slack that is avail-
able, and this value is used as the scaling factor to scale the
frequency accordingly. Hence, the frequency is set stati-
cally and is not changed unless the task set is changed. Con-
sequently, the DVS scheduler is invoked when a task set is
released for execution (see Figure 3).

The remaining schemes are dynamic scheduling poli-
cies: cycle-conserving and look-ahead as well as our feed-
back RT-DVS EDF.

Find the lowest frequency fj with
a = ;T]; A fk S {fla ~'~7fmaz}
which satisfies EDF: ¥ & <«

i=1l..n

Figure 3. Static RT-DVS EDF

6.2. Cycle-Conserving RT-DVSEDF

In Cycle-Conserving RT-DVS (EDF), initially the task
set is scheduled based on the worst-case execution times.
When one task in the task set completes, the system utiliza-
tion is recomputed using the actual execution times of the
completed task and the worst-case execution times of the
remaining tasks (see Figure 4). This is repeated when each

Upon release of T}, set U; = % and select_frequency().
Upon completion of T; with actual execution time cc;,
setU; = 5 and select_frequency().

select_frequency: find lowest fr s.t. ¥ U; < -2,

max

1=1..n

Figure 4. Cycle-Conserving RT-DVS EDF

task in the task set completes. Hence, the frequency is re-



duced by computing the amount of dynamic slack due to
early task completion in addition to static slack. Thus, the
DVS scheduler is invoked upon task releases and comple-
tions.

6.3. Look-Ahead RT-DVSEDF

This is the most aggressive of the three DVS algorithms
by Pillai and Shin and exploits both static and dynamic
slack. The look-ahead scheme determines future computa-
tion needs and defers task execution. The cycle-conserving
scheme discussed above assumes the maximum frequencies
initially until tasks complete and then reduces the operating
frequency and voltage.

In contrast, the look-ahead scheme tries to defer as much
work as possible in a greedy manner. It sets the operating
frequency to meet the minimum work that must be com-
pleted now to ensure all future deadlines are met. In theory,
the look-ahead scheme may necessitate increased frequen-
cies at a later stage in order to complete deferred work in
time. But actual execution times are usually much smaller
than worst-case execution times [17]. This means that, on
the average, earlier lower frequencies typically do not re-
sult in later pressure forcing high frequencies in order to
meet deadlines (see Figure 5).

Upon release of T,

set remaining time c_le ft; = C; and defer().
Upon completion of T3, set c_le ft; = 0 and defer().
During execution of T}, decrement c_le ft;.
defer execution:

letU= ¥ $,5=0
i=1..n
for(i=0.nst. T, € {T1,...,Tp|D1 > ... > Dy, })
U=U-%

x = max(Ojc_lefti —(1-U)(D; —Dy))

_ clefti—x
U=U-+ DD

s=s+x
end for
select_frequency(—Dn )

select_frequency(cv): find lowest f, s.t. o« < ff’c

max

Figure 5. Look-Ahead RT-DVS EDF

6.4. Feedback RT-DVSEDF

This algorithm exploits both dynamic and static slack in
an even more greedy manner than the look-ahead algorithm
discussed above. The algorithm anticipates an actual exe-
cution time of each task invocation similar to the execution
time used in previous invocations. It then splits the execu-
tion budget of a task into two parts as depicted in Figure 6,

the anticipated actual time C 4 (scaled at the lowest possi-
ble frequency) and the remaining time C'p (scaled at max-
imum frequency). All future tasks are deferred as long as

TA B

f*—— CAla—= CB I~—

Figure 6. Task Splitting

possible using a maximal (worst-case) schedule, which is
related to the actual schedule to derive the currently avail-
able slack sy, for task k. Thus,

~ Oa+ s

indicates the scaling factor and the corresponding lowest
possible frequency using sel ect frequency(«a) as in
Figure 5. The algorithm is capable of capturing changes in
actual execution times using a PID-feedback scheme. Pre-
emptions of the current task have to be anticipated via future
slot allocations in the schedule implemented in a backward
sweep to fill idle and early completion slots from a task’s
deadline backwards (see Zhu and Mueller for algorithmic
details [20]). Due to the even more greedy approach than
any of the previous schemes, the algorithm is reported to ex-
hibit additional energy savings, particularly for medium uti-
lization systems, which are quite common [5]. Even more
substantial savings have been observed for fluctuating ex-
ecution times where PID-feedback provides new opportu-
nities for aggressive scaling [20]. By evaluating this algo-
rithm on the 405LP, we wanted to assess the true poten-
tial for energy savings in an actual system as opposed to
a simulation environment. Also, we wanted to determine if
the lower frequencies chosen by the feedback scheme out-
weighs the higher computational overhead required to make
scheduling decisions.

«

7. Experimentation M ethodology

The DVS algorithms (static, cycle-conserving, look-
ahead and our feedback) were exposed to the DVS capa-
bilities of the 405LP board. Specifically, the scheduling al-
gorithms could chose any frequency/voltage pair from the
set depicted in Table 1. This set of pairs was constrained
by a need to have a common PLL multiplier of 16 rel-
ative to the 33MHz base clock and a divider of two or
any multiple of 4. Changing the multiplier results in addi-
tional overhead for switching, which we wanted to elimi-
nate in this study.

In order to assess power consumption, we needed to
monitor processor core voltage and current at a high rate.



Setting 0 1 2 3 4
Frequency (MHz) | 33 | 44 | 66 | 133 | 266
\Woltage (Volts) 1.0)10|11| 13 | 1.7

Table 1. Valid Frequency/Voltage Pairs

Due to the rate requirements, it was not feasible to em-
ploy multimeters for measuring the voltages since their pre-
cision is generally low and very coarse-grained. The error
rates in voltage readings could also result in measuring in-
correct voltages. Hence, we used a high-frequency analog
data acquisition board to gather data for (a) the processor
core voltage and (b) the processor current. The latter was
measured as a voltage level over a resistor with a 1V drop
per 360mA. Data acquisition allowed us to experiment with
longer-running applications to assess the energy consump-
tion of the processor. We also employed an oscilloscope for
visualizing the voltages and currents, again with high pre-
cision in voltage and current readings. The snapshots in the
oscilloscope shots depict the phase just after a simultane-
ous release of all tasks at the beginning of a hyperperiod.

8. Reaults

We first assessed the overhead of different DVS tech-
niques supported by the test board and the dynamic power
management extensions of the operating system. Table 2 re-
ports the overhead for synchronous switching (by chang-
ing the DPM policy) in a time range bounded by two ex-
tremes: (a) Switching between adjacent frequency/voltage
levels and (b) switching between the lowest and highest
levels. Furthermore, the overhead for initiating an asyn-
chronous system call (by changing the DPM task state)
leading to a switch and the subsequent handler overhead are
reported for a range of the highest and the lowest processor
frequencies. The results indicate that a synchronous DVS
switch delaying execution during voltage/frequency transi-
tion has about an order of a magnitude larger overhead than
a system call triggering an asynchronous switch where ex-
ecution proceeds during the switching interval. The system
call is complemented by an interrupt that occurs when the
voltage has ramped up sufficiently, and the new frequency is
set in the interrupt handler. This handler overhead, compa-
rable to a signal handler, increases the overhead of the asyn-
chronous approach only insignificantly.

activity
overhead

sync. DVS
117-162 psec

Table 2. DVS overhead

async. DVS
8-20 usec

signal handling
0.07-0.6 usec

In a second set of experiments, we measured the power
of executing three medium utilization task sets depicted in

Table 3. Task first task set is harmonic, i.e., all periods
are integer multiples of the smallest period, which facili-
tates scheduling. This often allows scheduling algorithms
to exhibit an extreme behavior, typically outperforming any
other choice of periods. The second and third task sets are
non-harmonic with longer and shorter periods, respectively.
Actual execution times were half that of the WCET for each
task for this experiment.

Each of the previously discussed real-time DVS algo-
rithm were subsequently exposed to execution under these
task sets. As a baseline for comparison, we also support
a naive DVS scheme where task execution and idle alter-
nate between maximum and minimum frequency/voltage,
respectively.

We executed task sets one, two and three for five, one
and seven hyperperiods for a total of twelve, ten and ten sec-
onds, respectively. We measured the voltage and current of
the processor during this time using an analog data acquisi-
tion board. This allowed us to integrate instant power con-
sumption of the execution time. We also performed all ex-
periments for synchronous and asynchronous DVS switch-
ing to assess the savings attributed to the latter.

Table 4 depicts the energy consumption in mWatt-hours
of each experiment. The naive DVS algorithm serves as a
base for comparisons for each of the subsequent DVS al-
gorithms. For task set one, static DVS reduces energy
consumption by about 29% over the naive scheme. Cycle-
conserving saves 47% energy. Look-ahead RT-DVS saves
over 50%, and our feedback method saves about 54% en-
ergy compared to naive DVS. This clearly shows the
tremendous potential in energy savings for real-time
scheduling.

The savings for each algorithm are lower for task set two
peaking at about 23% for our feedback scheme. As men-
tioned before, task set one is harmonic, which typically re-
sults in the best scheduling (and energy) results since ex-
ecution is more predictable. Task set three lies in between
the other two with peak savings of 37% for our feedback
scheme.

The results also demonstrate that the overhead for cal-
culations inherent to scheduling algorithms is outweighed
by the potential for energy savings. This is underlined by
the increasing overhead in execution time for each of the
scheduling algorithms (from left to right in Table 4) accom-
panied by decreasing energy consumption.

Another noteworthy result is the comparison between
synchronous and asynchronous DVS switching depicted in
the last row for each task set in Table 4. For each of the
scheduling algorithms, we see additional savings of 1-5%
due to the ability to commence with a task’s execution
while frequency and voltage are changing. We also ran
experiments with task sets that had an order of a magni-
tude smaller deadlines and execution times. Surprisingly,



Task Set 1 Task Set 2 Task Set 3
task || Period (P;) | WCET (C;) || Period (P;) | WCET (C;) || Period (P;) | WCET (Cy)
1 2,400 400 600 80 90 12
2 2,400 600 320 120 48 18
3 1,200 200 400 40 60 6

Table 3. Task Set, times in msec

algorithm || naive DV'S || static RT-DVS | static save || cycle-cons. | c-c save || look-ahead | I-a save [ our feedback | fdbk save |

Task Set 1
sync. 4.47 32| 28.41% 2.38| 46.61% 2.21150.56% 2.04| 54.21%
async. 4.43 3.13| 29.35% 2.327| 47.51% 2.12152.07% 2.00| 54.70%
savings 0.89% 2.19% 2.51% 3.92% 1.95%

Task Set 2
sync. 0.544 0.5056 7.06% 0.4713| 13.36% 0.424 {22.06% 0.4089| 24.83%
async. 0.5276 0.5025 4.76% 0.4622| 12.40% 0.4218|20.05% 0.4064| 22.97%
savings 3.01% 0.61% 1.93% 0.52% 0.61%

Task Set 3
sync. 0.595 0.5616 5.61% 0.4799 19.34% 0.4043|32.05% 0.3708| 37.68%
async. 0.5802 0.5496 5.27% 0.4547| 21.63% 0.3912|32.57% 0.3671| 36.73%
savings 2.49% 2.14% 5.25% 3.24% 1.00%

Task Set 2 vs. Task Set 3

change ||  9.07%] 8.57% [ -1.65%] [ -7.82%] [ -10.71%] |

Table 4. Energy [mW — hrs] consumption per RT-DVS algorithm

the synchronous vs. asynchronous saving remained approx-
imately the same, even though DVS switches occur ten
times as often. These results seem to indicate that the bene-
fit of continuous execution during DVS switching, although
not negligible, is secondary to trying to minimize the over-
head of switching itself.

We also compared task sets two and three in terms of
their absolute energy readings, which is valid since they ex-
ecuted for the same amount of time (ten seconds), the same
actual to worst-case execution time ration and the same uti-
lization, albeit at seven times more context switches. This
change is depicted in the last row of Table 4 for the asyn-
chronous case. Not surprisingly, the energy with naive DVS
is about 9% higher for task set three than for set two due
to the higher context switch overhead of the latter. Quite in-
terestingly, this overhead turns into a reduction in energy as
DVS schemes become more aggressive peaking at close to
11% energy savings of task set three relative to set two for
our feedback scheme.

Finally, we performed two sets of experiments to de-
pict voltage and current fluctuations on an oscilloscope. In
the first experiment, the worst-case execution times were
inflated compared to the actual execution times to create
a considerable amount of dynamic slack that can be uti-
lized by some DVS algorithms (cycle-conserving, look-

ahead and our feedback method). In the second experiment,
the actual execution times of the tasks were very close to the
worst-case execution times used by the schedulability anal-
ysis.

In each case, we ran three different task sets with high
(0.9), medium (0.5) and low (0.1) utilization, respectively.
In what follows, we briefly present the snapshots obtained
by the oscilloscope for medium utilization and comment on
the indications of those results.

8.1. Loosetask sets

These task sets have considerable of dynamic slack dues
to the fact that their WCETs are inflated compared to
their actual execution times. We experimented with a high,
medium and a low utilization. While the absolute numbers
differ for these utilizations, the trends are similar. Hence,
we only depict the medium utilization case in Figure 7.
Static DVS shows two levels of voltages (busy/idle time)
whereas cycle-conserving DVS differentiates three levels
on a dynamic base. Even lower voltage and current read-
ings are given by look-ahead DVS, which not only distin-
guishes more levels but also exhibits much lower power lev-
els during load. The lowest results were obtained by our
feedback DVS, which defers execution even more aggres-
sively than any of the other methods. However, our feed-



back scheme can only further reduce power consumption
occasionally as sufficient slack exists to be recovered by the
algorithms of the previous schemes. Dynamic slack is re-
covered in increasing levels by the latter three schemes.

8.2. Tight task sets

The actual execution times of these task sets are very
close to the worst-case execution times we presented to the
schedulability and DVS analysis. Figure 8 shows a medium
utilization task set. Static voltage scaling will select one safe
frequency based on worst-case execution times and retain
this frequency throughout the execution. Static selects the
minimum frequency/voltage pair (33 MHz @ 1 V) when
there are no ready tasks to run. Figure 8 indicates that low

frequencies are not often exhibited due to the high utiliza-
tion of the system and the tight execution times.

Cycle-conserving DVS again shows a more refined volt-
age (and, hence, frequency) variation, albeit at only a few
levels, under load. It cannot lower the frequency based on
the actual execution times because these are very close to
the worst-case execution times.

Look-ahead, however, due to its more aggressive nature,
can take advantage of some amount of dynamic slack cre-
ated and lower the frequency/voltages. There is not much of
dynamic slack to recover. Infrequently, it even has to over-
come the fact that the frequency was lowered too much
in the past by raising the voltage and frequency to a level
even higher than the safe frequency calculated by static.
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Nonetheless, the cumulative savings are higher for look-
ahead.

Our feedback scheme shows even lower volt-
ages/frequency than the look-ahead scheme, which il-
lustrates again its ability to scale power even more aggres-
sively than any of the previous schemes. The tighter execu-
tion times illustrate this much better than the looser ones in
Figure 7. Hence, the potential for feedback is more signifi-
cant in systems with actual execution times closer to their
WCET.

The voltage and current graphs obtained from an oscil-
loscope clearly exhibit the expected behavior for the four
implemented DVS algorithms. These graphs, together with
the execution traces of long-running task sets under differ-
ent scheduling algorithms, showed no missed deadlines of
tasks while lowering power whenever possible, thus exper-
imentally validating our implementation as well as the cho-
sen scheduling algorithms.

9. Conclusion

We successfully created an infrastructure for investigat-
ing hard real-time DVS schemes on the IBM PowerPC
405LP with the task scheduling performed on an EDF ba-
sis. The results indicate benefits in energy reduction of up to
5% for fast DVS modulation without entering sleep modes,
i.e., by continuing with the execution of application code
while switching between voltages/frequencies. We assessed
the benefits quantitatively by determining the energy con-
sumption over the hyperperiod of real-time tasks for differ-
ent algorithms and found that aggressive scheduling algo-
rithms that modulate processor voltage and frequency can
achieve up to 54% reduction in energy consumption for pe-
riodic real-time task sets.
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